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Abstract

Background: Depression and related disorders are characterized by deficits in behavioral activation, exertion of effort, and 
other psychomotor/motivational dysfunctions. Depressed patients show alterations in effort-related decision making and a 
bias towards selection of low effort activities. It has been suggested that animal tests of effort-related decision making could 
be useful as models of motivational dysfunctions seen in psychopathology.
Methods: Because clinical studies have suggested that inhibition of catecholamine uptake may be a useful strategy for 
treatment of effort-related motivational symptoms, the present research assessed the ability of bupropion to increase work 
output in rats responding on a test of effort-related decision-making (ie, a progressive ratio/chow feeding choice task). With 
this task, rats can choose between working for a preferred food (high-carbohydrate pellets) by lever pressing on a progressive 
ratio schedule vs obtaining a less preferred laboratory chow that is freely available in the chamber.
Results: Bupropion (10.0–40.0 mg/kg intraperitoneal) significantly increased all measures of progressive ratio lever pressing, 
but decreased chow intake. These effects were greatest in animals with low baseline levels of work output on the progressive 
ratio schedule. Because accumbens dopamine is implicated in effort-related processes, the effects of bupropion on markers 
of accumbens dopamine transmission were examined. Bupropion elevated extracellular dopamine levels in accumbens core 
as measured by microdialysis and increased phosphorylated dopamine and cyclic-AMP related phosphoprotein 32 kDaltons 
(pDARPP-32) immunoreactivity in a manner consistent with D1 and D2 receptor stimulation.
Conclusion: The ability of bupropion to increase exertion of effort in instrumental behavior may have implications for the 
pathophysiology and treatment of effort-related motivational symptoms in humans.

Keywords: dopamine; nucleus accumbens; depression; fatigue; animal models

http://creativecommons.org/licenses/by-nc/4.0/
mailto:journals.permissions@oup.com?subject=
mailto:john.salamone@uconn.edu?subject=


2 | International Journal of Neuropsychopharmacology, 2015

Introduction

Depression is marked by various emotional and cognitive symp-
toms but is also characterized by effort-related motivational 
and psychomotor symptoms, including psychomotor retarda-
tion, anergia, lassitude, and fatigue (Stahl 2002; Caligiuri et al., 
2003; Demyttenaere et al., 2005; Treadway and Zald 2011; Fava 
et al., 2013). The severity of effort-related symptoms in depres-
sion is correlated with problems with employment, social func-
tion, and treatment outcomes (Tylee et al., 1999; Stahl 2002), and 
these motivational symptoms are highly resistant to treatment 
in many people (Stahl 2002; Fava et al., 2013). Moreover, recent 
papers emphasize that many people with major depression have 
fundamental deficits in exertion of effort in reward seeking that 
do not depend simply upon problems with experiencing pleasure 
in response to a primary motivational stimulus (Treadway and 
Zald, 2011; Treadway et al., 2012a; Argyropoulos and Nutt, 2013). 
The neural basis of the effort-related dysfunctions in depres-
sion is still being characterized, but evidence implicates central 
dopamine (DA), striatal areas, and cortical mechanisms (Hickie 
et al., 1999; Caligiuri and Ellwanger et al., 2000; Schmidt et al., 
2001; Volkow et al., 2001; Salamone et al., 2006, 2007; Tellez et al., 
2008; Treadway and Zald, 2011). Moreover, effort-related motiva-
tional symptoms appear to be some of the most common psy-
chiatric symptoms observed in general medicine (Demyttenaere 
et al., 2005) and are seen in multiple disorders, including schizo-
phrenia, Parkinsonism, and multiple sclerosis (Friedman et al., 
2007; Tellez et al., 2008; Gold et al., 2013). Because of the clinical 
significance of these activational or effort-related motivational 
symptoms and the growing emphasis on identifying neural cir-
cuits related to specific psychiatric symptoms (ie, the Research 
Domain Criterion approach), it is critical to develop animal mod-
els that assess effort-related processes.

