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BACKGROUND Junctional ectopic tachycardia (JET) is a prevalent
life-threatening arrhythmia in children with congenital heart dis-
ease (CHD), with marked resemblance to normal sinus rhythm
(NSR) often leading to delay in diagnosis.

OBJECTIVE To develop a novel automated arrhythmia detection
tool to identify JET.

METHODS A single-center retrospective cohort study of children
with CHD was performed. Electrocardiographic (ECG) data produced
by bedside monitors is captured automatically by the Sickbay plat-
form. Based on the detection of R and P wave peaks, 2 interpretable
ECG features are calculated: P prominence median and PR interval
interquartile range (IQR). These features are used as input to a sim-
ple logistic regression classification model built to distinguish JET
from NSR.

RESULTS This study analyzed a total of 64.5 physician-labeled
hours consisting of 509,833 cardiac cycles (R-R intervals), from
40 patients with CHD. The extracted P prominence median feature
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is much smaller in JET compared to NSR, whereas the PR interval
IQR feature is larger in JET compared to NSR. The area under the
receiver operating characteristic curve for the unseen patient test
cohort was 93%. Selecting a threshold of 0.73 results in a true-
positive rate of 90% and a false-positive rate of 17%.

CONCLUSION This novel arrhythmia detection tool identifies JET,
using 2 distinctive features of JET in ECG—the loss of a normal P
wave and PR relationship—allowing for early detection and timely
intervention.
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Introduction
Arrhythmias are common during the early postoperative
period, following cardiac surgery to repair congenital heart
disease (CHD), with junctional ectopic tachycardia (JET)
shown to be the most common arrhythmia.1,2 JET not only
extends intensive care unit (ICU) stay; it also increases
patient risk of morbidity and mortality.3

JET manifests as a narrow QRS complex tachyar-
rhythmia, usually with atrioventricular dissociation. The
heart rate is usually higher than the 95th percentile value cor-
responding to the patient’s age (heart rate .170–180 beats
per minute [bpm] in infants) and the heart electrical activity
is found to begin in the autonomic tissue surrounding the
atrioventricular node.4

One of JET’s most distinctive features observed on an
electrocardiogram (ECG) is the disappearance of the P
wave or the appearance of retrograde P waves.5 Although
the QRS complex is narrow, its morphology remains similar
to that which occurs during normal sinus rhythm, resulting in
a delay in diagnosis and subsequent interventions.

Early JET intervention has been shown to significantly
improve patient outcomes.6 The need to recognize JET early
places a large attentional burden on intensive care staff, espe-
cially nurses.7 This highlights the need for an automated
framework that can rapidly and accurately recognize JET
and alert clinicians and nurses, potentially saving patient lives.

Over the last decade, several computational frameworks
for ECG-based arrhythmia detection have been proposed.
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KEY FINDINGS

- The proposed P prominence median feature is smaller in
junctional ectopic tachycardia (JET) compared to
normal sinus rhythm.

- The proposed PR interval interquartile range feature is
larger in JET compared to normal sinus rhythm.

- A simple logistic regression classifier using the above 2
interpretable features as inputs results in an area under
the curve receiver operating characteristic curve of
93% for a test cohort consisting of 25 unseen patients.
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These algorithms broadly fall into 2 categories: (1) purely
handcrafted feature-based, that use statistical and signal pro-
cessing techniques to extract simple but interpretable fea-
tures; or (2) purely data-driven, that use lots of ECG data
and complex machine learning architectures to extract
powerful but clinically uninterpretable features.

To address this pressing need, we propose an ECG-based
JET detection algorithm that combines clinically interpret-
able feature extraction and sophisticated data-driven
learning. The proposed algorithm uses just 2 features that
each capture P-wave displacement: P prominence median
and PR interval interquartile range (IQR). We demonstrate
that a simple logistic regression model using just these two
features, distinguishes between JET and sinus rhythms with
high accuracy on a test subset of patients.
Methods
Patient cohort
A single-center retrospective cohort study was performed at
Texas Children’s Hospital. The study was approved by the
Institutional Review Board of Baylor College of Medicine.
Informed consent was waived, as this was an observational
study performed on aggregate de-identified patient informa-
tion. The research reported in this paper adhered to the Hel-
sinki Declaration guidelines.

