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Abstract

Introduction: Statistical interactions are a common component of data analysis across a broad range of scientific disciplines.
However, the statistical power to detect interactions is often undesirably low. One solution is to elevate the Type 1 error rate
so that important interactions are not missed in a low power situation. To date, no study has quantified the effects of this
practice on power in a linear regression model.

Methods: A Monte Carlo simulation study was performed. A continuous dependent variable was specified, along with three
types of interactions: continuous variable by continuous variable; continuous by dichotomous; and dichotomous by
dichotomous. For each of the three scenarios, the interaction effect sizes, sample sizes, and Type 1 error rate were varied,
resulting in a total of 240 unique simulations.

Results: In general, power to detect the interaction effect was either so low or so high at a= 0.05 that raising the Type 1
error rate only served to increase the probability of including a spurious interaction in the model. A small number of
scenarios were identified in which an elevated Type 1 error rate may be justified.

Conclusions: Routinely elevating Type 1 error rate when testing interaction effects is not an advisable practice. Researchers
are best served by positing interaction effects a priori and accounting for them when conducting sample size calculations.
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Introduction

Interaction effects are an important component of statistical

analysis in many scientific disciplines. Interactions, also referred to

as moderation or effect modification, answer the question of

whether the relationship between a predictor and outcome

variable depends on the value of some third variable [1,2]. As

an example, an epidemiologist may want to know whether the

effect of physical activity on body mass index (BMI) varies by age,

with age serving as the moderator. In this case, the two predictor

variables are continuous, but the effect can be generalized to other

cases, such as when one or both of the predictors are categorical.

An example of the latter would be when seeking to understand

whether the effect of statin use on cholesterol level varies

depending on whether someone is male or female. Thus, the

value of interactions lies in their ability to provide a more nuanced

picture of the primary relationship under investigation.

In a linear regression model, a basic interaction may be

expressed using the following form:

c~b0zb1xzb2zzb3xzze ð1Þ

In this equation, b3 represents the effect of the variable xz on c; xz
is the product of variables x and z. Variable z is said to moderate

the relationship between x and c when b3 is statistically significant

[1,2]. We may alternatively say that variable x moderates the

relationship between z and c. Whether variable x or z serves as the

moderator in equation 1 should be determined a priori; there is no

statistical difference in selecting one or the other. This basic model

can be extended to include multiple interactions or interactions

involving three or more variables.

Because the focus is on statistical significance, the ability to

detect interactions is intimately tied to the power of that test.

Power is the probability of rejecting a false null hypothesis. Prior

research has shown that statistical power to detect interactions is

lower than for main effects (i.e., the relationship between x and c,

and z and c) for a variety of reasons. For example, unreliability of

measurements (i.e. measurement error) is widely known to weaken

the observed association between an independent and dependent
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variable. This is compounded in the interaction term, since its

reliability is the product of the reliability of the lower order

variables [3,4]. Also, when study participants are not representa-

tive of the underlying population due to nonrandom sampling, the

variance of measures may be reduced relative to the true level in

the larger population [3–5]. The restricted variance of measures

makes it more difficult to identify significant interactions, since like

measurement error it is compounded in the interaction term.

Other reasons power to detect interaction effects is lower include

uneven sub-group sample sizes when one or both of the predictors

involved in the interaction term is categorical and the fact that

interaction effect sizes are likely smaller than main effect sizes,

since it is well known that smaller effects require larger sample

sizes to detect [2–6].

The decrease in power to detect interaction effects can be quite

dramatic. A study by Brookes et al simulated the power to detect

interaction effects (i.e. subgroup effects) in clinical trials [7]. As

with many other analyses, clinical trials are frequently not powered

a priori to detect interactions. For a trial powered at 80% to detect

main effects, the power to detect an interaction effect the same size

as the main effect was only 29%. For an interaction effect one-half

the size of the main effect, power was closer to 10%. A trial’s

sample size would have to be increased by a factor of 16 in order

to have power to detect an interaction equivalent to the power to

detect the main effect, assuming an interaction effect size is one-

half as large as the main effect size. This study makes clear that

underpowered interaction tests pose a serious problem, greatly

increasing the risk of incorrectly concluding that no interaction

effect exists when in reality it does.

