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Background: The cerebral cortex is represented through multiple multilayer morphometric similarity networks to study their modular
structures. The approach introduces a novel way for studying brain networks’ metrics across individuals, and can quantify network
properties usually not revealed using conventional network analyses.

Methods: A total of 8 combinations or types of morphometric similarity networks were constructed — 4 combinations of the inter-
regional cortical features on 2 brain atlases. The networks’ modular structures were investigated by identifying those modular
interactions that stay consistent across the combinations of inter-regional morphometric features and individuals.

Results: The results provide evidence of the community structures as the property of (i) cortical lobar divisions, and also as (ii) the
product of different combinations of morphometric features used for the construction of the multilayer representations of the cortex.
For the first time, this study has mapped out flexible and inflexible morphometric similarity hubs, and evidence has been provided
about variations of the modular network topology across the multilayers with age and IQ.

Conclusions: The results contribute to understanding of intra-regional characteristics in cortical interactions, which potentially can

be used to map heterogeneous neurodegeneration patterns in diseased brains.
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Introduction

Cortical networks based on similarity in regional mor-
phology estimated from anatomical magnetic resonance
images (MRI) of the brain have lately been studied more
extensively. So called structural covariance networks,
constructed on regional cortical morphometry (e.g. gray
matter volume, surface area, or its thickness) correlated
across group of individuals, have provided insight into
shared cortical variations of both healthy (Alexander-
Bloch et al. 2013; Evans 2013; Sanabria-Diaz et al. 2010)
and clinical (Bethlehem et al. 2017; Vuksanovi¢ et al.
2019) groups. Since recently, individual morphometric
similarity networks (MSN) have been mapped using inter-
regional associations (correlations) across the measures
estimated from anatomical MRI (King and Wood 2020; Li
et al. 2017; Seidlitz et al. 2018). MSNs allow for the pre-
diction of individual differences in brain morophometry,
thereby allowing for their potential utility to link brain
with behaviour or other non-brain variables of interest
(Doucet et al. 2019; Khundrakpam et al. 2019; Kong et al.
2018; Zhang et al. 2021) using reliable in-vivo measures
of brain anatomy.

Recent studies have highlighted the potential of these
networks to unveil changes in the brain during for exam-
ple, normal cortical development (Galdi et al. 2020; Vasa
et al. 2017), dementia (Pichet Binette et al. 2020; Zhang
et al. 2021), or psychiatric disorders (Morgan et al. 2019).
MSNs have also allowed for relating brain physiology

with behaviour, thereby allowing for an individual pre-
diction of cognitive domains, such as general intelligence
(measured by 1Q) (Seidlitz et al. 2018; Solé-Casals et al.
2019; Whitaker et al. 2016), or clinical impairment (Li
et al. 2017). Associations of the MSNs with non-brain
derived variables have also been reported (Doucet et al.
2019).

Although the interpretation of the MSNs remains
an open question, it has been found that the topol-
ogy of these networks share some common proper-
ties with cortical networks extracted from other MRI
modalities (Seidlitz et al. 2018). Given the potential of
brain network measures to unravel large-scale cortical
interactions underpinning individual differences in
cognitive function and behaviour, further exploration
of morphometric similarities across the cortical prop-
erties may bring about markers of the brain-cognition
relationships estimated using the conventional MRI
technique - anatomical, T1-weighted images. These
markers have a potential clinical application in the
future.

Throughout lifetime the brain undergoes complex
changes in its structures that facilitate emergence
of complex interactions underlying behavioural and
cognitive functions. Brain ageing and cognitive function
are dynamical processes that unfold over years on
multiple levels of cortical organization in healthy and
in diseased individuals. These dynamical processes are
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reflected in the topology of structural and functional
networks (Bullmore and Sporns 2009; Gong et al. 2012;
Hagmann et al. 2008).

