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ABSTRACT

Precise identification of correct exon–intron bound-
aries is a prerequisite to analyze the location and
structure of genes. The existing framework for ge-
nomic signals, delineating exon and introns in a ge-
nomic segment, seems insufficient, predominantly
due to poor sequence consensus as well as limita-
tions of training on available experimental data sets.
We present here a novel concept for characterizing
exon–intron boundaries in genomic segments on the
basis of structural and energetic properties. We an-
alyzed boundary junctions on both sides of all the
exons (3 28 368) of protein coding genes from human
genome (GENCODE database) using 28 structural
and three energy parameters. Study of sequence
conservation at these sites shows very poor consen-
sus. It is observed that DNA adopts a unique struc-
tural and energy state at the boundary junctions.
Also, signals are somewhat different for housekeep-
ing and tissue specific genes. Clustering of 31 pa-
rameters into four derived vectors gives some ad-
ditional insights into the physical mechanisms in-
volved in this biological process. Sites of structural
and energy signals correlate well to the positions
playing important roles in pre-mRNA splicing.

INTRODUCTION

Discovery of eukaryotic genes as discontinuous structures,
with protein-coding segments or exons disrupted by non-
protein coding segments or introns, was one of the most
unanticipated findings in molecular biology (1), whose mys-
tery is yet to be solved fully. In fact, identification of genes
with correct exon–intron architecture is one of the hardest
problems in eukaryotic genome annotation. The key sig-

nals used for this purpose are the splice-site (SS) sensors
which conventionally include a G–T sequence signal at the
5′SS (+1/+2 position at the 5′ end of intron) and A–G se-
quence signal at the 3′SS (last two positions at the 3′ end
of intron). There exists a plethora of sequence variations
at these sites, considering that thousands of different se-
quences act as naturally occurring splice sites in the hu-
man transcriptome (2), along with many variably located
cryptic SSs (3). This greatly reduces the accuracy and fi-
delity of SS sequence signals for the identification of precise
exon–intron boundaries, and the situation becomes more
challenging in the wake of alternative splicing happening
so prevalently in eukaryotes (4). The exact locations of the
exon–intron boundaries are crucial not only for defining the
encoded amino acid sequence but also for understanding
the molecular mechanism underlying the regulation of pre-
mRNA splicing, which is fundamental to understand gene
expression and is of great medical relevance as at least 15%
of human genetic disorders and many diseases are caused
by aberrant pre-mRNA splicing (5).

Over the years, computational methods have emerged
as a major force in fast and accurate characterization of
genes/genomic segments. Some algorithms have been de-
veloped which determine a splice site based on a score cal-
culated by measuring its concordance to matrices built us-
ing large collections of splice sites (6–9). Earlier gene pre-
diction tools like Genscan, Genomescan combine exon–
intron and splice signal models with similarity to known
protein sequences in an integrated mode for gene predic-
tions (10–12). Some other important tools like Genewise,
Genomewise (13), Augustus (14), Fgenesh (15), GeneParser
(16), GeneID (17) are ab initio gene prediction tools which
have been developed using various programming models
(Dynamic or Hidden Markov Model) on sequence infor-
mation for functional signals including splice sites. These
methods have been developed on huge training data and
performance is high for a species/organism but for a naı̈ve
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genome/genomic fragment, it decreases considerably. Some
currently available splice-junction prediction tools identify
exon–intron boundaries in mRNA sequences, for organisms
with reference genome (18–21) as well as without a reference
genome (22), but these tools are unable to annotate splice
junctions in DNA sequence. Recently, role of chromatin
organization and nucleosome positioning as determinant
of exon–intron boundary was also investigated; though it
looks at the problem with a new angle, satisfactory level of
sensitivity and specificity could not be achieved (23). De-
spite the many insights resulting from such studies over the
years, it is apparent that our conceptual frameworks are not
adequate yet. New ideas and models are needed for identi-
fication of splice sites in genome sequences.