It has been suggested that animal tests of effort-related 
decision-making could be useful for modeling motivational 
dysfunctions seen in psychopathology (Salamone et  al., 2006, 
2007; Salamone and Correa, 2012). Effort-based decision-mak-
ing is studied with tasks offering choices between high-effort 
options leading to highly valued reinforcers vs low-effort/low-
reward choices. With animals, such tasks include a T-maze 
barrier climbing task (Salamone et  al., 1994; Cousins et  al., 
1996; Hauber and Sommer 2009; Mott et al., 2009; Pardo et al., 
2012; Mai et al., 2012), effort discounting (Floresco et al., 2008; 
Bardgett et al., 2009), and operant procedures offering choices 
between responding on ratio schedules for preferred reinforcers 
vs approaching and consuming less preferred ones (Salamone 
et  al., 1991, 2002; Schweimer and Hauber 2005; Randall et  al., 
2012). Research has highlighted the effort-related functions of 
DA systems, particularly accumbens DA. Across multiple tasks, 
low doses of DA antagonists and accumbens DA depletions or 
antagonism shift choice behavior, decreasing selection of high-
effort/high-reward options and increasing selection of low-
effort/low-reward choices (Salamone et al., 1994, 2007; Nowend 
et al., 2001; Mai et al., 2012; Pardo et al., 2012). Moreover, these 
effects of dopaminergic manipulations are not due to reinforcer 
devaluation or suppression of primary food motivation or appe-
tite (Salamone et  al., 1991, 2002; Koch et  al. 2000; Sink et  al., 
2008; Randall et  al., 2012; Nunes et  al., 2013b). Recent studies 
have shown that reduced selection of high-effort activities in 
rats is induced by manipulations associated with depression, 
including muscarinic receptor stimulation (Nunes et al., 2013a; 
see also Janowski et al. 1994; Chau et al. 2001; Rada et al. 2006 for 
discussion of acetylcholine and depression), stress (Shafiei et al., 
2012), injections of the proinflammatory cytokine interleukin-1β 

(Nunes et al., 2014), and administration of the catecholamine-
depleting agent tetrabenazine (Nunes et al., 2013b). These obser-
vations are consistent with recent clinical data demonstrating 
that people with major depression show a reduced likelihood of 
selecting high-effort alternatives when assessed in human tests 
of effort-related choice (Treadway et al., 2012a).

Animal models of effort-based choice are also useful for the 
assessment of drug treatment strategies, and recent studies have 
investigated the effects of muscarinic acetylcholine and adeno-
sine A2A receptor antagonists (Nunes et al., 2013a, 2013b, 2014) 
for their ability to reverse effort-related impairments. Another 
compound that has been assessed is the antidepressant bupro-
pion, which is a drug that can inhibit catecholamine uptake and 
facilitate vesicular uptake of DA (Dwoskin et al., 2006). Bupropion 
has been shown to reverse the effects of tetrabenazine on 
effort-related choice behavior in rats tested on the T-maze bar-
rier choice task (Yohn et al., in press), the concurrent fixed ratio  
5/chow feeding choice task (Nunes et al., 2013b), and the concur-
rent progressive ratio (PROG)/chow feeding choice task (Randall 
et al., 2014). The evaluation of catecholamine uptake inhibitors 
on tests of effort-related function is important because of clini-
cal research indicating that catecholamine uptake blockade can 
be a relatively effective strategy for the treatment of psychomo-
tor/motivational symptoms (Rampello et  al., 1991; Stahl, 2002; 
Demyttenaere et al., 2005; Papakostas et al., 2006; Pae et al., 2007; 
Fava et al., 2013). Thus, the present studies evaluated the abil-
ity of bupropion to enhance responding on a PROG/chow feeding 
choice task. There are several variants of this task (Schweimer 
and Hauber, 2005; Beeler et al., 2012), and the specific procedure 
used was one that has previously been employed to assess drug 
effects in our laboratory (Randall et al., 2012, 2014). This specific 
procedure was chosen, because the PROG schedule gradually 
increases the lever-pressing requirement and therefore presents 
the animal with a gradually incrementing work-related cost. In 
addition, this procedure generates enormous individual differ-
ences in performance (Randall et al., 2012, 2014), which allows 
for the differential assessment of drug effects in high vs low 
performers. Because of the literature implicating accumbens 
DA in effort-related processes (Salamone et al., 1997, 2003, 2007; 
Salamone and Correa 2012; Nunes et al., 2013a, 2013b), includ-
ing performance on the PROG/chow feeding choice task (Randall 
et al., 2012, 2014), the effects of bupropion on pre- and postsynap-
tic markers of accumbens DA transmission also were examined 
(ie, microdialysis to measure extracellular DA and phosphoryl-
ated dopamine and cyclic-AMP related phosphoprotein 32 kDal-
tons (pDARPP-32) immunoreactivity as a marker of DA-related 
signal transduction).

Methods

Animals

Seventy-two adult male Sprague-Dawley rats were housed in a 
colony at 23°C with 12-h–light/–dark cycles (lights on at 7:000 
am). Rats in experiment 1 (n = 42) weighed 300 to 350 g at the 
beginning of the study and were initially food restricted to 85% 
of their free-feeding body weight for training; they were fed sup-
plemental chow to maintain weight throughout the study, with 
water available ad libitum in home cages, and were allowed 
modest weight gain throughout the experiment. All other rats 
(n = 30) weighed 300 to 350 g at the beginning of the study and 
had ad libitum access to laboratory chow and water in home 
cages. Animal protocols were approved by the University of 



Randall et al. | 3

Connecticut Institutional Animal Care and Use Committee and 
followed NIH guidelines (DHEW Publications, NIH, 80-23).