All postoperative patients admitted to the cardiac inten-
sive care unit (CICU) with CHD met inclusion criteria. Pa-
tients were randomly selected based on JET ICD-10 codes
that occurred between January 2015 and May 2020 that
were then confirmed by independent chart review.
Data collection
All patients admitted to the CICU at Texas Children’s Hospital
are continuously monitored using standard monitoring equip-
ment. The physiologic data produced by these monitors are
captured automatically using the Sickbay platform (Medical
Informatics Corp, Houston, TX). Data captured by Sickbay in-
cludes both vital signs and high-resolution waveforms. Vital
signs are generally collected once every 2 seconds and include
time series such as heart rate, respiratory rate, oxygen satura-
tion (SpO2), all blood pressure measurements (mean, systolic,
diastolic), all ST-segment measurements, and temperatures.
Waveform data are generally collected at 60–240 Hz, depend-
ing on the signal, and include time series such as ECG lead and
pressure measurements, chest impedance, and the SpO2
waveform. All data are time-synchronized. All signals and
events measured from all devices and patients are passively re-
corded while they are in the CICU, resulting in a large, rich
dataset that can be subdivided based on project.
ECG signal processing
The proposed method focuses on features based only on ECG
data, since ECG is almost always measured. For consistency,
only ECG lead II data are analyzed. Segments of data that
include movement artifacts or are nonphysiological are dis-
carded. The remaining ECG segments are filtered to remove
frequencies outside of the range of 0.5–50 Hz.

Two interpretable ECG-only features based on the detec-
tion of R and P wave peaks are calculated: P prominence me-
dian and PR interval IQR. The detection of R and P wave
peaks is implemented as follows.

After applying a 5 Hz third-order high-pass Butterworth fil-
ter and normalizing by the segment median and IQR, R wave
peaks are detected using MATLAB’s findpeaks function
(MathWorks, Natick, MA). Thresholds for the minimum
peak prominence, maximum peak width, and minimum peak
distance are initialized and then adjusted based on the corre-
sponding identified peak values. These were chosen heuristi-
cally as follows: the minimum peak prominence is
initialized to 0.3, then set to one-third of the 75th percentile
identified peak prominence; the maximum peak width is
initialized to 0.2, then set to 3 times the 25th percentile iden-
tified peak width; and the minimum peak distance is initialized
to 0.2, then set to half the 75th percentile identified peak dis-
tance. For the minimum peak distance initialization, 1 beat
every 0.2 seconds corresponds to 300 bpm.8,9 For the
maximum peak width initialization, assuming the QRS
complex spans approximately 10% of the R-R interval
period, an R peak width of 0.2 seconds corresponds to
approximately 30 bpm.8,9 Inverted R waves are accounted
for by finding peaks for both the original and inverted
signals and then taking the set of identified peaks that has
the higher median peak height.

The largest peak that occurs between 0.2 seconds and 0.07
seconds9 before each of the identified R wave peaks is deter-
mined using findpeaks. This peak is identified as the P wave
unless it appears to be a pacing spike. If the second-largest
peak occurs after the first-largest, has a larger width, and
has a height (normalized by the minimum search period
value) greater than 30% of that of the largest peak, the
second-largest peak is taken as the P wave. The first is
assumed to be a pacing spike.

All P prominence values are returned by findpeaks when
the P waves are identified; P prominence is based on the ver-
tical distance between the identified P peaks and the signal’s
nearby minima. The median P peak prominence over the past
130 seconds was found to be an important feature for the



Figure 1 Cohort breakdown in terms of expert-labeled hours and the corresponding number of patients they span as well as analyzed beats, for both sinus and
junctional ectopic tachycardia (JET) labels, as well as Training and Test cohorts.
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classification of ECG data as JET or sinus, as is commonly
described by physicians experienced with JET patients.

The PR interval is taken to be the time between the identi-
fied P and R peaks. The IQR of the PR interval over the past 10
seconds was also found to be useful in the classification of
ECG data as JET or sinus. This is because when P waves
disappear in JET, the peak detector still chooses the largest
peak, but it is an arbitrary peak and thus inconsistent with time.