So, if the discriminatory signals for exon–intron bound-
aries are not uniformly present in the corresponding se-
quence, where to look for such signals? It is a well-
known fact that DNA in living cell is not a uniform lin-
ear macromolecule but displays local structural and en-
ergetic variations which have been found to facilitate in-
teractions with proteins and play a key role in several bi-
ological processes (24). The known structural biology of
B-form DNA advanced dramatically with the solution of
the crystal structure of the B-form oligonucleotide duplex
d(CGCGAATTCGCG) in 1981, indicating the first obser-
vation of sequence dependent structural heterogeneity at
the molecular level (25). Considerable subsequent efforts to
gather data pertaining to sequence effects on the structure,
during the last few decades, have led to revolutionary evolu-
tion in the analysis of nucleic acids structure (26–33). Many
studies over the years have found that similar sequences
may lead to similar structure and energetics, but reverse
is not true however, different sequences can lead to DNA
molecules with similar structure and energetic properties
(34–35). Do exon–intron boundaries too represent a similar
case where DNA attains a uniform and unique structural
and energetic state, despite the presence of huge sequence
variations, at these sites? But why would DNA structure
and energetics change at exon–intron boundaries as splic-
ing is an affair between pre-mRNA and spliceosome (a dy-
namic macromolecular machine composed of five small nu-
clear RNAs, associated polypeptides and many other pro-
tein factors) and there is never a direct interaction between
spliceosome and DNA and so, this idea initially seemed
unlikely. However, while carrying out literature survey, we
started getting clues. Some studies have shown that exons
have higher thermodynamic stability compared to introns,
untranslated regions (UTRs) and intergenic regions, (36–
37). Though these studies do not investigate the energet-
ics of splice sites, they indicate that exon–intron bound-
aries might show some signal depicting the transition in
thermodynamic property from exon to intron or vice versa.
Further, a large number of evidences have shown that pre-
mRNA splicing is pre-dominantly co-transcriptional (38–
41). Evidences exist for kinetic coupling (42–44) as well as
physical and mechanistic coupling (45–46) between tran-
scription and splicing. These studies are indicating an indi-
rect link between DNA template and splicing. Do structure
and energetics of DNA template at exon–intron boundaries
offer some mechanisms to regulate both–the elongation rate

of pre-mRNA as well as splicing of upstream intron, or, are
they offering some platform to physically/mechanistically
link the RNA polymerase II and spliceosome? Before go-
ing any further in this direction, it became imperative that
the structural and energetic behavior of exon–intron bound-
aries be investigated. Since these signals do not manifest di-
rectly in the sequence itself, previous studies pertaining to
sequence analysis of exon–intron boundaries (6–17) do not
offer information regarding the structure and energy signals
of boundary junctions.

Over the years, some very remarkable methods have be-
come available for the analysis of nucleic acids structure
(26–33). During the last 15 years, we have also made some
significant efforts to understand the DNA language in terms
of its energetics and structure (47–55). For the present study,
we proceeded by downloading all the exons (3 28 368) from
protein coding genes of human genome from GENCODE
database and obtained the genomic coordinates of exon-
start and exon-end position. Using these genomic coor-
dinates, two boundary sequences datasets were prepared-
Dataset I and Dataset II, each having 3 28 368 sequences
of length 401 nucleotides (detail in method section). These
boundary sequences were subjected to structural and en-
ergetic characterization using 28 structural and three en-
ergy parameters. To obtain numeric values of conforma-
tional parameters for the unique di-nucleotides steps, we
downloaded the crystals structures of B-DNA from Nucleic
Acids Database (NDB) (55) and applied the Curves+ web-
server (31) on these structures for the same. In-house pro-
grams were used for calculating the energy parameters (53).
Here, we report that these parameters provide unique struc-
tural and energetic signatures at SS junctions and the in-
formation for these signatures is in-built in their sequences.
Our results offer a whole new paradigm for understanding
pre-mRNA splicing which can go a long way in understand-
ing regulation of eukaryotic gene expression.

MATERIALS AND METHODS

Boundary sequence dataset

Genome annotation file of human genome was downloaded
from GENCODE database and from this, all the exons
(3 28 368) from protein coding genes were extracted, and
for each exon–exon-start and exon-end genomic coordi-
nates were taken out. Using these genomic coordinates, two
datasets for boundary sequences were prepared: Dataset I
and Dataset II. Dataset I was prepared by extracting 401
nucleotides, spanning 200 nucleotides upstream and down-
stream, with respect to the exon end position, taking it as
‘0’; these sequences, each of length 401 nucleotides, repre-
sent exon sequence from −200 to 0 and intron sequence
from +1 to +200. Likewise, Dataset II was prepared with
respect to exon start position (the sequences here represent
intron sequence from −200 to −1 and exon sequences from
0 to +200). In this way, each dataset has 3 28 368 sequences,
of length 401 nucleotides each. As control dataset (Dataset
III), we extracted 30 140 sequences of length 401 nucleotides
from the middle of exons, which are >1000 nucleotides long
(www.scfbio-iitd.res.in/chemgenome/intron exon).