Pharmacological Agents and Dose Selection

Bupropion hydrochloride (Alfa Aesar, Ward Hill, MA) was dis-
solved in 0.9% saline solution that also served as the vehicle con-
trol. Doses were selected based on previous papers (Bruijnzeel 
and Markou, 2003; Nunes et al., 2013b).

Behavioral Procedures

Behavioral sessions were conducted in operant chambers 
(28 × 23 × 23 cm3; Med Associates, Putney, VT) with 30-minute ses-
sions 5 d/wk. Rats were initially trained to lever press on a contin-
uous reinforcement schedule (high-carbohydrate 45-mg pellets, 
Bio-serv, Frenchtown, NJ) and then shifted to the PROG schedule 
(Randall et al., 2012). For PROG sessions, the ratio started at fixed 
ratio (FR)1 and was increased by 1 additional response every 
time 15 reinforcements were obtained (FR1 × 15, FR2 × 15, etc.). 
A “time-out” feature deactivated the response lever if 2 minutes 
elapsed without a completed ratio. After 9 to 10 weeks of PROG 
training, chow was introduced. Weighed amounts of laboratory 
chow (Laboratory Diet, 5P00 Prolab RMH 3000, Purina Mills, St. 
Louis, MO; typically 15–20 g) were concurrently available on the 
floor of the chamber during the PROG sessions. Chow intake was 
determined by weighing the remaining food (including spillage). 
Rats were trained on the PROG/chow feeding choice procedure 
for 4 to 5 weeks, after which drug testing began. On baseline and 
drug treatment days, rats consumed all the operant pellets that 
were delivered during each session.

Microdialysis and High-Performance Liquid 
Chromatography

Rats were anesthetized with a 1.0-mL/kg intraperitoneal (IP) 
injection of a solution containing 10.0 mL of 100 mg/mL keta-
mine plus 0.75 mL of 20.0 mg/mL xylazine (Phoenix Scientific, 
Inc., St. Joseph, MO). While in the stereotax (Kopf, Tujunga, 
CA; incisor bar 5.0 mm above interaural line), rats received 
unilateral implantations of a 10.0-mm probe guide cannula 
(Bioanalytical Systems, Indianapolis, IN). The tips of the guide 
cannulae were implanted 2.0 mm above accumbens core 
(anterior/posterior: +2.8 mm, medial/lateral: ±1.4 mm, dor-
sal/ventral: −5.8 mm from bregma; counterbalanced left vs 
right) and secured to the skull with stainless steel screws and 
cement. Stainless steel stylets were inserted into the guide 
cannulae to maintain patency. Animals were housed in sepa-
rate cages and allowed 7 days postsurgical recovery.

Rats with implanted cannulae were habituated in Plexiglas 
chambers (28 × 28 × 23 cm3) the day before sampling for 8 hours 
with infusion pumps running. The following day, probes were 
inserted through the cannula, and artificial cerebrospinal fluid 
was pumped through at a rate of 2  μL/min (syringe pump, 
Harvard Apparatus, Cambridge, MA). Two hours postinsertion, 
sampling began and continued for 6 hours. After sampling, the 
probe was removed, and after euthanasia, histological analy-
ses were performed to verify placements. Samples were frozen 
and analyzed for DA content using reverse-phase high-perfor-
mance liquid chromatography with electrochemical detection 
(ESA, New Bedford, MA; Segovia et al., 2011; Nunes et al. 2013b). 
Each liter of mobile phase contained 27.6 g sodium phosphate 
monobasic monohydrate, 8% methanol, 750 μL 0.1 M ethylenedi-
aminetetraacetic acid, and 2000  μL 0.4 M sodium octyl sulfate 

dissolved in dH2O (pH = 4.5). DA standards were assayed before, 
during, and after the dialysis samples.

Immunocytochemistry for Phosphorylated DA 
and c-AMP Related Phophoprotein-32 kDaltons 
(pDARPP-32)

Two hours after injection, rats were perfused with 3.7% for-
maldehyde and brains were extracted. Tissue was fixed in 3.7% 
formaldehyde overnight and moved to 30% sucrose cryo-protect-
ant. Then 50-μm sections were cut using a cryostat. Tissue was 
washed in phosphate buffered saline (PBS) and bathed in block-
ing solution (0.1% Triton-X, 5.0% normal donkey serum, PBS) on 
a rotating shaker for 60 minutes, then washed for 15 minutes 
in PBS, and incubated in primary antibody (donkey anti-rabbit 
Thr34, donkey anti-rabbit Thr75, 1:500, Santa Cruz Bioscience, CA) 
with 0.1% Triton-X, 5.0% normal donkey serum, PBS, on a refriger-
ated rotating shaker for 24 hours. Next, tissue was washed for 15 
minutes in PBS and incubated in secondary antibody (Alexaflour 
anti-rabbit 488 for pDARPP-32(Thr34) and pDARPP-32(Thr75), 
1:200, Life Scientific) with 0.1% Triton-X, 5.0% normal donkey 
serum, PBS, on a rotating shaker for 120 minutes. Tissue was then 
washed for 15 minutes in PBS, wet mounted on slides, and dried 
overnight. Tissue was imaged on an Axio Imager-M2 fluorescence 
microscope. Images used for counting cells were 20× magnifica-
tion. Cells were counted using a custom macro for ImageJ.

