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Ginger has been demonstrated to improve lipid derangements. However, its underlying triglyceride-lowering mechanisms
remain unclear. Fructose overconsumption is associated with increase in hepatic de novo lipogenesis, thereby resulting in lipid
derangements. Here we found that coadministration of the alcoholic extract of ginger (50 mg/kg/day, oral gavage, once daily)
over 5 weeks reversed liquid fructose-induced increase in plasma triglyceride and glucose concentrations and hepatic triglyceride
content in rats. Plasma nonesterified fatty acid concentration was also decreased. Attenuation of the increased vacuolization and
Oil Red O staining area was evident on histological examination of liver in ginger-treated rats. However, ginger treatment did
not affect chow intake and body weight. Further, ginger treatment suppressed fructose-stimulated overexpression of carbohydrate
response element-binding protein (ChREBP) at the mRNA and protein levels in the liver. Consequently, hepatic expression of the
ChREBP-targeted lipogenic genes responsible for fatty acid biosynthesis was also downregulated. In contrast, expression of neither
peroxisome proliferator-activated receptor- (PPAR-) alpha and its downstream genes, nor PPAR-gamma and sterol regulatory
element-binding protein 1c was altered. Thus the present findings suggest that in rats, amelioration of fructose-induced fatty liver
and hypertriglyceridemia by ginger treatment involves modulation of the hepatic ChREBP-mediated pathway.

1. Introduction

Ginger (Zingiber officinale Roscoe, Zingiberacae), one of the
most commonly used spices and medicinal plants around the
world, has been found to have pleiotropic pharmacological
activities, such as anti-inflammatory, antioxidant, and cardi-
ovascular activities [1, 2]. It has been reported that ginger
improves dietary (cholesterol, fructose, or high-fat diet) or
streptozocin-induced lipid derangements in rodents [3–9].
It has been also demonstrated that modification of hepatic
low density lipoprotein receptor and 3-hydroxy-3-methyl-
glutaryl coenzyme A reductase expression is involved in
improvement of cholesterol homeostasis [4, 8]. However, the
underlying mechanisms of triglyceride-lowering effect of
ginger remain unclear.

Strong evidence suggests that consumption of diets high
in fructose results in fatty liver, dyslipidemia, insulin resist-
ance, and obesity in animals and humans [10–12]. Fatty liver
(excessive accumulation of triglyceride in hepatocytes) is
the hallmark of nonalcoholic fatty liver disease, which has
become an important public health problem due to its
high prevalence, potential progression to severe liver disease,
and association with cardiometabolic abnormalities [13–15].
Hypertriglyceridemia is a common dyslipidemia, that is, an
independent risk of cardiovascular diseases [16].

In the present study, we tested the effects of ginger treat-
ment on fructose-induced lipid derangements and investi-
gated the underlying triglyceride-lowering mechanisms in
rats.
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2. Materials and Methods

2.1. Ginger Extract. Ginger rhizome was collected in the sub-
urban area of Hanoi, Vietnam, and was identified botanically.
The extract used in the present study was prepared using
an ethanolic method. Briefly, 5 kg sliced ginger rhizomes
including the skin were immersed in 5 L 95% ethanol with
intermittent shaking for 24 h, then refluxed for 3 h by heat-
ing. The filtrate was evaporated under reduced pressure
below 45◦C. The residue (yield: 9.6%) was designated as
an alcoholic extract. The extract was quantified by HPLC
method described previously [17] to contain 2 representative
components: 6-gingerol: 4.4% and 6-shogaol: 1.1%, respec-
tively.

2.2. Animals, Diet and Experimental Protocol. All animal
procedures were in accordance with the “Principles of
laboratory animal care” (http://grants1.nih.gov/grants/olaw/
references/phspol.htm) and were approved by the Animal
Ethics Committee, Chongqing Medical University, China.

Male Sprague-Dawley rats weighing 210–230 g and the
standard chow (ingredients are shown in Table 1) were
supplied by the laboratory animal center, Chongqing Medical
University, China. Rats were housed in a temperature con-
trolled facility (21 ± 1◦C, 55 ± 5% relative humidity) with
a 12 h light/dark cycle. Animals were allowed free access to
water and the standard chow for at least 1 week prior to
starting the experiments.