Classification model
The proposed method uses a simple logistic regression model
with the features described above passed in as input. Training
and testing were done using Spark through Sickbay’s MAT-
LAB research interface, RapidResearch. The regularization
parameter was chosen in training based on leave-1-patient-
out cross-validation. No data from test patients were used
in training. Once the model is trained, classification can be
made for each new set of features, which are calculated on
a per-beat basis.
Results
Patient cohort
The cohort and label breakdown are shown in Figure 1. The
complete cohort for this study consists of 40 patients with
CHD, who had a median age of 1.8 (IQR spanning 0.15–
6.4) years in which the male-to-female ratio was 18:22.
Supplemental Table 1 lists the fundamental cardiac diagno-
ses at times of admission for additional CHD context. A to-
tal of 64.5 hours of data was labeled by a senior pediatric
cardiac critical care physician (of which 509,833 cardiac cy-
cles [R-R intervals] were analyzed): 19.3 hours (147,868
analyzed beats) spanning 35 patients were labeled as JET
and 45.2 hours (361,965 analyzed beats) spanning all 40 pa-
tients were labeled as sinus. The training cohort consists of
15 patients and a total of 48.3 physician-labeled hours (of
which 390,608 R-R intervals were analyzed): 12.9 hours
(98,919 analyzed beats) spanning 14 patients were labeled
as JET and 35.5 hours (291,689 analyzed beats) spanning
all 15 patients were labeled as sinus. The test cohort consists
of 25 patients and a total of 16.2 physician-labeled hours (of
which 119,225 R-R intervals were analyzed): 6.4 hours
(48,949 analyzed beats) spanning 21 patients were labeled
as JET and 9.8 hours (70,276 analyzed beats) spanning all
25 patients were labeled as sinus.
Feature extraction
Figure 2 demonstrates the differences between expert-labeled
sinus and JET data on a per-patient basis. Each plot shows
approximately 30 beats of raw ECG data starting near the
beginning of an expert-labeled event. The identified R
wave peak is centered for each beat (using the R peak detec-
tion described above). A period of data equal to half the
average R-R interval (across the 2 R-R intervals that include
the centered R wave) is plotted on either side of the centered
R wave. Each row contains data from a unique patient.
Though the overall ECG morphology changes significantly
from patient to patient, each of these examples clearly shows
the disappearance of the P wave in JET compared to sinus.

An example of expert-labeled sinus and JET for a patient is
shown in Figure 3, along with the beat-by-beat P prominence
and PR interval features (shown by the red vertical lines and
black horizontal lines, respectively). The P peak prominence
values are larger, and the PR interval values are more consis-
tent in data labeled as sinus compared to the same features in
data labeled as JET. All time values in this paper are normal-
ized to remove patient protected health information.

An example of the P prominence median and PR interval
IQR features is shown in Figure 4 (top and bottom, respec-
tively) for a couple of patients. Features derived from
expert-labeled sinus data are shown in the left column and
features derived from expert-labeled JET data are shown in
the right column. The P prominence median is much smaller
in JET compared to sinus, whereas the PR interval IQR is
larger in JET compared to sinus.



Figure 2 Comparison of intra and inter-patient sinus and junctional ectopic tachycardia (JET) beats. ECG 5 electrocardiogram.
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Performance
The likelihood calculated for 4 test cohort patients across
expert-labeled events is shown in Figure 5. The algo-
rithm labels (green background color for sinus and red
background color for JET) align closely to the expert
labels (left column plots contain expert-labeled sinus
data and right column plots contain expert-labeled JET
data).



Figure 3 P prominence and PR interval features displayed relative to sinus (top) and junctional ectopic tachycardia (JET) (bottom) electrocardiogram (ECG)
data on a per-beat basis.
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Algorithm classification is performed per beat, each time a
new set of features is available. JET likelihood is calculated
as a linear combination of the 2 features (P prominence me-
dian and PR interval IQR), where a classification of JET is
made when JET likelihood is above a selected threshold
and a classification of sinus is made when JET likelihood is
below that threshold. The visualizations in Figure 5 show
both JET and sinus algorithm–labeled events, where classifi-
cation labels that are less than 5 seconds were discarded.

Similar to the comparison of JET and sinus features shown
in Figure 3, the trained model finds that JET likelihood in-
creases as the P prominence median decreases and as the
PR interval IQR increases. This means the model is most
certain when both the P prominence median is large and
the PR interval IQR is small (low JET likelihood) or when
both the P prominence median is small and the PR interval
IQR is large (high JET likelihood).

The test cohort was found to have a median heart rate of
124 bpm with an IQR of 34 bpm. Higher heart rate JET
data were found to be misclassified more often than lower
heart rate JET data. The median (IQR) heart rate of correctly
classified JET data was 130 (32) bpm, whereas that of mis-
classified JET data was 154 (23) bpm.

Finally, the area under the curve (AUC) receiver operating
characteristic (ROC) was calculated in Spark through Sick-
bay’s MATLAB research interface, RapidResearch. This im-
plementation had a 93% AUC. The AUC-ROC curve is
plotted in Figure 6 as well as the true- and false-positive rates
relative to the choice of threshold. The threshold used for the
above event identification plots was 0.73, resulting in a test
true-positive rate of 90% and a test false-positive rate of
17%. Note that the threshold (and thus the true- and false-
positive rates) can be adjusted based on the user’s preference
and/or case at hand.
Discussion

JET is one of the most common postoperative arrhythmias
observed in patients after surgery repairing congenital heart
defects. Early intervention, which is critical to improving pa-
tient outcomes, is often delayed owing to the resemblance of
ECG morphology during JET to that in sinus rhythm.10 To
assist physicians and nurses with this enormous burden, we
propose a computational framework for accurate and precise
JET detection. Our framework distills the key morphologic
features of an ECG waveform into just 2 parameters per car-
diac cycle that are then summarized over larger intervals of
time. These are fed into a logistic regression classifier, which
we demonstrate achieves a high area under the ROC curve of
93%. Overall, this paper makes the following novel contribu-
tions: (1) a novel morphologic parameterization algorithm
that is tailored toward efficient representation of ECG wave-
forms; and (2) an end-to-end computational framework that
takes raw ECG data as input and predicts the likelihood of
JET on a per-cardiac-cycle basis. Our framework achieves
high sensitivity and specificity on a dataset of pediatric car-
diac ICU patients.