http://www.scfbio-iitd.res.in/chemgenome/intron_exon
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Parameters for characterization of genomic sequences

We have used 28 structural and three energetic param-
eters. The structural parameters include––nine backbone
(Alpha, Beta, Gamma, Delta, Epsilon, Zeta, Chi, Phase
and Amplitude), eight inter-BP (Shift, Slide, Rise, Tilt, Roll,
Twist, H-Rise and H-Twist), six intra-BP (Shear, Stretch,
Stagger, Buckle, Propel and Opening) and five BP-axis (X
Displacement, Y Displacement, Inclination, Tip and Axis-
Bend) parameters. The values of these parameters were
calculated by applying Curves+ webserver (44) on 74 B-
DNA crystal structures obtained from NDB database (Sup-
plementary Table S1.1) (55). After calculating values for
all the parameters for each B-DNA structure, all occur-
rences of unique 10 di-nucleotide steps in the 5′ to 3′ di-
rection were considered for each parameter and the aver-
age of all the occurrences were calculated. Proper meth-
ods were used for the statistical analysis of angular values
(56–58).

The energy parameters include- hydrogen bond energy,
stacking energy and solvation energy. The values for these
three energy parameters for the unique 10 di-nucleotide
steps was done as reported in our previous work (53).

The numeric values, of all the 30 parameters, for the
unique di-nucleotides steps, obtained above are provided in
supplementary Table S1.2. All the numeric conversions of
the present study were made according to this table.

Obtaining the structural and energy numeric profile of each
sequence

The calculated di-nucleotide values for each parameter
(from Supplementary Table S1.2) were used for getting nu-
meric profile of each sequence of all the three datasets by
performing moving average calculation on a sliding window
of 25 bp covering 24 di-nucleotide steps (the first element of
the moving average is obtained by taking the average of the
initial first 24 di-nucleotide steps then the window is shifted
forward, excluding the first number and including the next
set of 24 di-nucleotide steps) (selection of the 25-bp win-
dow size was based on initial screening of sample data with
window sizes of 15, 20, 25 and 30). The same exercise was
performed independently on all the selected sequences for
all the 31 parameters. In this way, 31 numeric profiles were
obtained for each of the 3 28 368 sequences, for both the
datasets: Dataset I and Dataset II. Likewise, all sequences
of Dataset III (CDSs) were also subjected to numeric pro-
file generation; 31 numeric profiles were generated for each
sequence. [The term ‘Profile’ here is used for the unique
set of numeric values for each nucleotide position (from
−200 to +200, through 0) along the length of the sequence.]
Data is available in raw csv format as supplementary
file 2.

Normalization of values

To bring all the parameters on the same scale, the values
were made dimensionless using normalization. The values
were normalized between 0 and 1 by subtracting the mini-
mum value of the profile from each value and then by divid-
ing the value with the range of the profile (i.e. max – min).

Error analysis of data

The standard error of the mean at each position from −200
to +200 for all the parameters was calculated by dividing
standard deviation of values at that position divided by
square root of total number of observations. The standard
error along with mean value is presented in Supplementary
Figure S1.1a–e and S1.2a–e as shaded error bars.

Profile plotting of sequences

The plotting was performed using MATLAB software.

Examining the observations on individual sequences

To examine the generality of observations on individual se-
quences of Datasets I and II, following methodology was
used.

For sequences of both datasets, for each parameter, a vec-
tor of 61 residues in length (spanning −30 to +30 through
0) was taken and was named as junction vector. To gener-
ate the CDS vector (as control, for comparison), for every
position in the junction vector, a relative position towards
the exon region was mapped at 150 residues away from it.
For Dataset I (exon from −200 to 0 and intron from +1
to +200) the control vector was upstream of junction vec-
tor while for Dataset II (intron from −200 to +1 and exon
from 0 to +200) control vector was downstream of junc-
tion vector. Then for every pair of junction vector and cor-
responding CDS vectors, the area enclosed by them was cal-
culated. Logic is that, those pairs of junctions and CDS vec-
tors where area enclosed by them is small (<2 standard de-
viations from the mean) will be indistinguishable, whereas
vice versa is true for pairs having area greater than this
value. Thus, sequences which qualified the threshold crite-
ria of (mean – 2 × standard deviations) for the area cal-
culated, were selected as having significant junction signals
and those not meeting the threshold criteria were consid-
ered as sequences not having the signal. Formulas for cal-
culation of area under the curve and optimization process
of threshold values are given in supplementary methodol-
ogy S1.1a, b and Supplementary Figures S1.3–S1.4.