It is known that sugar-sweetened nonalcoholic beverages,
such as soft drinks, appear as the major source of fructose
for all classes of age considered, except for children younger
than 6 year and adults older than 50 year [12]. Thus, fructose
in drinking water was used in the present study as described
previously [18–20]. In initial experiments, we found that
compared to vehicle, ginger treatment significantly increased
fructose intake when the rats had free access to 10% fructose
in drinking water. In order to exclude the influence of the
difference in intake of fructose, the sole pathogenic factor
in the development of the adverse metabolic effects in this
model, we adjusted the fructose consumption in ginger-
treated rats to that of fructose controls. 24 rats were divided
into 4 groups (n = 6 per group): (1) water control, free access
to water; (2) fructose control, free access to 10% fructose
solution (w/v, preparation every day); (3) fructose ginger
20 mg/kg; (4) fructose ginger 50 mg/kg, in which the fructose
consumption was adjusted (by regulating the concentration
of fructose solution) daily to that in the fructose-control
group on the previous day. There was no difference in body
weight between the groups before treatments were com-
menced. Animals in ginger-treated groups were administered
ginger extract 20 and 50 mg/kg (suspended in 5% Gum
Arabic solution, gavage once daily) for 5 weeks, respectively.
The rats in the corresponding water- and fructose-control
groups received vehicle (5% Gum Arabic) alone. All rats
had free access to the standard chow. To avoid stress and
more accurately monitor fructose intake, 2 rats were housed
in a cage. The consumed chow and fructose solution were
measured per 2 rats daily and the intake of fructose was
calculated. On day 35, rats were deprived of chow, but still

Table 1: Composition of the laboratory chow.

Ingredient Unit Content

Crude protein % 18.50

Crude oil % 4.00

Crude fibre % 5.00

Crude ash % 7.50

Moisture % 10.00

Calcium % 1.20

Phosphorous % 0.60

Salt % 0.85

Magnesium % 0.20

Copper mg/kg 10.00

Iron mg/kg 100.00

Zinc mg/kg 40.00

Vitamin A (iu/Kg) 8000.00

Vitamin K mg/kg 5.00

Nicotinic acid mg/kg 45.00

Pantothenic acid mg/kg 20.00

Vitamin D (iu/Kg) 1000.00

Vitamin E (iu/Kg) 60.00

Riboflavin mg/kg 10.00

Iodine mg/kg 1.00

Methionine + cystine % 0.54

Threonine % 0.65

Vitamin B12 mg/kg 0.02

Thiamin mg/kg 8.00

Selenium mg/kg 0.10

had free access to water (Group 1) or fructose solution
(Group 2–4) for 14 h. Blood samples were collected by
retroorbital venous puncture under either anesthesia at 9:00–
12:00 am for determination of plasma concentrations of
total cholesterol (kit from Kexin Institute of Biotechnology,
Shanghai, China), triglyceride (Triglyceride-E kit, Wako,
Osaka, Japan), non-esterified fatty acid (NEFA) (NEFA-C
kit, Wako, Osaka, Japan), glucose (kit from Kexin Institute
of Biotechnology, Shanghai, China), and insulin (kit from
Morinaga Biochemical Industries, Tokyo, Japan). Immedi-
ately, animals were weighed and killed by prompt dislocation
of the neck vertebra. Livers were collected and weighed. The
ratio of liver weight to body weight was calculated. Segments
of liver were snap frozen in liquid nitrogen and stored
at −80◦C for subsequent determination of gene/protein
expression and triglyceride contents.

2.3. Determination of Triglyceride Content in Liver. Triglyc-
eride content in liver was determined as described previ-
ously [21]. Briefly, 100 mg of tissue was homogenized and
extracted with 2 mL of isopropanol. After centrifugation
(3000 rpm), the triglyceride content in supernatants was
determined enzymatically (Wako, Osaka, Japan).

2.4. Histological Examination. A portion of liver was fixed
with 10% formalin and embedded in paraffin. Four-micron
sections were cut and stained with hematoxylin and eosin

http://grants1.nih.gov/grants/olaw/references/phspol.htm
http://grants1.nih.gov/grants/olaw/references/phspol.htm
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Table 2: Primer sequences for real-time PCR assays.