Topological characteristics that are being linked to
ageing and cognitive performance consider small-world,
modular, and hub organization of the cortex as a net-
work (Avena-Koenigsberger et al. 2018). For a modular
organization, networks can be divided into modules by
grouping the densely, intra-connected sub-set of nodes
into a single sub-group (module or community). The
brain appears to be divided into 'functional modules’
(cognitive networks) whose temporally coherent activity
support cognitive function. It has been suggested that
their intra-modular connectivity reflects the underlying
structural (axonal) connections (Park and Friston 2013).
Functional modules usually mirror local brain anatomy,
however, they also incorporate long-range interactions
(i.e. those between spatially distant brain areas) (Fries
2005; Vuksanovi¢ and Hovel 2014, 2015), which have only
recently been linked with underlying large-scale cortic-
ocortical morphometric interactions (Vuksanovi¢ 2019;
Wang et al. 2022). The evidence suggest that such inter-
actions also map functionally similar but distributed
cortical sites (Wang et al. 2022). The modular topology of
brain functional networks is documented across differ-
ent parcellations atlases (Bertolero et al. 2015; Meunier
et al. 2009; Vuksanovi¢ 2019). Similarly, modularity as
a property of brain morphology has been widely stud-
led in the context of evolution and development (Melo
et al. 2016) and studies on cortical morphometry derived
from neuroimaging data suggest the modular organi-
zation of variations in regional thickness (Vuksanovi¢
2019, Vuksanovic et al. 2019), surface area (Sanabria-Diaz
et al. 2010) or volume (Bassett et al. 2008). There is
consistency in the organization of brain networks based
on either covariations across individuals within 1 group
(Sanabria-Diaz et al. 2010; Vasa et al. 2017; Vuksanovi¢
2019) or on correlations of regional characteristics at
the individual brain level (Seidlitz et al. 2018). The brain
modular, yet integrated, functional organization lowers
the wiring cost (i.e. the average length and number of
connections) of the network (Bassett et al. 2009), thus
potentially lowering metabolic costs (Betzel et al. 2017)
while providing more efficient information processing
(Sporns and Betzel 2016). More importantly, modularity,
as mapped by large-scale brain functional networks, is
cognitively and behaviourally relevant; for example, it
correlates with variations in performances across dif-
ferent cognitive tasks (Yamashita et al. 2015), greater
learning ability (Bassett et al. 2011), and possibly higher
intelligence (Girn et al. 2019).

However, despite of being an ubiquitous characteristic
of brain topology, extracting modular structures from
brain complex interactions has proved to be a difficult
task, and confounded by many factors; even if as simple
as the choices of regional characteristics, network reso-
lution or brain atlas for their construction. With these
confounds in mind, I sought to answer the question: Can

the variations in the brain’s modular structures be bet-
ter explained when analyzed using multilayer network
approaches, from one individual to another, rather than
by a more conventional methods of averaging across the
whole group?

To answer this question, the cerebral cortex surface
was for the first time, represented as a single morpho-
metric similarity multislice network, so that its modular
structures can be studied across the slices (individuals)
before being averaged out. This allows for the investiga-
tions of how/which network modular interactions stay
consistent across combinations of inter-regional mor-
phometric features and individuals. This approach com-
plements similar methodologies used in the analyses
of (i) time-varying functional brain networks (Bassett
et al. 2011, Braun et al. 2015, Hutchison et al. 2013,
Zalesky et al. 2014) and (ii) group-wise structural covari-
ance networks — which allow for a single cortical net-
work construction from a group of individuals (Evans
2013, Sanabria-Diaz et al. 2010, Vuksanovi¢ et al. 2019). It
should be noted, however, that the investigation of mul-
tislice community structures is not limited to the brain
dynamical networks, but has been used in many other
studies where network interactions take place across
varying time-intervals or multivariate features (see for
example (Finn et al. 2019) or (De Domenico et al. 2016)).

Methods

Subjects

The MRI data sets employed in this study are freely avail-
able from the public database (http://fcon_1000.projects.
nitrc.org/indi/pro/nki.html), provided by Nathan Kline
Institute (NKI) (Nooner et al. 2012). In total, I included
198 participants (80 female) between 6 and 83 years of
age (mean: 35.5). Individuals cognitive scores in general
intelligence, measured by the IQ were also included in the
study. See also Fig. C.1 for age and IQ distributions across
the individuals.

Data acquisition

Anatomical T1-weighted MRI data were acquired using
standard SIEMENS MAGNETOM TrioTim syngo MR B15
scanner using an MPRAGE sequence. The anatomical
scan protocol is described in the following summary
table  (http://fcon_1000.projects.nitrc.org/indi/pro/nki/
NKI_MPRAGE_PROTOCOL.pdf). Structural images were
collected using a 3-dimensional high-resolution T1-
weighted gradient-echo (MPRAGE) sequence [TR = 2.5
s, TE = 3.5 ms, flip angle = 8 degrees, matrix size = 256 x
256, voxel size = (1 x 1 x 1 mm)3, 192 axial oblique slices].

Image processing

Cortical surface reconstruction was performed using the
Freesurfer image analysis pipeline, which is documented
and freely available online (http://surfernmr.mgh.
harvard.edu/); the algorithms employed for this recon-
struction are discussed elsewhere (Fischl and Dale 2000,
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Fischl et al. 1999; 2002). Cortical morphometry was esti-
mated from the cortical surfaces parcellated according
to the 2 well-established cortical atlases implemented
in FreeSurfer: Destrieux Atlas (DA) (Destrieux et al.
2010) and Desikan-Killiany Atlas (DKA) (Desikan et al.
2018; 2006). Nine properties of cortical morphometry
have been estimated for each parcel (region of interest):
Number of vertices, surface area, gray volume, thickness
average, thickness standard deviation, mean curvature,
Gaussian curvature, folding index, and curvature index.
Please see also Table D.1. Imaging data were quality-
controlled by visual inspection and outliers from Free
Surfer output were replaced using MatlLab’s (R2020b)
built in function.