Experiment 1: The Effects of Bupropion on PROG/
Chow Performance

Rats (n = 42) were trained as described above and were run on 
the PROG/chow feeding choice procedure 5 d/wk. On drug test 
days, they received IP injections of either saline vehicle or 10.0, 
20.0, or 40.0 mg/kg bupropion, 30 minutes before testing, using 
within-subjects design with each subject receiving all drug 
treatments, once per week, in a random order. Baseline training 
days were conducted on the other 4 days each week.

Experiment 2: Effects of Bupropion on nucleus 
accumbens Core DA in Untrained Rats as Measured 
by in-Vivo Microdialysis

Rats were implanted with dialysis guide cannulae and had dialy-
sis probes inserted on the morning of the drug test as described 
above. On test days, rats (n = 5/group) received injections of 20.0 
or 40.0 mg/kg bupropion or vehicle following the second base-
line sample, and 6 additional dialysis samples were collected.

Experiment 3: Effects of Bupropion on NAc and 
Neostriatal DA Signaling in Untrained Rats as 
Measured by pDARPP-32 Immunoreactivity

Rats (n = 5/group) received IP injections of saline vehicle or 20.0 
or 40.0 mg/kg bupropion 2 hours before perfusion for tissue 
analysis.

Statistical Analyses

Animals in experiment 1 were separated into high- and low-
performance groups by a median split, and total lever presses, 
highest ratio achieved, active lever time, and chow consump-
tion on the PROG/chow were analyzed with a 2 (performance 
group) × 4 (drug treatment) factorial analysis of variance 
(ANOVA) with repeated measures on the drug treatment 
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factor. Based on the performance group × treatment interac-
tions for all 4 behavioral variables analyzed, separate ANOVAs 
and nonorthogonal planned comparisons (Keppel, 1991) of 
each performance group were used to determine differences 
between each drug treatment vs vehicle. Previous research 
has shown that there is considerable variability in perfor-
mance of the PROG/chow choice task (Randall et  al., 2012), 
and the present work as well as recent studies indicate that 
baseline performance is a stable characteristic across many 
weeks of training (data not shown). Additionally, total lever 
presses under each drug treatment condition were analyzed 
between high and low performers using analysis of simple 
effects, and effect sizes (partial ε2) for each variable and per-
formance group across all doses were calculated to determine 
the magnitude of the drug treatment effects across each vari-
able and group. For the microdialysis experiment, DA levels 
were analyzed as percentage change from baseline, with the 
mean of the 2 samples immediately preceding the lever-press-
ing session serving as the 100% baseline level. Animals that 
had a variability of >35% from the mean during the 2 baseline 
samples were excluded from further analyses (2 animals were 
excluded that failed to meet this criterion). Factorial ANOVA 
with repeated measures on the time factor was used to ana-
lyze the DA data. In experiment 3, mean number of pDARPP-
32(Thr34) and pDARPP-32(Thr34) positive cells across each 
region of interest were analyzed using simple ANOVA with 
posthoc analysis (Tukey) to determine differences between 
treatment levels.

Results

Experiment 1: Bupropion Increases PROG/Chow 
Responding

Rats were split into 2 performance groups (high vs low) using a 
median split of total lever presses under the vehicle condition 
and analyzed with ANOVA. There were significant performance 
group × drug treatment interactions for all 4 variables (total 
lever presses: F[3,120] = 2.726, P < .05), highest ratio achieved 
(F[3,120] = 7.201, P < .05), active lever time (F[3,120] = 7.038, 
P < .05), and chow consumption (F[3,120] = 7.904, P < .05). Based 
on these findings, high performers and low performers were 
separately analyzed with repeated-measures ANOVA to char-
acterize performance in each group. There was a significant 
effect of treatment in high performers on total lever presses 
(F[3,60] = 9.468, P < .05), highest ratio achieved (F[3,60] = 7.015, 
P < .05), active lever time (F[3,60] = 12.366, P < .05), and chow 
consumption (F[3,60] = 66.461, P < .05). Planned comparisons 
demonstrated that total lever presses, highest ratio achieved, 
and active lever time were all increased at 20.0 and 40.0 mg/kg 
bupropion compared with vehicle (P < .05). Furthermore, chow 
consumption was decreased in high performers at all doses 
compared with vehicle (P < .05). For low performers, there also 
were significant effects of treatment in low performers on total 
lever presses (F[3,60] = 40.359, P < .05), highest ratio achieved 
(F[3,60] = 46.128, P < .05), active lever time (F[3,60] = 63.096, P < 
0.05), and chow consumption (F[3,60] = 160.489, P < .05). The 
highest ratio achieved and active lever time in low performers 
were both significantly increased at 20.0 and 40.0 mg/kg bupro-
pion compared with vehicle (P < .05; planned comparisons), 
whereas total lever presses were increased only at 40.0 mg/kg 
compared with vehicle (P < .05). Furthermore, chow consump-
tion in low performers was decreased at all doses of bupropion 
compared with vehicle (P < .05).