Gene Forward primers Reverse primers

β-actin ACGGTCAGGTCATCACTATCG GGCATAGAGGTCTTTACGGATG

PPARγ GCCCTTTGGTGACTTTATGGAG GCAGCAGGTTGTCTTGGATGT

SREBP1c CTGTCGTCTACCATAAGCTGCAC ATAGCATCTCCTGCACACTCAGC

ChREBP GAAGACCCAAAGACCAAGATGC TCTGACAACAAAGCAGGAGGTG

ACC1 AACATCCCGCACCTTCTTCTAC CTTCCACAAACCAGCGTCTC

FAS ACCTCATCACTAGAAGCCACCAG GTGGTACTTGGCCTTGGGTTTA

SCD1 CAGTTCCTACACGACCACCACTA GGACGGATGTCTTCTTCCAGAT

G6Pase GAGTGGCTCAACCTCGTCTTC AAGGGAACTGGTGAATCTGGAC

PPARα GTCATCACAGACACCCTCTCTCC TGTCCCCACATATTCGACACTC

CPT1a CTGCTGTATCGTCGCACATTAG GTTGGATGGTGTCTGTCTCTTCC

ACO CCCAAGACCCAAGAGTTCATTC TCACGGATAGGGACAACAAAGG

CD36 AACCCAGAGGAAGTGGCAAAG GACAGTGAAGGCTCAAAGATGG

Sequences: 5′ to 3′.

for examination of liver histology (BX-51, Olympus Cor-
poration, Tokyo, Japan). To further confirm lipid droplet
accumulation, six-micron frozen sections were stained with
Oil Red O. Forty fields in three individual sections were
randomly selected, and the Oil Red O-stained area and
the total tissue area were measured using an ImageJ 1.43
analyzing system. The ratio of the Oil Red O-stained area to
the total tissue area was calculated (%).

2.5. Real-Time PCR. Total RNA was isolated from livers of
individual rats using TRIzol (Takara, Dalian, China). cDNA
was synthesized using M-MLV RTase cDNA Synthesis Kit
(Takara, Dalian, China) according to the manufacturer’s
instructions. Real-time PCR was performed with the CFX
96 Real-Time PCR Detection System (Biorad Laboratories
Inc., Hercules, CA, USA) using the SYBR Premix Ex Taq
II (Takara, Dalian, China). The sequences of primers are
shown in Table 2. The gene expression from each sample
was analysed in duplicates and normalized against the
internal control gene β-actin. Levels in water-control rats
were arbitrarily assigned a value of 1.

2.6. Western Blot. Nuclear protein extracts were prepared
from livers using the NE-PER nuclear and cytoplasmic
extraction reagent kit (Pierce Biotechnology, Rockford, IL,
USA), according to the manufacturer’s instructions. Proteins
from nuclear extracts (30 μg) from livers were subjected
to SDS-PAGE analysis on a 10% gel. Protein concen-
tration was determined using the Bradford method (Bio
Rad Laboratories, Hercules, CA, USA) using bovine serum
albumin as a standard. Proteins were electrotransferred
onto polyvinylidene fluoride membrane (Amersham, Buck-
inghamshire, UK). Carbohydrate response element-binding
protein (ChREBP) was detected with a goat polyclonal
antibody (dilution 1 : 200, Santa Cruz Biotechnology, Santa
Cruz, CA, USA). Detection of signals was performed using
the ECL western blot detection kit (Pierce Biotechnology,
Rockford, IL, USA) with anti-goat horseradish peroxidase-
conjugated IgG (dilution 1 : 5,000, Santa Cruz Biotechnol-
ogy, Santa Cruz, CA, USA) as second antibody. Polyclonal
rabbit Lamin A/C antibody (dilution 1 : 1000, Cell Signaling

Technologies, Beverly, MA, USA) was used as loading
control to normalize the signal obtained for nuclear ChREBP
protein. The immunoreactive bands were visualized by
autoradiography and the density was evaluated using ImageJ
1.43. Levels in water-control rats were arbitrarily assigned a
value of 1.

2.7. Data Analysis. All results are expressed as means± SEM.
Data were analyzed by ANOVA using the StatView software,
and followed by The Student Newman-Keuls test to locate
the differences between groups. P < 0.05 was considered to
be statistically significant.

3. Results

3.1. Fructose-Induced Adverse Effects in Rats. Compared to
water drinking, intake of 10% fructose solution decreased
intake of chow (Figure 1(b)), but did not affect body weight
(Figure 1(c)).

Under the status of feeding fructose solution, plasma
concentrations of total cholesterol (Figure 2(a)), triglyc-
eride (Figure 2(b)), glucose (Figure 2(d)), and insulin
(Figure 2(e)) were elevated, whereas plasma NEFA concen-
tration (Figure 2(c)) was unchanged.