Morphometric similarity networks construction

Morphometric similarity is a measure of the statistical
associations between (a number of) morphometric fea-
tures calculated on the reconstructed cortical surface for
each cortical region. Here, I have considered 9 properties
of the morphometry, which can be reliably extracted
from T1-weighted images using the automated pipeline.
The morphometric features were calculated for DKA
(Desikan et al. 2006) and DA (Destrieux et al. 2010) cor-
tical regions. Both brain atlases parcel the cortex based
on the anatomical landmarks. DKA is a gyral based atlas
(where a gyrus was defined as running between the
bottoms of 2 adjacent sulci), which parcellates cortex
into 34 regions per hemisphere. DA is an automated
identification of classification of each vertex as sulcal or
gyral, and these were then sub-parcellated into 74 labels
per hemisphere. In both atlases, a gyrus only includes
the cortex visible on the pial view, the hidden cortex
(banks of sulci) are marked sulcus. Both parcellations
have been used in a number of imaging studies in healthy
and diseased cohorts.

A NxN correlation matrix, representing an individual
MSN, was constructed by calculating the Pearson’s corre-
lation coefficient between the z-normalized morphome-
tric features of region i and of region j, for all pairs (i, j) of
regional properties (after replacing any existing outliers
by their group median). Finally, Fisher’s transformation
was employed to convert the correlation coefficients to
normally distributed z-scores. This procedure resulted in
either 148x 148 or 68x68 correlation matrices (networks)
for each subject.

Four types of the MSNs were constructed: 4v-feature,
4c-feature, 5-feature, and 9-feature networks, for each
of the 2 parcellations of the cortex (see also Table D.1).
The 4v-feature network was constructed on the inter-
regional pair-wise correlations between the volume, sur-
face area, thickness, and thickness standard deviation.
The 4c-feature networks were constructed by correlat-
ing intra-regional curvatures and their indices; 5-feature
networks were construed on the intra-regional correla-
tions between the volume, surface area, thickness, Gaus-
sian curvature, and folding index. Finally, the 9-feature
networks were constructed on all 9 features from the
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automated FreeSurfer’s output. Please see also Table D.1
for details. In this way, every individual was represented
by 8 (4 combinations of morphometric features x 2 brain
atlases) MSNs in the analysis. For more detail on the gen-
eration of the multilayer networks used in the study from
the MSNs, see Bootstrapping within Statistical analysis

A fixed threshold was applied to each individual
network based on the maximum spanning tree cost-
function, (Gavril 1987; Li, 2022). The function preserves
strongest network links (pair-wise correlations) in a
way that all networks can be compared across same
connection density (i.e. number of connections in the
network) (Van Wijk et al. 2010). In this way, I consider
only the most pronounced network links - the strongest
associations in regional morphometry — which enables
to ask whether these interactions (associations) are
flexible or “stable/fixed” across the examined group
of individuals. Using a spanning tree cost-function to
threshold has been used in the context of brain networks,
but only to consider nodes linked with minimum network
edges (Tewarie et al. 2015).

Multilayer network construction

To analyze nodal affiliations with their network com-
munities across individuals, the individual MSNs were
arranged in a multislice (multilayer) network, each slice
being an MSN. To quantify whether the nodal affiliation
with the assigned community changes across the MSNs
(i.e. from slice to slice), I used the network measure flex-
ibility. If the network flexibility shows significant varia-
tions across the slices, that would indicate that the nodal
assignment to a community changes from individual to
individual.

Modularity and multilayer network modularity

For assigning nodes to their “natural network” commu-
nities a “Louvain-like” community detection algorithm
can be employed (Blondel et al. 2008, Fortunato and Hric
2016). The algorithm implements a Louvain-like greedy
community detection method that encodes the modu-
larity quality index Q, which maximizes the partition
of the network into communities (see Eq. 1). For single-
slice network Q is defined by summing over all matrix
elements A;; such that nodes i and j are placed in the
same community. The algorithm proceeds in 2 phases
(Blondel et al. 2008) repeated iteratively: quality of the
partition is optimized by moving 1 node at a time until
no such moves improve quality; the communities found
to that point are then aggregated to build a new network
where each node is assigned to a community. The output
vector S encodes the obtained community assignments,
with S; identifying the community to which node i has
been assigned. The index Q gives the quality of the
resulting partition of the network. Thus, the algorithm
partitions the network into communities, where nodes
in a given community are highly interconnected among
themselves, and sparsely interconnected to the rest of
the network. The optimized modularity quality index, Q,
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was defined as follows:

Q= Z[AU — P;18(91, 95 (1)