There is an extensive body of literature that uses compu-
tational tools to extract meaningful information from ECG



Figure 4 P prominence median (top) and PR interval interquartile range (IQR) (bottom) features shown for expert-labeled sinus (left column) and junctional
ectopic tachycardia (JET) (right column) events for 2 training cohort patients.
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waveforms and use this information to detect arrhythmias.
Most of the computational frameworks fall into 2 broad cat-
egories: those using handcrafted feature engineering where
the features are interpretable, and those using more complex
data-driven architectures where the features have limited
clinical interpretability. Tools using handcrafted features
have been proposed using Generalized Discriminant Anal-
ysis,11 wavelet analysis,12–14 and nonlinear Bayesian
filters.15 Various data-driven neural network architectures
have achieved high accuracy in detecting arrhythmias, such
as convolutional neural networks,10,16,17 long short-term
memory networks,18,19 and radial basis networks.20 Most



Figure 5 Algorithm likelihood and corresponding identified events (green background for sinus and red background for junctional ectopic tachycardia [JET])
displayed for expert-labeled sinus (left column) and JET (right column) events for 4 test cohort patients.
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of these models detect sinus rhythm, premature ventricular
contractions, atrial fibrillation, ventricular fibrillations, and
heart blocks. However, no existing computational model
has been used to detect junctional tachyarrhythmias.

Our JET detection model performs at a high sensitivity
and specificity, with an AUC-ROC of 93%, using the P
prominence median and the PR interval IQR as features.
Note that the performance metric used to evaluate existing
ECG arrhythmia detection implementations is the percent-
age of true arrhythmias that were correctly detected. In a
clinical setting, however, too many false-positives cause
alarm fatigue in ICU staff,21,22 which increases the
likelihood of an actual JET event going undetected. Our
framework thus uses the area under the ROC curve as the
performance metric, providing physicians a complete
picture of the true detection vs false alarm performance of
the classifier. This also equips physicians with the
capability to set the detection threshold, depending on
how sensitive they would like the classifier.
Limitations
Though the interpretability and simplicity of a straightfor-
ward logistic regression model are paramount in



Figure 6 Area under the curve receiver operating characteristic (AUC-ROC) curve; true-positive rate (TPR) and false-positive rate (FPR) plotted as a function
of the classification threshold.
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physicians’ understanding and trust of the classifier, such a
model is restricted by its structure and therefore limited in
its performance. The proposed method assumes that there
is a linear relationship between the features and the
likelihood of JET, which works as an approximation but
does not capture all the subtleties of the underlying
relationships.

Another limitation is the cohort size of 40 patients.
Though a large amount of data was analyzed, a larger number
of unique patients would better confirm the generalizability
of the proposed algorithm. Note that the model did generalize
well to the test cohort of 25 patients, from a training cohort of
15 patients.
Future directions
Going forward, the false-positive rate curve should be
reduced so that clinicians are not overwhelmed from alarm
fatigue. This can be addressed by exploring new models
that are still interpretable but allow the data to be approx-
imated more closely. We plan to evaluate other classifica-
tion models, such as decision trees, that may allow for
closer representations of the data. These models allow
for nonlinear representations of multiple features in an
interpretable structure. Further, we plan to evaluate the
utility of features from central venous pressure waveform
data, since these data are used by physicians, when avail-
able, to identify JET. Another potential data source we
plan to evaluate is the oxygen saturation waveform.

Finally, we plan to validate the algorithm on a cohort of
100 or more patients, collected from multiple sites, while
maintaining a large, diverse separate test set. This will allow
us to account for more of the variability that exists across pa-
tients and device measuring modalities, leading to improve-
ments in our feature extraction techniques, feature
selection, and choice and tuning of the model, and thus the
algorithm’s overall performance. The cohort-representative
diversification of the training and test sets will make for a
more robust model and provide increased confidence in ob-
taining similar performance when applied to an arbitrary
set of new patient data.
Conclusion
JET remains a life-threatening postoperative arrhythmia in
children with CHD. Our novel arrhythmia detection tool
identifies JET with high sensitivity and specificity, allowing
for early detection and timely intervention.
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