Signals in housekeeping genes and tissue specific genes

In order to compare the signals, at splice junctions, of
housekeeping genes with those of tissue specific genes, we
obtained the complete list of 53 exons from 11 housekeep-
ing genes (59) and 141 exons from 11 tissue specific genes
(top 6 brain specific and top 5 liver specific genes) (60). With
respect to the exon start and end position in each case, 200
nucleotides were extracted from each side from the corre-
sponding genomic sequence, as explained earlier, to prepare
two datasets for both housekeeping genes (Dataset HK I
and Dataset HK II) and tissue specific genes (Dataset TS I
and Dataset TS II). Plotting was done as explained earlier.

Clustering the data into sets of few plots

To simplify the data to facilitate a better interpretation, the
data of 31 plots for both the Datasets were clustered into a
set of a few plots. Data were sorted out by the value near
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position −25, identified as having positive or negative val-
ues (and slopes). Five parameters (Y-displacement, Open-
ing, Delta, stacking energy and Solvation energy) did not
match these profiles and so were eliminated. Rest 26 param-
eters were clustered in two groups, based on the value near
−25 position. Group I represents those parameters which
exhibited an increase near −25 position and included 13
parameters-Stretch, Rise, Tilt, Roll, Twist, H-rise, H-twist,
beta, Gamma, Epsilon, Phase, Amplitude, Hydrogen Bond
Energy. While 13 parameters (X-displacement, Inclination,
Tip, ax-Bend, Shear, Stagger, Buckle, Propeller twist, Shift,
slide, alpha, Zeta and Chi) showed a decrease in value near
−25 position and were clustered together as group II. The
plots of these two groups for both the Datasets-I and II,
were generated by scaling each data set as follows: (data –
average(data)/(max(data) – min(data)).

RESULTS AND DISCUSSIONS

Numeric profiles of 31 parameters (28 structural and 3 en-
ergy) were obtained for pooled sequences of each dataset:
Dataset I (3 28 368 sequences), Dataset II (3 28 368 se-
quences) and Dataset III (30 140 sequences) (each sequence
of length 401 nucleotides). For this, for each parameter, nu-
meric profiles of all the individual sequences belonging to a
particular dataset were superimposed and average over all
numeric sequences for each position was calculated. In this
way, for each dataset, we obtained 31 average numeric pro-
files and these average profiles were then used for the plot-
ting purpose, with abscissa showing nucleotide position and
ordinate representing the numeric value of that parameter
(Supplementary Figures S1.1–S1.2a–e, parameter-wise plot
for the three datasets (Datasets I, II and III), showing the er-
ror bars too). To evaluate all the parameters on single scale,
values were normalized and all the 31 normalized param-
eters were plotted together on this new scale, for the three
datasets-Datasets I, II and III. (Figure 1).

It is clear from Figure 1 that for all the 31 parameters, a
unique pattern is observed from −50th to +25th position,
which is quite distinct from the corresponding upstream
and downstream regions, indicating a considerable change
in DNA structural and energetic properties at these loca-
tions. Figure 1a represents the signal obtained for Dataset I
(exon sequence from −200 to 0 and intron sequence from
+1 to +200), showing the parameter profile as we move
from exon to intron while Figure 1B represents the profile of
Dataset II (intron sequence from −200 to −1 and exon se-
quence from 0 to +200) as sequence transitions from intron
to exon. It is quite notable that though change in values of
each parameter starts happening from around −50th posi-
tion, the pattern of change is quite unique for each param-
eter for both the datasets; for some parameters, values in-
crease initially followed by sudden decrease and the reverse
for others. On the other hand, the plots of CDSs (Dataset
III), as shown in Figure 1C, come as straight lines, with
no changes occurring anywhere across the entire length of
sequence (parameter wise value is given in Supplementary
File S2). This clearly suggests that DNA undergoes a dis-
tinct change in its structure and energy as it transitions from
exon to intron and vice versa while no such change occurs
across the length of CDS.