Although fructose feeding did not significantly affect
liver weight (Figure 3(a)), the ratio of liver weight to body
weight (Figure 3(b)) and hepatic triglyceride content were
increased (Figure 3(c)). In accord with this finding, increased
vacuolization (Figure 4(b)) and Oil Red O staining area
(Figures 3(d) and 4(e)) were evident on histological exami-
nation of liver sections from fructose-fed rats compared with
water-control rats (Figures 3(d), 4(a) and 4(d)), indicative of
excess lipid droplet accumulation.

3.2. Effects of Ginger Treatment in Fructose-Fed Rats. Ginger
treatments did not affect intake of chow (Figure 1(b)), body
weight (Figure 1(c)), plasma total cholesterol (Figure 2(a)),
and liver weight (Figure 3(a)). However, plasma triglyceride
(Figure 2(b)), NEFA (Figure 2(c)) and glucose (Figure 2(d))
concentrations, and the ratio of liver weight to body weight
(Figure 3(b)) and hepatic triglyceride content (Figure 3(c))
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Figure 1: Intakes of fructose (a) and laboratory chow (b), and body weight (c) in water-control, 10% fructose solution-control, and fructose
pair-fed ginger-treated rats. Animals were coadministered with ginger extract (20 or 50 mg/kg/day) or vehicle (ginger: 0 mg/kg, 5% Gum
Arabic) by oral gavage daily for 5 weeks. Data are means ± SEM (n = 6 each group). ∗P < 0.05.

were decreased after treatment with ginger at 50 mg/kg.
Plasma insulin concentration (Figure 2(e)) also had a trend
to decrease. Vacuolization (Figure 4(c)) and Oil Red O
staining area (Figures 3(d) and 4(f)) in liver were also
reduced. Low dosage of ginger extract showed less effect.

3.3. Hepatic Gene/Protein Expression Profiles in Fructose-
Fed Rats. By real-time PCR, fructose feeding did not
alter hepatic expression of peroxisome proliferator-activated
receptor-(PPAR-) γ (Figure 5(a)). However, mRNA levels
of sterol regulatory element-binding protein (SREBP)1c
(Figure 5(b)), ChREBP (Figure 5(c)), acetyl-CoA carboxy-
lase (ACC)1 (Figure 6(a)), fatty acid synthase (FAS)
(Figure 6(b)), stearoyl-CoA desaturase (SCD)1 (Figure 6(c)),
and glucose-6-phosphatase (G6Pase) (Figure 6(d)) were
increased substantially. The increase in nuclear ChREBP
protein content was demonstrated by western blot analy-
sis (Figure 5(d)). After ginger treatment (50 mg/kg), pro-
nounced suppression of mRNAs encoding ChREBP, ACC1,
FAS, SCD1, and G6Pase was noted. The increase in
nuclear ChREBP protein expression was also downregulated.

However, ginger treatment altered neither PPAR-γ nor
SREBP1c mRNA expression.

Also in liver, fructose feeding did not affect PPAR-
α (Figure 7(a)), carnitine palmitoyltransferase (CPT)1a
(Figure 7(b)), acyl-CoA oxidase (ACO) (Figure 7(c)), and
CD36 (Figure 7(d)) gene expression. Ginger treatment was
also without effect on mRNA levels of these genes in fructose-
fed rats.

4. Discussion

The present findings demonstrate that treatment of rats with
ginger extract ameliorates long-term fructose consumption-
induced fatty liver and hypertriglyceridemia, accompanied
by a decrease in plasma glucose concentration.

Studies in humans and in rodents have demonstrated
that an increase in hepatic de novo lipid synthesis plays a
pivotal role in excessive fat accumulation in liver [14].
Fructose, by providing large amounts of hepatic triose-
phosphate as precursors for fatty acid synthesis, is highly
lipogenic [12]. Recent findings suggest that increase in
hepatic de novo lipogenesis plays an important role in



Evidence-Based Complementary and Alternative Medicine 5

0

1

2

3

4

0

Water Fructose

0 5020

P
la

sm
a 

to
ta

l c
h

ol
es

te
ro

l (
m

m
ol

/L
)

∗

Ginger (mg/kg)

(a)