D)

where Aj is the strength of the edge between node i and
node j, and P; is the expected weight of the edge connect-
ing node i and node j under a specified null model P; =
kik;/2m where k; is the strength of node 1, k; is the strength
of node j, and m = 3 X; Aj. The maximization of the
modularity index Q gives a partition of the network into
modules such that the total edge weight inside of mod-
ules is as large as possible (relative to the null model),
subject to the limitations of the employed computational
heuristics. The Kronecker delta function é(g;, g;) equals
one if nodes i and j belong to the same module (g), and
equals zero otherwise (i.e., 8(g;,g) = 1if g; = gj and it
equals 0 otherwise). This is the simplest case, supposing
that node i is assigned to community g; and node j is
assigned to community g;. The elements of the matrix
Ay are weighted by the statistical association between
regions, and I sample the distribution of partitions 1000
times to provide near-optimal Q values, and then con-
sider the network partition with the highest modularity
score across these runs. The network is termed “modular”
if the value of Q is larger than that expected from random
network null models that control for both the mean and
variability of connections/correlations in the network.

Here, a multilayer community detection version of the
modularity quality function was employed, which uses
generalized Louvain-like community detection algorithm
(Mucha et al. 2010). The algorithm allows the optimiza-
tion of a modularity quality function on a network with
multiple layers (slices). In this study, each individual
MSN was considered being a slice/layer in multilayer net-
works. In the multilayer case the multislice modularity
quality index, Qu, is given by:

1 kmke
Qm = o Z [(Aijs — ¥ ﬁ) 8sr + 5ijstr} 8(9is,9is)  (2)

" s
ijsr

where Cj,, is coupling or resolution parameter. That s, the
conditional probability of stepping from (j, r) to (i, s) along
slices. An inter-slice coupling is non-zero if and only if
I = j, and it is proportional to the probability Cj/«j of
selecting the precise inter-slice link that connects to slice
S. 2y kjr = 2. 1t corresponds to the strength of the edges
linking a node to itself across layers. Here, it is set to a
network configuration where nodes are considered only
across consecutive layers of the network. Previously, we
have used network resolution of 1.1 (Vuksanovi¢ 2019,
Vuksanovi¢ et al. 2019) when the DKA parcellation of the
cortex was used for the division of the cortex into its
natural lobe-wise communities, here, the Q,,; utilizes re-
weighting of the conditional probabilities, which allows
one to work with a different network resolution y; in each
slice (Mucha et al. 2010). Please see Figs. D.2 and D.3 for

maximum number of modules extracted for each type of
the MSN across individual layers.

Multilayer network measure: flexibility

In principle, network modular organization may vary in
terms of the composition of modules (local measure) or
in the number of modules in the network (global mea-
sure). Here, I focused on the composition of modules, and
used flexibility f; of a node to quantify this property. Flexi-
bility quantifies the number of times that a node changes
modular assignment throughout the slices, normalized
by the total number of all possible changes (i.e. by the
number of consecutive pairs of layers in the multilayer
framework). The flexibility F of the entire network was
defined as the mean flexibility over all nodes in the
network:

1 N
P 2 ®)

Global network flexibility was calculated by summing
up the network over nodes or multislices (subjects). Dif-
ferent “windows-length” were used, when grouping the
MSNs according to the participants’ age (into 12 age
groups) or IQ (3 groups based on standard deviation
from the group mean). To investigate how changes in
modular assignments vary across cortical lobes, flexi-
bility was calculated at the lobe level by dividing the
cortex into 6 conventionally defined divisions: cingulate,
frontal, insular, occipital, parietal, and temporal and cal-
culating nodal flexibility averaged over the lobes.

Statistical analysis

Bootstrapping

To estimate the confidence interval of the flexibility
values across individuals a set of 500 bootstraps with
replacement was generated for each network and
the cortical parcellation. That is, each statistical test
was performed on the flexibility values that were
averaged across 500 multilayer networks. In addition,
a bootstrapping procedure was also used to calculate
age-related and ig-related flexibility of the multilayers.
In both cases, after bootstrapping the generated network
was sorted in ascending order according to either age (for
age-dependent) or IQ (for IQ-dependent) multilayers. In
this way, any/if differences from an unequal step-sizes
between the layers would have been cancelled out.

Statistical tests

Since the flexibility was not normally distributed across
nodes or subjects, which was established using the
one sample Kolmogorov-Smirnov test, the Kruskal-
Wallis (KW) statistics, a nonparametric analysis of
variance test was used for statistical analyses between
the groups. Results were reported as significant at the
probability level P< 0.05 and the corresponding group-
wise statistical value for each test was also reported.
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Network visualization in brain space was performed
using BrainNet (Xia et al. 2013).