To further analyze differences between performance groups 
on each measure, individual drug treatment levels were ana-
lyzed. For lever pressing, ANOVA revealed that low performers 
responded less than high performers on vehicle (F[1,40] = 15.822, 
P < .05), 10.0 mg/kg (F[1,40] = 22.796, P < .05), and 20.0 mg/kg 
(F[1,40] = 33.295, P < .05) but did not differ from high performers 
at 40.0 mg/kg (F[1,40] = 1.449, not significant). Similarly, for high-
est ratio achieved for low performers reached a lower ratio than 
high performers on vehicle (F[1,40] = 27.644, P < .05), 10.0 mg/
kg (F[1,40] = 36.370, P < .05), and 20.0 mg/kg (F[1,40] = 39.729, 
P < .05) but were not different from high performers at 40.0 mg/
kg bupropion (F[1,40] = 0.274, n.s.). Moreover, low performers 
showed less active lever time compared with high performers 
on vehicle (F[1,40] = 18.068, P < .05), 10.0 mg/kg (F[1,40] = 16.628, 
P < .05), and 20.0 mg/kg (F[1,40] = 25.698, P < .05) but not at 40.0 mg/
kg bupropion (F[1,40] = 0.002, n.s.). Finally, with chow intake, low 
performers consumed significantly more chow compared with 
high performers on vehicle (F[1,40] = 25.160, P < .05), 10.0 mg/kg 
(F[1,40] = 19.637, P < .05), and 20.0 mg/kg (F[1,40] = 30.121, P < .05) 
but not at 40.0 mg/kg bupropion (F[1,40] = 0.162, n.s.). Moreover, 
these performance group differences in the effects of bupropion 
were supported by measures of effect size (partial ε2), in which 
low performers showed a greater effect of bupropion on total 
lever presses, highest ratio achieved, active lever time, and chow 
consumption compared with high performers (Table 1).

Experiment 2: Bupropion Increases Extracellular DA 
in NAc Core in Untrained Animals

The results of the microdialysis study are shown in Figure  2. 
Factorial ANOVA with repeated measures on the sample fac-
tor demonstrated that there was a significant overall difference 
across samples (F[7,77] = 12.815, P < .001) and a significant overall 
difference across treatment groups (ie, the different groups of 
rats receiving vehicle, 20.0 or 40.0 mg/kg; F[2,11] = 7.978, P < .01). 
Moreover, there was a significant sample × treatment interaction 
(ie, across the different dialysis samples and treatment groups; 
F[14,77] = 6.656, P < .001). As a result of the significant interaction, 
each treatment group was separately analyzed with repeated-
measures ANOVA. There was no difference across samples in 
vehicle-treated rats (F[7,21] = 1.561, n.s.). However, there was a 
significant effect of treatment in both 20.0 mg/kg (F[7,28] = 7.669, 
P < .05) and 40.0 mg/kg treated rats (F[7,28] = 10.657, P < .05). Planned 
comparisons revealed that the postdrug sample 2 was significantly 
different from baseline in rats treated with 20.0 mg/kg bupropion 
(P < .05) and that samples 2, 3, 4, and 5 were significantly different 
from baseline in rats treated with 40.0 mg/kg bupropion (P < .05).

Experiment 3: Bupropion Increases Phosphorylated 
DARPP-32 Expression at Both Thr34 and Thr75 
Residues

Figures 3 to 5 depict the effects of bupropion treatment on 
expression of pDARPP-32(Thr34) and pDARPP-32(Thr75) in 

Table 1. Effect Sizes (Partial ε2): Low Performers Show Greater Effect 
of Bupropion on All Measures Compared with High Performers