0

0.4

0.8

1.2

0

Water Fructose

0 5020
P

la
sm

a 
tr

ig
ly

ce
ri

de
 (

m
m

ol
/L

)

∗∗

Ginger (mg/kg)

(b)

0

Water Fructose

0 5020
0

0.2

0.4

0.6

0.8

1

P
la

sm
a 

N
E

FA
 (

m
m

ol
/L

)

∗

Ginger (mg/kg)

(c)

0

Water Fructose

0 5020
0

3

6

9

12

P
la

sm
a 

gl
u

co
se

 (
m

m
ol

/L
)

∗ ∗

Ginger (mg/kg)

(d)

0

50

150

100

200

250

0

Water Fructose

0 5020

P
la

sm
a 

in
su

lin
 (

pm
ol

/L
) ∗

Ginger (mg/kg)

(e)

Figure 2: Plasma total cholesterol (a), triglyceride (b), NEFA (c), glucose (d), and insulin (e) concentrations in water-control, 10% fructose
solution-control, and fructose pair-fed ginger-treated rats at week 5. Animals were coadministered with ginger extract (20 or 50 mg/kg/day)
or vehicle (ginger: 0 mg/kg, 5% Gum Arabic) by oral gavage daily for 5 weeks. Data are means ± SEM (n = 6 each group). ∗P < 0.05.

fructose feeding-induced fatty liver and hypertriglyceridemia
[11, 12]. In the present study, treatment with ginger extract
did not affect intake of chow, but reversed the upregulated
hepatic mRNA levels of ACC1, FAS, and SCD1, the genes
responsible for de novo fatty acid synthesis. Thus, these
results suggest that ginger treatment suppresses the increased
hepatic de novo lipogenesis.

De novo hepatic lipogenesis is mediated by two impor-
tant proteins, ChREBP and SREBP1c [12, 14, 22]. ChREBP,
a transcriptional regulator of glucose and lipid metabolism,
is an attractive target for lipid-lowering therapies in obesity
and diabetes [23]. ChREBP plays a critical role in converting
excess carbohydrates into triglycerides. Liver-specific inhi-
bition of ChREBP improves hepatic steatosis, hypertriglyc-
eridemia, and insulin resistance, accompanied by downregu-
lation of hepatic expression of lipogenic and gluconeogenetic
genes, including those encoding ACC, FAS SCD1, and
G6Pase in ob/ob mice [24, 25]. Fructose administration
activates ChREBP which acts in synergy with SREBP to

increase the expression of lipogenic genes [12, 26–28].
Incubation of HepG2 cells with fructose also induces upreg-
ulation of nuclear ChREBP and SREBP1c protein expression
[29]. In contrast, SREBP1c is stimulated by insulin [14].
Although SREBP1c plays a major role in the long-term
control of glucose and lipid homeostasis by insulin, SREBP1c
activity alone does not appear to fully account for the
stimulation of glycolytic and lipogenic gene expression in
response to carbohydrate diet [23]. In the present study,
hepatic mRNA expression of both ChREBP and SREBP1c in
fructose-fed rats was upregulated. The increase in nuclear
ChREBP was confirmed at the protein level. Treatment
with ginger extract abolished the ChREBP overexpression,
accompanied by downregulation of expression of its targeted
lipogenic and gluconeogenetic genes ACC1, FAS, SCD1,
and G6Pas. However, the increased SREBP1c expression
was unchanged. Taken together, these findings suggest that
modulation of the ChREBP-mediated pathway is responsible
for ginger treatment-elicited improvement of fatty liver and
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Figure 3: Liver weight (a), the ratio of liver weight to body weight (b), hepatic triglyceride content (c), and Oil Red O staining area (d) in
water-control, 10% fructose solution-control, and fructose pair-fed ginger-treated rats at week 5. Animals were coadministered with ginger
extract (20 or 50 mg/kg/day) or vehicle (ginger: 0 mg/kg, 5% Gum Arabic) by oral gavage daily for 5 weeks. Data are means ± SEM (n = 6
each group). ∗P < 0.05.

hypertriglyceridemia. It needs to further investigate why and
how ginger selectively works on ChREBP, but not SREBP1c.