Results

The main aim of this study was to investigate the
modular organization of the cortex with reference
to similarity in its intra-regional morphometry and
“flexibility” of their interactions across multilayers. For
this purpose, anatomical T1-weighted MRIs were used
to extract 9 features of the cortical surface regional
morphometry according to 2 well-established cortical
parcellations. Correlating (a number of) combinations
of the intra-regional morphometric features, 4 types of
MSNs were constructed on the 2 parcellations, making it
in total 8 networks per individual. Moreover, bootstraps
were generated for each MSN type to establish their
variations in the modular organization and the flexibility
of a node across individuals. The bootstrapping was
performed using 3 different setups — for randomly
assigned MSNs to the network’s multislices, and for
age- and for IQ-dependent bootstraps to investigate any
changes in the modular structures with these 2 (brain)
dynamical variables.

Cortex as a multilayer network: global flexibility

For the investigation of the cortex as a multilayer net-
work, an ensemble of 500 multilayer networks was gen-
erated for each of the MSNs types. This was done: (i) by
randomly permuting slices to generate each multislice
network, and by randomly permuting slices and then
sorting these permutations by ascending (ii) age and (iii)
IQ. Thus, the 3 multislice representations of the cortex
for each combination of the MSNs.

Global flexibility of the 4 types of MSNs used to
construct multilayers when mapped onto the cortex
is shown in Fig. 1. The flexibility shown here was
estimated from the bootstraps independent on subjects’
demographic or cognitive characteristics (see the above
about the multislice representations). At the global
network level, there was a higher flexibility of the 9-
feature cortex and lower of the 4c-feature cortex (x? =
649.4, P << 0.0001 for the comparisons between the
groups). Similar results were also found for both, age-
and IQ-dependent multislice networks (data not shown
at the global network level, but only at the lobe level).

Some additional analyses of the flexibility values and
the methodological decisions and considerations that
should be taken into account for the observed similarities
and differences across bootstraps and the combinations
of features can be found in Appendix D. In short, differ-
ences between flexibility for the age-, IQ-dependent or
independent bootstraps are shown in Fig. D.4.

It should be noted that the flexibility index of a net-
work node can be influenced by the (optimal) number
of modules that each network (a slice) was (heuristi-
cally) divided into. For the 9-feature network, a maximum
number of modules was found to be 8 (see Fig. D.2),
thus why usually high flexibility values for this network.
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However, the 5-feature network, which also re-configures
into up to 8 modules, shows lower global flexibility (see
Fig. D.2). This is possibly because the 5-feature network
also has more nodes which interact within (only) 4 net-
work modules, rather than 5 as in the 9f-feature net-
work. Similarly, the 4v- and 4c-feature networks’ nodes
could change affiliations across up to 5 modules. How-
ever, the 4c-feature network consistently shows a lower
level of flexibility than the 4v-feature, which possibly
indicates that the nodes tend to stay within the same
modules. Interestingly, although almost exclusively con-
found within 4 modular divisions, the 4v-feature network
shows either strikingly high- or low-flexibility values.
These observations support the hypothesis that not only
individual features, but also their (linear) combinations
can reveal some additional patterns of cortical interac-
tions that may have previously been averaged out. Please
see Figs. D.2 and D.3 in the Appendix D.

Cortex as a multilayer network: flexibility hubs

To investigate roles of cortical regions that contribute
to global network flexibility the nodes were ranked
to either flexible (top-ranked) or inflexible (bottom-
ranked) hubs - see Fig. 2. The hubs were selected from
either the top or bottom 5% (of the total number of
148 regions), for each-feature network and merged
into a single list of hubs (see Table D.2). Identifying
flexible and, equally important, inflexible hubs may
help to understand whether/how their roles in cortical
interactions underlie individual differences in cognitive
performance or susceptibility to brain diseases. It has
long been argued that, for example, the progression and
early sites of atrophy in dementia-causing brain diseases
differ across individuals. However, most studies point
out that the changes could be either well localized,
but heterogeneous, or distributed across the cortical
surface. In this context, flexible nodes may play role in
the wide-spread patterns, while the inflexible hubs may
underpin focal, but heterogeneous changes. At the same
time, whether the well-established cognitive (functional)
networks involve flexible/inflexible hubs may also help
to understand role of these networks in individual
variations in cognitive performances and thereby in
cognitive impairments linked to brain disorders (see also
Flexibility of the cortex across the multilayers).

Flexibility at the lobe level

For the second aim, and to test the hypothesis that cor-
tical structure underlies the patterns of corticocortical
interactions at the lobe level, I assessed morphometric
flexibility of the cortex across 6 cortical lobes. Each
of the 3 representations of the multislice cortex was
assessed using nodal flexibility averaged over 6 cortical
lobes. Figure 3 show results when the randomly drown
MSNs formed the multislice networks. Results for all
4 networks were shown in a single panel for easier
comparisons of flexibility across different MSNs and
lobar divisions. There is a degree of similarity in the
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Fig. 1. Global flexibility of the cortex as a 9-, 5-, 4v-, or 4c-feature multilayer morphometric similarity network.
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Fig. 2. Flexibility hubs of the cortex as a 9-, 5-, 4v-, or 4c-feature multilayer morphometric similarity network: the top and bottom 5% of the nodes
were selected. The top-ranked nodes represent (highly) flexible and the bottom-ranked nodes inflexible brain regions. Nodes were merged across the 4
networks. Nodal labels are given in Table D.2.
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Fig. 3. Nodal flexibility for the 4 morphometric similarity networks organized into 4 multislice networks representation of the cortex. The flexibility
index was averaged over the cingulate, frontal, insular, occipital, parietal, and temporal cortex for the 9-, 5-, 4v- and 4c-feature networks. 9-feature and
4c-feature networks show higher and lower than average flexibility across the lobes. Legend shows Kruskal-Wallis test statistics for each-feature

morphometric similarity network across the cortical lobes.