High Performers Low Performers

Total lever presses 0.321 0.669
Highest ratio achieved 0.260 0.698
Active lever time 0.382 0.759
Chow consumption 0.769 0.889
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accumbens core, accumbens shell, and overlying dorsal stria-
tum (neostriatum). Bupropion increased signs of DA-related 
signal transduction at both D1 and D2 family receptors (Figures 
3 and 4). ANOVA revealed a significant effect of drug treat-
ment on pDARPP-32(Thr34) expression in accumbens core 
(F[2,12] = 22.093, P < .05), shell (F[2,12] = 12.862, P < .05), and dor-
sal striatum (F[2,12] = 39.989, P < .05). Posthoc analysis (Tukey) 
revealed that pDARPP-32(Thr34) expression in the accumbens 
core was significantly increased at 20.0 and 40.0 mg/kg (P < .05) 
compared with vehicle. These doses did not significantly differ 
from each other. In the accumbens shell and dorsal striatum, 
only 40.0 mg/kg bupropion increased pDARPP-32(Thr34) expres-
sion over vehicle (P < .05). In addition, there was a significant 
effect of treatment on pDARPP-32(Thr75) expression in accum-
bens core (F[2,12] = 4.191, P < .05), shell (F[2,12] = 4.343, P < .05), 
and dorsal striatum (F[2,12] = 5.473, P < .05). pDARPP-32(Thr75) 
expression in accumbens core, shell, and dorsal striatum was 
significantly increased by 40.0 mg/kg bupropion (P < .05).

Discussion

Bupropion is a catecholamine uptake inhibitor that has been 
used for many years as an antidepressant (Dwoskin et  al., 
2006). Traditional rodent tests, such as forced swim and tail 
suspension, are sensitive to the effects of bupropion (Yamada 
et al., 2004; Kitamura et al., 2010). Bupropion (Wellbutrin) is fre-
quently prescribed, and in 2010 it was reported to be the most 
commonly prescribed antidepressant in the United States 
(Milea et al., 2010). Moreover, this drug is particularly interest-
ing because of evidence indicating that inhibition of DA uptake 
may be relatively effective for treating anergia, fatigue, or psy-
chomotor symptoms observed in many depressed patients 
(Rampello et  al., 1991; Stahl, 2002; Demyttenaere et  al., 2005; 

Papakostas et  al., 2006; Pae et  al., 2007). Bupropion is capa-
ble of reversing the effort-related impairments induced by 
the vesicular monoamine transporter (VMAT)-2 inhibitor and 
DA-depleting agent tetrabenazine in rats (Nunes et al., 2013b; 
Randall et  al., 2014). In contrast, the current studies investi-
gated the effects of bupropion administered on its own to 
assess its ability to alter effort-based choice as measured by 
the PROG/chow feeding choice procedure. Bupropion shifted 
choice behavior and increased the tendency to work for food 
reinforcement, as marked by increases in all measures of 
PROG lever pressing (total lever presses, highest ratio achieved, 
and active lever time) (Figure  1) while decreasing consump-
tion of the concurrently available chow. These data are con-
sistent with a previous study showing that bupropion could 
increase food-reinforced responding on a conventional PROG 
schedule (Bruijnzeel and Markou, 2003). Nevertheless, as previ-
ously described (Randall et al., 2012), the PROG/chow feeding 
choice procedure provides additional information compared 
with conventional schedules, because the animal is given an 
explicit choice between lever pressing for food reinforcement 
and intake of an alternative food source (chow) as opposed to 
the choice between responding and not responding. In addi-
tion, the specific version of the PROG/chow feeding choice 
procedure used generates enormous individual variability, 
which is related to differences in drug response and mark-
ers of DA-related signal transduction (Randall et al., 2012). In 
the present study, the effects of bupropion were greater in low 
performers than high performers on all 4 behavioral meas-
ures, as indicated by the larger effect sizes seen with the low 
performers (Table 1). Moreover, despite the substantial differ-
ences in baseline performance on all variables, after injection 
of 40.0 mg/kg bupropion, there were no significant differences 
between high and low performers on any behavioral measure, 
indicating that this dose of bupropion made the 2 performance 
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Figure 1. Effects of bupropion on progressive ratio (PROG)/chow performance in high and low responders. Mean (±SEM) number of total lever presses (A), highest ratio 

achieved (B), active lever time (in seconds; C), and chow consumption (in grams; D). (* P < .05, high responders different from low responders; + P < .05, bupropion differ-

ent from vehicle in that specific performance group).
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groups roughly equal. These findings demonstrate the utility 
of the PROG/chow feeding choice procedure as a model for 
assessing the effort-related effects of antidepressant drugs.