PPAR-γ is a member of the ligand-activated nuclear
receptor superfamily and predominantly expressed in adi-
pose tissue and normally at low level in liver [30]. Pharma-
cologic activation of PPAR-γ upregulates the genes encoding
molecules that promote a combination of lipid storage
and lipogenesis, such as CD36, SREBP1, and SCD1 [30].
Activation of this metabolic pathway causes body-wide
lipid repartitioning by increasing the triglyceride content of
adipose tissue and lowering free fatty acids and triglycerides

in the circulation, liver, and muscle, thereby improving
insulin sensitivity [30]. In mice, activation of PPAR-γ in
liver appears to contribute to the development of hepatic
steatosis [31, 32]. In rats, however, fructose feeding [20],
high-fat diet feeding [33], combination of high-fat diet
feeding and streptozotocin [34], or leptin receptor mutation
[35] cause excess lipid accumulation in liver, but does not
increase hepatic PPAR-γ expression. These findings may
suggest the difference in hepatic PPAR-γ expression between
animal species. It has been demonstrated that 6-shogaol
acts as a PPAR-γ agonist in 3T3-L1 adipocytes derived from
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Figure 4: Representative images showing histology of liver (hematoxylin and eosin-staining, (a)–(c); Oil Red O staining, (d)–(f). X200) in
water-control, 10% fructose solution-control, and fructose pair-fed ginger-treated rats at week 5. Animals were coadministered with ginger
extract (50 mg/kg/day) or vehicle (ginger: 0 mg/kg, 5% Gum Arabic) by oral gavage daily for 5 weeks. Data are means ± SEM (n = 6 each
group). ∗P < 0.05.

mice [36]. In the present study, fructose feeding did not
change hepatic expression of PPAR-γ and its responsive
gene CD36 in rats. Furthermore, hepatic SREBP1c and
SCD1 mRNAs were substantially upregulated after fructose
consumption. Treatment of ginger extract did not alter
hepatic expression of PPAR-γ, SREBP1c, and CD36, but
markedly suppressed the SCD1 overexpression in fructose-
fed rats. Thus, our findings in gene expression do not support
the involvement of the hepatic PPAR-γ pathway in the
triglyceride-lowering effect of ginger treatment. It still needs
to further investigate whether ginger treatment modulates
adipose PPAR-γ-mediated gene expression and activities in
fructose-fed rats.

In contrast to PPAR-γ, PPAR-α, predominantly expressed
in liver and to a lesser extent in heart and muscle, controls
lipid metabolism and glucose homeostasis in liver and
skeletal muscle [30, 37]. PPAR-α influences intracellular

lipid and carbohydrate metabolism through direct transcrip-
tional control of the genes involved in peroxisomal and
mitochondrial β-oxidation pathways, fatty acid uptake, and
triglyceride catabolism, such as CPT1a, ACO, and CD36 [30,
37]. However, lipid disposal via fatty acid β-oxidation only
slightly affects hepatic triglyceride accumulation [14]. The
relationship between fructose feeding and hepatic expression
of PPAR-α and its responsive genes is still controversial. Some
studies have reported that fructose feeding downregulated
hepatic expression of PPAR-α, CPT1a, and/or ACO genes
[18–20, 38], whereas others found no change in the expres-
sion of these genes [28, 29, 39–41]. It has been demonstrated
that activation of PPAR-α by its agonist fenofibrate strongly
induced the expression of hepatic lipogenic genes FAS,
ACC1, and SCD1, accompanied by induction of hepatic
CPT1a, ACO, and CD36 in mice [42, 43]. SCD1 is a direct
target for PPAR-α and is activated by the PPAR-α agonists
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Figure 5: Hepatic mRNA expression of PPAR-γ (a), sterol regulatory element-binding protein (SREBP)1c (b), carbohydrate response
element-binding protein (ChREBP) (c), and nuclear ChREBP protein expression (d) in water-control, 10% fructose solution-control, and
fructose pair-fed ginger-treated rats at week 5. Animals were coadministered with ginger extract (50 mg/kg/day) or vehicle (ginger: 0 mg/kg,
5% Gum Arabic) by oral gavage daily for 5 weeks. mRNA was determined by real-time PCR. Protein expression was determined by western
blot. Data are means ± SEM (n = 6 each group). ∗P < 0.05.

clofibrate and gemfibrozil [44] and fenofibrate [43]. In
addition, hepatomegaly (an increase in liver weight) is a well-
known important marker of activation of PPAR-α in rodents
[30]. In the present study, 5-week fructose feeding did not
alter hepatic PPAR-α-responsive gene expression. There was
also no significant difference in the expression of these genes
between fructose vehicle and fructose ginger-treated groups.
Furthermore, ginger treatment decreased liver weight/the
ratio of liver weight to body weight. Thus, our findings do

not support the involvement of the hepatic PPAR-α pathway
in the effects of ginger treatment.