behaviour of the flexibility index across the MSNs when
averaged over cortical lobes. Consistent across all 3 MSN
multilayers, significant differences in flexibility were
found between 9- and 4c-feature networks (P< 0.05),
with high flexibility of the 9-feature network and lower
flexibility of the 4c-feature network. Results of interests
across the cortical lobes include: 1) High variability
in flexibility across the cingulate, frontal and insular
cortices for the 4v-feature network, where the nodes
show either flexible of inflexible behaviour; 2) High
flexibility, but low variability in flexibility of the occipital
lobe. Statistics for these tests can be seen in the box next
to the plots. Similar behaviour for age- and IQ-dependent
multilayer networks and results of statistical tests can
be seen in Fig. D.5.

Flexibility of the cortical networks across

the multilayers

To test hypothesis that the previously established
cortical networks supporting cognitive function display
differences in flexibility of their nodes depending on
the type of the multilayer network (i.e. morphometric
features involved) flexibility was averaged over nodes
belonging to either of the 4 cortical networks. Figure 4
shows behaviour of the Default Mode (DMN), Salience
(SN), Visual (VIS), and Central Executive (CEN) Networks
across different multilayers. Overall, VIS network nodes
show higher flexibility than the other 3 networks. Pair-
wise tests of differences after the KW test show that
for the 9- and 4v-feature network the VIS has higher
flexibility than all the others; for 4c-feature the VIS has
higher flexibility than the DMN and SN. However, for
the 4c-feature network it is the CEN network that has
higher flexibility than the DMN and VIS. These results
may explain some different results in the involvement of
these networks across different studies. Figure D.6 shows
similar results obtained when age- and IQ-dependent
networks were analyzed. Interestingly, in both such
multilayer networks the 5-feature cortex shows no
differences when averaged over the 4 networks.

Age- and IQ-dependent multilayer networks

Figure 5 shows nodal flexibility averaged over the age-
and IQ-dependent multilayers. To analyze differences in
global flexibility with IQ, the flexibility was averaged

over 3 IQ subgroups; groups 1 (ig-sd) and 3 (ig+sd) were
formed of subjects whose IQ was 1 standard deviation
(sd) away from the mean and group 2 (ig-mean) from
subjects within 1 standard deviations around the mean.
Since the number of subjects within groups 1 and 3
was 30 and 35 respectively, 35 subjects was randomly
drawn into the ig-mean group and compared with the
other 2 using a nonparametric Kruskal-Wallis ANOVA
test. The ig-sd group has significantly lower flexibility
compared to the other 2 groups for the 5-feature net-
works. Similar analysis was performed on flexibility over
age-dependent multi-layers, but averaged over 12 age
bins - each bin 5 years wide. Again, a nonparametric
Kruskal-Wallis ANOVA test was used to test for the differ-
ences within the group. However, no significant pair-wise
tests were found. It should be noted that the 9-feature
networks show higher variability in flexibility across all
age groups compared with other 3 networks.

Morphometric similarity networks characteristics
- positive and negative edge weights

As described in the Methods, each MSN was constructed
using maximum-spanning tree cost function, to ensure
that an equal number of (the strongest) links in each
network enters analyses. Similar to our previous studies
(Vuksanovi¢ 2019, Vuksanovic¢ et al. 2019), the network
construction was done to include both positive and neg-
ative network edges. In this way, each network contains
the same total number (N = 588) of positive and negative
links, and the equal network density of 5.4% across the
slices (individual networks) throughout analyses.

The strength of morphometric similarity between 2
cortical regions, which was quantified as the Pearson'’s
correlation of their regional properties, can be either pos-
itive or negative. Thus, I assessed associations of the posi-
tive and negative correlations with subjects’ age or IQ. As
shown in Fig. 6, both the mean positive and negative cor-
relation strength for 9-feature network were correlated
with age and the mean negative correlation strength
was correlated with IQ for the 5-feature network. Signif-
icant association between age and positive correlation
strength was found also for 5-feature and 4c-feature
networks and for the negative correlation strength for 4v-
feature network (see Fig. D.1).
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Discussion

In this study, cortical surface morphometric similarity
networks were constructed and topologically analyzed
with reference to variations in the modular structures
across different morphometric features. The study is first
to describe the cortical surface as a multilayer network,
by combining individual morphometric similarity net-
works into the multilayers. A total of 8 such combinations
or types of morphometric similarity networks were con-
structed — 4 combinations of the inter-regional cortical
features on 2 brain atlases. The approach introduces a
novel way for studying brain networks’ metrics across
individuals, and can quantify network properties usually

not revealed using conventional network analyses. The
results provide evidence of the community structures in
MSNs as the property of cortical lobar divisions, but also
as the product of different combinations of morphome-
tric features used for the construction of the multilayer
representations of the cortex.