The best recommendation for dealing with decreased power to

detect statistical interactions is to plan for interaction testing

during the study development phase, and based on expected effect

sizes and other parameters noted above, collect data on a sufficient

number of observations to have the desired power to detect a true

effect [2]. Of course, sample size calculations may indicate the

need for more participants than one has the resources to collect

data on. Further, new questions involving interactions not foreseen

by the study planners may arise in the course of secondary analysis

of an existing dataset. The original design may only have been

sufficiently powered to detect main effects.

So for these reasons, a researcher may be forced to deal with

insufficient power to detect an interaction with no way to add more

observations. What then, are they to do? One approach is to simply

ignore the issue of power and proceed as planned. However, this

risks missing an important true interaction simply due to low power.

An alternative approach is to raise the Type 1 error rate [2,3,8]. This

approach has been recommended for both primary and secondary

research, such as when conducting statistical tests of heterogeneity in

a meta-analysis [9]. Type 1 error refers to incorrectly rejecting a true

null hypothesis, and is linked to significance levels (a) in that the latter

is the long-run probability of making a Type 1 error (i.e. Type 1 error

rate). Due to the relationship between Type 1 error and power,

utilizing a higher Type 1 error rate necessarily results in increased

power. Though it does not appear to be standard practice, it is not

unusual to find studies following this procedure, in some cases

elevating the Type 1 error rate to as high as 20% [10–13]. This

approach represents a tradeoff in which researchers are increasing

the probability of detecting a true interaction, while simultaneously

increasing the probability of accepting an interaction that is in reality

spurious. The theoretical importance of detecting an interaction

may be sufficient to justify that tradeoff. While the researcher must

ultimately make this decision, balancing Type 1 error and power

may be best suited for exploratory work where the aim is to generate

new hypotheses for future study, rather than for something like an

efficacy trial, where the goal is not so much to generate hypotheses as

test and confirm or disconfirm them [14].

However, as Marshall has pointed out, raising Type 1 error rate

to increase power can be problematic, depending on what the

current level of power is at the nominal level of significance [8]. If

a study already has sufficient power to detect an interaction, then

raising Type 1 error rate will do nothing other than increase the

likelihood that inconsequential interactions are accepted and

incorporated into the statistical model. This could be especially

problematic in large models with many predictors, and thus many

possible two-way, three-way, etc. interactions. Conversely, if

power at nominal levels is already compromised, then raising

Type 1 error rate may only make a bad situation slightly better,

though still not sufficient, at the cost of a higher probability of

committing Type 1 errors.

Despite this, there may be a middle ground in which raising the

Type 1 error rate results in an acceptable tradeoff between

increased statistical power and higher Type 1 error rates. These

would be samples that are marginally powered to detect an

interaction at nominal significance levels; boosting that level may

provide a meaningful gain in power to detect what the researcher

believes to be an important interaction effect.

Marshall has previously conducted an analysis in which he

identified these three scenarios for case-control logistic regression

analyses in order to provide a rough guide as to which situations

might warrant raising Type 1 error rates [8]. Given the

commonplace role of linear regression estimated using ordinary

least squares in data analysis, researchers may find it useful to

understand the equivalent scenarios for these models. Therefore

the aim of this paper is to identify which combinations of variable

types, effect sizes and sample sizes warrant consideration of

increased Type 1 error rates in order to have sufficient power to

detect a statistical interaction in a linear regression model with a

continuous dependent variable.

Methods

Power was examined using a Monte Carlo simulation. By

repeatedly generating and analyzing numerous samples of data, a

simulation can provide insight into the behavior of estimators or

statistics of interest in finite samples. A simulation study follows

several steps [15,16]. First, we generate a ‘‘population’’ of a

specified size. Second, for this population, we generate two

variables x and z drawn randomly from the standard normal

distribution, and compute their product to form the interaction

term xz. Third, we generate an error term e drawn randomly from

the standard normal distribution representing the stochastic

component of the regression model. This error is the difference

between the average value of c in the population with given values

of x and z and an individual’s true value of the dependent variable,

assuming the same values of x and z. Fourth, a true dependent

variable c is generated using formula 1, where b3 is the difference

in slope between two levels or values of the moderating variable.

That is, b3 represents the effect size of the interaction we seek to

detect; e is the stochastic error generated by the previous step.