Increased fat delivery from peripheral fats stored in white
adipose tissue is also largely associated with excessive fat
accumulation in liver [14]. Recent evidence suggests that
adipose tissue insulin resistance is closely correlated with
metabolic parameters and hepatic histological damage in
patients with nonalcoholic steatohepatitis; amelioration
of adipose tissue insulin resistance may contribute to
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Figure 6: Hepatic mRNA expression of acetyl-CoA carboxylase (ACC)1 (a), fatty acid synthase (FAS) (b), stearoyl-CoA desaturase (SCD)1
(c), and glucose-6-phosphatase (G6Pase) (d) in water-control, 10% fructose solution-control, and fructose pair-fed ginger-treated rats at
week 5. Animals were coadministered with ginger extract (50 mg/kg/day) or vehicle (ginger: 0 mg/kg, 5% Gum Arabic) by oral gavage daily
for 5 weeks. mRNA was determined by real-time PCR. Data are means ± SEM (n = 6 each group). ∗P < 0.05.

the improvement of metabolic derangements and hepatic
injuries [45–47]. In the setting of insulin resistance, insulin
is unable to properly suppress lipolysis in adipose tissue,
resulting in a relative increase in free fatty acid release
into the plasma [48]. It has been demonstrated that 10%
fructose in drinking water for 2 weeks did not increase
plasma NEFA concentration in rats [18]. In contrast, a diet
containing 66.8% [49] or 50% [28] fructose for 4 weeks
significantly increased plasma NEFA concentration in rats.
These findings suggest that fructose overconsumption may

induce adipose tissue insulin resistance, thereby increasing
release of fatty acids to circulation, then to liver. In the
present study, plasma NEFA concentration was not altered in
the rats that were deprived of chow, but still had free access
to 10% fructose in drinking water, compared to the rats
that had free access to water. Ginger treatment significantly
decreased plasma NEFA concentration. These results suggest
the possibility that ginger treatment may modulate lipolysis
in adipose tissue. However, fructose intake in the present
study might interfere with fatty acid release from adipose
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Figure 7: Hepatic mRNA expression of peroxisome proliferator-activated receptor-(PPAR-) α (a), carnitine palmitoyltransferase (CPT)1a
(b), acyl-CoA oxidase (ACO) (c), and CD36 (d) in water-control, 10% fructose solution-control, and fructose pair-fed ginger-treated rats at
week 5. Animals were coadministered with ginger extract (50 mg/kg/day) or vehicle (ginger: 0 mg/kg, 5% Gum Arabic) by oral gavage daily
for 5 weeks. mRNA was determined by real-time PCR. Data are means ± SEM (n = 6 each group). ∗P < 0.05.

tissue. It has been suggested that analysis of both plasma
fatty acid changes during the oral glucose tolerance test
assessment and the adipose tissue insulin resistance index is
suitable for evaluation of insulin action in adipose tissues
[45–47]. It will be very interesting to further investigate
whether the adipose pathway also contributes to fructose
consumption-induced fatty liver and the hepatoprotective
effect of ginger treatment.

The constituents of ginger are numerous. Although gin-
ger has been utilized in many studies in both humans and

animals, there is a relative dearth of information on its
bioavailability. [6]-gingerol and [6]-shogaol (the latter is a
dehydrated form of gingerols), two of the major components
contained in the crude materials, have been implicated in
most of the pharmacological activities of ginger [2]. The
findings in rats suggest that [6]-gingerol is metabolized
partly in the liver, and to a much lesser extent, in the kidneys
[2]. In the present study, ginger treatment ameliorated
fructose-induced fatty liver and hypertriglyceridemia and
suppressed fructose-stimulated hepatic overexpression of
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ChREBP-targeted genes in rats. It needs to further investigate
how ginger extract modifies hepatic genes and whether [6]-
gingerol is responsible for the metabolic effects of ginger
observed in the present study.

Taken together, our present findings demonstrate that
treatment with the ethanolic extract of ginger ameliorates
fructose-induced fatty liver and hypertriglyceridemia in rats,
which involves modulation of the hepatic ChREBP-mediated
pathway.
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