The description of the cortex through the multiple
multilayer morphometric similarity networks revealed
some interesting properties of its modular structures,
that could not be estimated from more conventional
group-wise network analyses of its topological orga-
nization. First, using this approach I have identified
(highly) flexible and inflexible morphometric similarity
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hubs — a characterization of the brain morphometry
that could not be evaluated using standard network’s
approaches. Second, by studying the nodal community
affiliations at different level of cortical organization, I
have characterized the variation in flexibility at the lobe
and the cortical networks level. The results show that the
patterns of nodal affiliations with their natural network
communities are: (i) consistent across the MSN multi-
layers, while being dependent on (ii) number of features
used to construct the multilayers and (iii) the intrinsic
cortical organization into the (natural) lobar divisions.
The results also show association of the flexibility with
IQ and age.

In this study, 4 combinations of morphometric features
were used to assess the modular organization of the
cortex. The combinations were chosen based primarily
on the regional or global geometry they describe and/or
their mutual relationship. The multilayer cortex formed
on the 9-feature MSNs shows highest flexibility both,
globally and across the 6 cortical lobes. The 9-feature
MSN also divides into largest number of communities
(see Fig. D.2). A possible interpretation is that a larger
number of network’s divisions can reveal patterns not
seen in the other 3 networks, constructed on the com-
binations of only 4 or 5 features. For example, 4-feature
networks show similarly high level of flexibility, however,
their network interactions were limited to only 4 mod-
ules. Another possibility could be that the number of
features determines also number of modules in an MSN;
however, even though still possible, it should be noted
that the 5-feature network divides into up to 8 modules.
This network was constructed on similarity between the

combination of intra-regional volumetric and (global)
curvature measures, therefore, it is more likely that the
combination, rather than the number of features plays
role in the divisions.

Results at the lobe level show that the occipital
cortices have higher flexibility than the other lobes for all
multilayers; statistically significant for the 4c- and 4v-
feature networks. Likewise, the frontal cortex shows on
average lower flexibility than the occipital and temporal
cortices across the 4v-feature network multilayers,
while insular cortex has significantly lower flexibility
compared to the parietal cortex for the 4c-feature
multilayer cortex. It should be noted that the 4v-feature
network displays high variability in the flexibility of
the frontal, cingulate and insular regions (see Fig. 3). By
closer inspection, it could be seen that the participation
in modular network interactions of the frontal, cingulate
and insular regions were either (highly) flexible or
inflexible (please see also discussion about brain hubs
and importance of inflexible interactions). It should be
noted that even tough not highly varying across the lobes,
the flexibility of the 4v-,4c-,5-, and 9-feature networks
show similar behaviour in terms of their flexible/
inflexible nodes. That is, the hubs tend to map the
same regions across all the 4 multilayer networks. This
can be seen in Fig. 2 that shows flexibility hubs, when
merged across all the 4 multilayer networks. Majority of
the flexible hubs was found in the frontal and occipital
cortex and also cingulate and insular cortex. Inflexible
hubs were also more frequently found among the frontal
or cingulate cortices. Hubs were equally distributed
across the hemispheres, however, heavily weighted
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towards gyri than sulci regions. There were equal
number of hubs classified as gyri — 31 in total (as either
being flexible or inflexible hubs) vs 23 (flexible) and
10 (inflexible) sulci hubs. Notably, the DA parcellation
labels: fronto-marginal gyrus (of Wernicke) and sulcus;
inferior occipital gyrus (O3) and sulcus; and transverse
frontopolar gyri and sulci were repeatedly ranked as
inflexible hubs across all the 4 representations of the
cortical multilayers. This is an important observation,
when considering results obtained for gyri-based DKA
parcellation of the cortex (see also Fig. D.7).

The analysis of flexibility across the 4 well-established
cognitive networks shows that the intra-regional (but
also the spatial, i.e. lobar) characteristics play roles in
morphometric flexibility (see Fig.3). The VIS network
shows higher than the group average flexibility across
all the 4 MSN multilayers, very likely due to a relatively
high portion of the occipital lobe nodes involved in this
network. The DMN, even though it shows high variability
in flexibility, this was again driven by its nodal lobar char-
acteristics. That is, a high proportion of the DMN nodes
are inflexible cingulate and frontal regions. Inflexible
hubs, as discussed earlier, may be considered as those
highly integrative regions (from the cognitive network
involvement) whose brake-down has profound effect on
the brain as a network (see for example (Touroutoglou
and Dickerson 2019)). This may explain, for example, why
the DMN 1is associated with a range of brain diseases
(see for example (Mohan et al. 2016)). The importance
of the network hubs in the context of their flexibility
across the morphometric multilayers can be interpreted
as a property of cortical (morphometric) plasticity, where
the complex multivariate factors influence and control
cortical variations dynamically (see also a discussion
about possible biological considerations of these results
below).