Fifth, we regress true c on x, z and xz and store the p-value

associated with the interaction term. We repeat the last three steps

for a total of 10,000 replications. The percentage of p-values that

are less than our a priori Type 1 error rate is our empirical power,

because we have constructed our synthetic dataset in such a way

that there is truly a non-zero relationship between xz and c. Recall

that power is the probability of rejecting a false or incorrect null

hypothesis. It should be noted that analytic equations exist for

calculating power (or sample size) in this context, and depending
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on circumstances may be more straightforward than programming

a simulation. Interested readers should see Dupont and Plummer

(1998) [17]. For the scenarios considered here, the analytic and

simulation approaches yielded largely equivalent results, particu-

larly with larger sample sizes.

We vary the Type 1 error rate, sample size, independent

variable type, and effect size associated with the interaction term,

resulting in a total of 240 distinct simulations. The exact

parameter values used can be seen in table 1. The values of

b0,b1 and b2are set to 1, without loss of generality. The data

generating process assumes that all variables are measured without

error and the predictors and the random error are uncorrelated

with each other. In constructing the interaction terms, three types

of variable combinations were examined: continuous by contin-

uous, continuous by dichotomous, and dichotomous by dichoto-

mous. Continuous variables were specified to follow the standard

normal distribution, while dichotomous variables were also

standard normal variables subsequently dichotomized such that

there was an approximately equal split of the sample into each

category. Our choice of effect sizes are derived from a simulation

study of power to detect mediation effects by Fritz and

MacKinnon, who in turn based their effect sizes on Cohen’s

small, medium and large effect size criteria [18]. It should be noted

that our use of standardized coefficients in this simulation study

does not constitute an endorsement of their use in practice. They

have been criticized for many reasons, and without careful

attention will result in difficult-to-interpret interaction effects when

generated automatically by statistical software packages [1,19–21].

We use them here because they provide a way to make our

simulation results as generally applicable as possible. Whether an

effect size is large or small should ultimately be based on a careful

understanding of the substantive area of research.

Following the procedures of Marshall, we defined a useful gain

in power (i.e. a gain in power sufficient to justify the higher Type 1

error rate) as a relative increase in power of at least 10% when

going from a 5% to 20% Type 1 error rate; power had to be at

least 80% at the 20% error rate. Power of 80% was chosen to be

consistent with research norms; this differs from Marshall, who

required power of 70%. The 10% relative increase requirement

was chosen to avoid having interactions marginally powered at the

5% Type 1 error rate (e.g. 75% power) that subsequently achieve

80% or slightly higher power at the 20% error rate be classified as

achieving a useful gain. Such a small gain, while ultimately

achieving 80% power, is likely not sufficient to justify the risk

associated with the elevated Type 1 error rate. Analyses were

conducted in Stata 12.1 (StataCorp, College Station, TX) based

on methods outlined by Feivson (2002) and Arnold (2011).

Complete Stata syntax to run the simulations is available from the

author upon request.

Results

As a check on the accuracy of our simulations, we first ran

models in which the effect size for the interaction term was set to

zero. If the simulation is functioning properly, then the estimated

power should be equivalent to the Type 1 error rate, within

sampling error. All results met this criterion, verifying the

simulation procedures (data not shown).

Continuous by continuous
Monte Carlo simulation results for the continuous by contin-

uous interaction are shown in Figure 1. Only two combinations of

effect and sample sizes showed any promise for elevating the Type

1 error rate from 5% to 20%. At an effect size of 0.39 and sample

size of 50, power increased by 26%. However, 80% power could

be achieved by raising the error rate to only 10%. At an effect size

of 0.14 and sample size of 300, power increased by 33%. Power of

80% could be achieved by raising the error rate to 15%. Of the

remaining 18 sample and effect size combinations, eight never

achieved acceptable power, while 10 were already sufficiently

powered at a Type 1 error rate of 5%.

Continuous by dichotomous
For the continuous by dichotomous interactions (Figure 2), three

effect and sample size combinations appeared to justify the

increase in Type 1 error rate. At an effect size of 0.39 and sample

of 200, power increased by 18%, though this was almost

sufficiently powered (79%) at the 5% level. At a sample size of

300 and effect size of 0.26, power increased by 36%. A similar

Table 1. Parameters set to vary across simulations.

Parameter Varying Values

Type 1 error rate 5%, 10%, 15%, 20%

Sample size 50, 200, 300, 500, 1000

Interaction effect size (b3) 0.05, 0.14, 0.26, 0.39

Interaction variable combinations Continuous by continuous; Continuous by dichotomous; Dichotomous by
dichotomous

doi:10.1371/journal.pone.0071079.t001

Figure 1. Power curves for an interaction of two continuous
variables.
doi:10.1371/journal.pone.0071079.g001
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increase in power was noted for a sample size of 1000 and effect

size of 0.14. Of the 17 remaining sample and effect size

combinations, 12 never achieved sufficient power, and five had

adequate power at the 5% level.