To better understand the effects of bupropion on DA sign-
aling, 2 different neurochemical measures were employed. 
Experiment 2 assessed the effects of bupropion on extracel-
lular DA concentrations in accumbens core using microdialy-
sis. Accumbens core was studied, because it is the DA terminal 
area in the striatal complex of rats that appears to be most 
consistently linked to the regulation of effort-related choice 
behavior (Cousins et al., 1993; Font et al., 2008; Mingote et al., 
2008; Farrar et  al., 2010; Ghods-Sharifi et  al., 2010; Hauber 
and Sommer, 2010; Randall et  al., 2012). Bupropion signifi-
cantly increased accumbens extracellular DA at both 20.0 and 
40.0 mg/kg, which were the behaviorally active doses in experi-
ment 1.  Furthermore, these increases were maximal during 
the same time span that an operant session would be taking 
place (30–60 minutes postinjection). The 20.0 dose of bupro-
pion, which increased extracellular DA in nucleus accumbens 
by approximately 3-fold, significantly increased lever pressing 
in the high-performance group in experiment 1 but not the 
low-performance group. The 40.0-mg/kg dose of bupropion 
was needed to increase PROG lever pressing in the low-perfor-
mance group, and the microdialysis study indicated that this 
dose produced a very large increase in extracellular DA (ie, 9- 
to 10-fold). These large increases in extracellular DA that were 
induced by the highest dose of bupropion are comparable with 
the increases seen with administration of other drugs that 

Figure 3. Top, DARPP-32 biochemistry in accumbens neurons containing dopamine (DA) D1 and D2 family receptors (see Bateup et al., 2008 for details). D1 receptor 

stimulation increases c-AMP production and protein kinase A  (PKA) activity, which phosphorylates DARPP-32 to yield pDARPP-32(Thr34). D2 receptor stimulation 

decreases c-AMP production and protein kinase A activity, which decreases the dephosphorylation of pDARPP-32(Thr34) by protein phosphatase 2A (PP-2A), and there-

fore increases pDARPP-32(Thr75) expression. Bottom, High magnification photomicrographs of pDARPP-32(Thr34) (A) and pDARPP-32(Thr75) (B) staining in nucleus 

accumbens core, showing representative rats treated with 40.0 mg/kg bupropion. Images were taken at 40× magnification. Scale bar = 50 μm.
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Figure 2. Bupropion increases extracellular dopamine (DA) in NAc core. Mean 
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block DA uptake, including stimulants such as cocaine (Lenoir 
et al., 2007).

Experiment 3 assessed the effects of bupropion on accumbens 
and neostriatal pDARPP-32 immunoreactivity in untrained rats. 
The greatest effects were seen at 40.0 mg/kg, though pDARPP-
32(Thr34) expression in the accumbens core was significantly 
increased at both 20.0 and 40.0 mg/kg, which was the same dose 
range as the behavioral effects observed in experiment 1. Both 
phosphorylated forms of DARPP-32 (ie, at the Thr34 and Thr75 
amino acid residues) were responsive to bupropion treatment, 
although the magnitude of effects on pDARPP-32(Thr75) tended 
to be smaller than those seen with pDARPP-32(Thr34). Based 
on the microdialysis results showing increased extracellular 
DA after bupropion administration and on papers describing 
the role of DARPP-32 as a signaling protein (Svenningson et al., 
2004; Bateup et al., 2008; Yger and Girault, 2011; Santerre et al., 
2012; Segovia et  al., 2012), it is likely that pDARPP-32(Thr34) 
increased after bupropion administration because of increased 
D1 receptor stimulation in substance P positive neurons, while 
pDARPP-32(Thr75) increased because of increased D2 receptor 
stimulation in enkephalin positive neurons (Figures 3 and 4). 
Thus, it appears that the doses of bupropion used in the present 
experiment increased DA transmission at multiple subtypes of 
medium spiny neurons (ie, those predominantly expressing D1 
receptors and those expressing D2 receptors). However, double-
labeling and tract-tracing methods would be necessary to con-
firm the efferent projection targets of these neurons.

Consistent with the hypothesis that bupropion is shifting 
choice behavior and increasing PROG lever pressing through 
actions on DA, previous studies have shown that interfer-
ing with DA transmission produces the opposite effect and 
decreases PROG lever pressing in rats responding on the PROG/

chow feeding choice task. Administration of either D1 or D2 
family antagonists, as well as the DA depleting agent tetrabena-
zine, all decrease PROG lever pressing in rats responding on the 
PROG/chow choice task (Randall et al., 2012, 2014). Although the 
effects of bupropion on preference between high-carbohydrate 
pellets and laboratory chow have not been studied, previous 
research has shown that other dopaminergic manipulations did 
not alter preference between the 2 different foods (Salamone 
et al., 1991; Nunes et al., 2013b). In addition, recent unpublished 
data from our laboratory indicate the high lever-pressing per-
formance on the PROG/chow feeding choice task is not simply 
related to a higher degree of preference for high-carbohydrate 
food pellets relative to chow. Future research should also use 
choice tasks that involve selection of nonfeeding activities (eg, 
wheel running).