The analysis across the age- and IQ-dependent multi-
layer networks showed that the behaviour of the flexibil-
ity index was similar to that when the MSNs were ran-
domly assigned to the layers. Due to the bootstrapping
method applied here, differences in absolute values of
the flexibility were observed between these multilayers
(see Fig. D.4) but not in their behaviour across different
levels of analysis (either lobar or cognitive networks).
This may mean that the modular structures at the lobe
level map local signals from inter-cortical features, while
heterogeneous factors involved in ageing and IQ dynam-
ics are more global brain network characteristics. This
can be seen for when the flexibility was analyzed as
a property of an individual network (see Fig. 5). Results
show significantly lower flexibility of the cognitive group
with the IQ of 1 standard deviation below the group mean
(ig-sd) compared to the other 2 groups, for the 5-feature
multilayer network. This difference was possibly driven
by significant correlation between IQ and negative net-
work flexibility found for the 5-feature network (Fig. D.1).
Another possibility is that, similarly to the study of Sole-
Casalas and colleagues (Solé-Casals et al. 2019) greater

flexibility represents high versatility of the 5-feature net-
work (see Fig. D.2). Intuitively, it would be also expected
that the flexibility, like many brain network’s metrics
shows changes with ageing. However, here such changes
could not be detected. A several different factors may
contribute to this “negative” result. As stated the above,
ageing is a highly heterogeneous process with huge vari-
ability across individuals which may have influenced
the results. Another possible explanation is that, unlike
the negative correlation found between IQ and the 5-
feature networks’ flexibility, the correlation between age
and flexibility was found to be both positive and negative
(Figs. 6 and D.1) for the strongest associations between
the 2 (of the 9-feature network). This may mean that
such associations could have cancelled out any effect of
ageing when averaging flexibility across the multilayers.
This observation suports the notion that positive and
negative networks should be analyzed separately when-
ever possible.

Biologically, a leading hypothesis in the field of
research into the cortical morphogenesis and plasticity
suggest that the cortical morphometry (or geometry) is
closely related to mechanical, geometric, and physical
factors controlled predominantly by the cellular bio-
chemistry and genetics and modulated by environmental
variables (Sun and Hevner 2014, Toro and Burnod
2005). For example, regional surface area is primarily
determined by the number of radial columns normal
to the pial surface, and cortical thickness is determined
by the horizontal layers in the cortical columns (Rakic
2009), gene expression differ between gyri or sulci
(Fernandez et al. 2016), thus driving differences in
regional curvatures or folding. Here, a complex and rich
cortical morphology, was described by a limited number
(of just 9) simple measures of its geometry.

It should be also noted that, the flexibility mea-
sure used here complements prior studies that have
explored nodal flexible interactions across functional
brain modules extracted from fMRI data. These studies
showed that the brain network nodes whose modular
alliances swiftly change with the task execution, enable
enhanced cognitive performances (Braun et al. 2012,
2015, Finc et al. 2020). In these studies functional
networks reconfiguration has been identified as “a fun-
damental neurophysiological mechanisms for executive
function” (Braun et al. 2015). While studies in complex
structure-function relation often take into account
only direct axonal links between the regions (Hagmann
et al. 2008), more recent evidence has accumulated
supporting the notions about the cortical functional
(modular) organization being linked to the patterns of
interactions between intra-regional anatomical features
and cytoarchitectonic patterns (Huntenburg et al. 2018,
Whitaker et al. 2016) or inter-regional morphometric
networks (Vuksanovi¢ 2019). Future studies can study
interplay between networks derived from multimodal
MRI data. For example, informing a single MSN with
the corresponding functional and/or structural network
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from f/dMRI data, may be an interesting way to extend
this study in the quest for mapping the complex
structure-function relation and a better representation
of the complex cortical interactions.

Conclusion

In conclusion, this study demonstrated how represen-
tation of the cortex in the form of a multislice net-
work can be used to study variations in its anatomical
interactions that usually stay uncovered by conventional
network analyses. Using this approach, the results high-
light flexible cortical regions whose network community
assignments vary from individual to individual and those
(inflexible) regions whose interactions are being consis-
tent across the multilayers. The flexibility of the cortical
surface multilayer may reveal individual variations in
ageing and IQ, while inflexibility may map out nodal
susceptibility common to brain disease.

Supplementary material

Supplementary material is available at Cerebral Cortex
Communications online.
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