Dichotomous by dichotomous
Finally, for the dichotomous by dichotomous interactions

(Figure 3), only for the sample size of 500 and effect size of 0.39

was there a useful gain in power of 37%. For the 19 remaining

combinations, 18 never achieved sufficient power, while one was

sufficiently powered at 5%.

Discussion

The goal of this analysis was to determine whether there were

any situations in which raising the Type 1 error rate would lead to

a useful gain in power to detect interaction effects in linear

regression models. Of the 60 combinations of interaction type,

effect size and sample size, we found only six scenarios that could

be called the ‘‘middle ground’’ mentioned in the introduction, in

which heightened ability to detect an effect may justify the risk

assumed when elevating the Type 1 error rate. For the most part,

power was either so poor or so good at the 5% level that raising

the error rate made no meaningful difference besides increasing

the possibility that spurious interactions would be accepted. As

Marshall found for logistic regression models, so too do we find

that elevating the Type 1 error rate as a routine matter of practice

when testing interactions is probably not advisable. Researchers

would be best served by taking these results as a general guide,

followed up with power calculations specific to their sample size,

expected effect size, and the other factors known to impact power.

Only then can an informed decision be made about whether

increasing the Type 1 error rate is justified.

Two other important points should be made. First, given how

low power was, even at an elevated level of statistical significance,

for many scenarios, a researcher’s failure to detect an interaction

effect does not necessarily mean the effect does not exist [3]. The

test simply may have lacked power. While this statement is true for

any probabilistic test, it is particularly true for interactions, since,

as noted in the introduction, power is lower for interactions than

main effects to begin with. Therefore, under one of the many low

power scenarios, interactions may still be incorporated into models

despite statistical insignificance if there is strong a priori reason

stemming from theory or previous research to include them.

Second, it is interesting to note how severely power is

compromised when the interaction term is made up of one or

two dichotomous variables as compared to when both variables

are continuous. This can be seen in the shift down and to the right

in the power curves for the latter two interaction types (figures 2 &

3). This should not be surprising, as many authors have noted the

loss in power (among other problems) associated with turning a

naturally continuous variable into a categorical one [6,22–24].

Under the two dichotomous variable scenarios, power is so

diminished that even the elevated Type 1 error rate does nothing

to help except for the very largest effect size in the sample size of

500. Our results serve as yet another reminder that under most

circumstances, continuous variables should remain that way.

Strengths
A major strength of this paper is the range of scenarios we

considered. By examining different combinations of variable types,

effect sizes, sample sizes, and Type 1 error rate, we have captured

numerous situations that applied researchers may expect to

encounter, thus increasing the usefulness of our results. Another

strength is the use of a Monte Carlo simulation study. Instead of

relying on the asymptotic properties of formulas to calculate

power, we have determined it empirically. This is especially useful

given the small sample sizes of some of the scenarios we have

considered.

Limitations
While we have examined many interaction scenarios, our

treatment was not comprehensive. We did not include any three-

way or higher order interactions, more than one interaction per

model, categorical variables with more than 2 categories, or

ordinal variables. By necessity, we made many assumptions about

the data generating process, including that all continuous variables

were normally distributed, dichotomous variables were a perfect

50–50 split, and predictor variables were uncorrelated and

measured without error. Deviations from this specification could

impact power. Finally, our criteria for a useful gain in power were

subjective and may not be appropriate in all situations; different

criteria may result in different conclusions.

Figure 2. Power curves for an interaction of continuous and
dichotomous variables.
doi:10.1371/journal.pone.0071079.g002

Figure 3. Power curves for an interaction of two dichotomous
variables.
doi:10.1371/journal.pone.0071079.g003
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Conclusions

When testing interaction effects in linear regression models,

there are likely few circumstances in which raising the Type 1

error rate results in a gain in power that may be sufficient to justify

the potential acceptance of spurious effects. While power is always

best addressed prior to undertaking a study, researchers utilizing

existing datasets may use these results to guide a thoughtful

discussion of whether it is appropriate to use an elevated Type 1

error rate to test interactions in their own statistical models.
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