With increasing interest in the effort-related symptoms 
of depression (eg, Salamone et al., 2006; Treadway et al., 2011, 
2012a), there is a growing need for treatments that effectively 
improve these symptoms. Bupropion can increase both DA and 
norepinephrine transmission (Hudson et  al., 2012), but at this 
point, there is little evidence implicating norepinephrine in 
effort-related choice behavior, whereas considerable evidence 
supports a role for DA (Salamone et  al., 2007; Salamone and 
Correa, 2012). Thus, the current findings showing that bupropion 
increases the tendency to work for food at doses that increase 
DA transmission are consistent with the suggested use of drugs 
that augment DA transmission as therapeutic treatments for 
effort-related motivational symptoms (Argyropoulos and Nutt, 
2013; Soskin et  al., 2013). As demonstrated here and in previ-
ous work (Nunes et al., 2013b; Randall et al., 2014), bupropion 
increases exertion of effort in otherwise untreated animals 
(experiment 1), and attenuates the effort-related deficits induced 

Figure 4. Top, Schematic diagrams of the relevant coronal section and specific brain regions depicted in bottom figures (based on the atlas of Paxinos and Watson, 

1998). The squares indicate the placement of optical dissectors for counting pDARPP-32 positive cells. Bottom, Bupropion increases expression of pDARPP-32 at both 

Thr34 and Thr75 residues. A, Mean (±SEM) DARPP-32(Thr34) positive cells counted in each region of interest for each treatment group. B, Mean (±SEM) DARPP-32(Thr75) 

positive cells counted in each region of interest for each treatment group. (* P < .05, different from vehicle in each region of interest).
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by low doses of tetrabenazine that deplete accumbens DA and 
reduce DA-related signal transduction in rats. These findings are 
consistent with clinical studies reporting that patients treated 
with bupropion show improvements in effort-related motiva-
tional symptoms (Papakostas et al., 2006; Pae et al., 2007) and 
that clinically relevant doses of bupropion occupy DA trans-
porters in vivo (Learned-Coughlin et al., 2003). Furthermore, in 
the current studies, bupropion increased lever pressing in low 
responders, bringing them up to the same level as high respond-
ers; this finding is particularly important in view of the recent 
report indicating that poor performers on this task show lower 
levels of DA-related signal transduction [ie, pDARPP-32(Thr34) 
expression] in accumbens core compared with high responders 
(Randall et al., 2012). Moreover, the present results are consistent 
with previous studies indicating that amphetamine increases 
exertion of cognitive effort in animals with low baseline per-
formance (Cocker et al., 2012). Future research should assess a 
wider variety of drugs for their ability to enhance exertion of 
effort, including novel DA uptake inhibitors, monoamine oxi-
dase inhibitors such as deprenyl (Randall et al., 2014), adenosine 
A2A receptor antagonists (Randall et al., 2012; Nunes et al., 2013b, 
2014), and drugs that inhibit norepinephrine and 5-HT uptake.

In summary, bupropion can increase the motivation to work 
for food reinforcement, particularly in animals with poor base-
line performance. Together with studies using other behavio-
ral procedures and drug treatments (Randall et al., 2012, 2014; 
Nunes et al., 2013a, 2013b), the present studies indicate that the 
PROG/chow feeding choice procedure is useful for the preclini-
cal assessment of drug treatment of effort-related motivational 
symptoms in psychopathology. Moreover, bupropion exerts its 
behavioral effects in rats at doses that augment pre- and post-
synaptic markers of DA transmission. These observations are 
consistent with the extensive body of evidence linking DA trans-
mission to effort-related processes in animals (Salamone et al., 
1994, 1997, 2003, 2007; Cagniard et al., 2006; Floresco et al., 2008; 
Mai et al., 2012; Salamone and Correa, 2012a; Nunes et al., 2013b; 
Trifilieff et al., 2013) and humans (Wardle et al., 2011; Treadway 
et  al., 2012b) and with clinical studies indicating that DA 

transmission regulates effort-related motivational symptoms 
in depression and other disorders (Rampello et al., 1991; Brown 
and Gershon, 1993; Treadway and Zald, 2011; Argyropoulos and 
Nutt, 2013; Treadway and Pizzigali, 2014). Although motivational 
impairments are very common in depressed patients, they 
also are present across a wide spectrum of psychopathologies, 
including schizophrenia, Parkinsonism, multiple sclerosis, and 
immune system challenges (Salamone et al., 2006; Winograd-
Gurvich et al., 2006; Dantzer et al., 2012; Gold et al., 2013; Markou 
et al., 2013; Nunes et al., 2014). Therefore, tests of effort-related 
choice behavior should not be viewed simply as animal models 
of depression per se. Instead, they are probably modeling a class 
of motivational symptoms that is characteristic of depression 
but also spans multiple disorders and conditions. This sugges-
tion is consistent with the Research Domain Criteria approach, 
which places less emphasis on traditional diagnostic categories 
and instead focuses on the neural circuits mediating specific 
pathological symptoms (Cuthbert and Insel, 2013).
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