Since Figure 1 is an average plot of all the sequences of a
particular dataset, it becomes imperative to know the gen-
erality of this observations across the individual sequences.
Using the methodology as explained in method section, it
was observed that for both the datasets, the signal for each
parameter, at positions ‘−30 to +30’ was observed in >95%
of the sequences (detailed results are available in Supple-
mentary Table S1.3 and S1.4). A distribution plot of area
calculated for every pair of junction vector and CDS vector
(3 28 368) is not feasible, with such a large data. The ob-
servation of structural and energy signals on such a large
percentage of data led us to investigate the situation at se-
quence level too. We wanted to know whether at these po-
sitions (i.e. −30 to +30) some consensus exists at sequence
level or not. For this, sequences within each dataset (Dataset
I and Dataset II) were aligned from −30 to +30 positions
and consensus was observed using WebLogo3 software (61)
(Figure 2).

It is very clear from Figure 2 that for both the datasets,
some consensus is observed only at positions ‘from −5/4 to
+6/7’, whereas for rest of the positions, there is no consen-
sus. The results are clearly indicating towards the universal-
ity of structure and energy signals compared to sequence
signals for splice site identification. The presently available
methods (6–17) for splice site predictions are predominantly
based on sequence information for various functional re-
gions at and near to the acceptor and donor splice site.
However, since the present study does not offer the design-
ing of a method/algorithm for splice site prediction (though
it is the eventual target of our study), rather represents the
first stage only (dealing with the identification and charac-
terization of structure and energy signals at splice sites), a
comparison with the existing methods for prediction is not
possible at this stage.

When signals at splice junctions were compared for
housekeeping versus tissue specific genes, comparatively
sharper and distinct signals were observed for housekeeping
genes (Figure 3A and C) than tissue specific genes (Figure
3B and D) (Figure 3).

Further, for both types of genes, signals were sharper
when sequences move from intron to exon (Figure 3C and
D) compared to exon to intron (Figure 3A and B). This ob-
servation can lead to some deeper insights into the role of
in-built designs of genes in gene expression, though it is dif-
ficult to comment further on this issue with the present set
of observations. Further studies are needed to give clear in-
sights on this aspect.

We attempted to understand our findings in the light of
existing mechanisms for pre-mRNA splicing. Two unique
spliceosomes coexist in most eukaryotes. We preferred the
most common mechanism involving U2-dependent spliceo-
some, ignoring the one with less abundant U12-dependent
spliceosome which is present in only a subset of eukaryotes
(62).

There are many cis-acting elements present on both sides
of splice junctions which play important role in spliceosome
assembly and splicing (Figure 4A). These include branch
site (BS), polypyridine tract (PYT), exonic and intronic
splicing enhancers (ESEs and ISEs) or silencers (ESSs and
ISSs). The BS is typically located 18–40 nucleotides up-
stream from the 3′SS while PYT is present variably between
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Figure 1. Average profiles for 31 parameters, obtained by plotting the normalized values, for (A) Dataset I (3 28 368 sequences, showing transition from
exon to intron as first half of the sequence, i.e. −200 to 0 is exon sequence while second half, i.e. from +1 to +200 is intron sequence). (B) Dataset II (3
28 368 sequences showing transition from intron to exon) and (C) Dataset III (30 140 coding sequences). The average profile for a given parameter was
obtained by superimposing numeric profiles of all the individual sequences belonging to a particular dataset and calculating the average over all numeric
sequences for each position. The ordinate represents the normalized values while the abscissa shows the nucleotide position.

Figure 2. Sequence consensus, as observed using WebLogo software, at positions ‘−30 to +30’ of 3 28 368 sequences, within each dataset, (A) Dataset I
and (B) Dataset II.
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Figure 3. Average profiles obtained for sequences of housekeeping (HK) and tissue specific (TS) genes: (A) Dataset HK I (53 sequences of length 201
nucleotides, exon sequence from −100 to 0 and intron from +1 to +100), (B) Dataset TS I (141 sequences of 201 nucleotides length, exon sequence from
−100 to 0 and intron from +1 to +100), (C) Dataset HK II (53 sequences of length 201 nucleotides, intron sequence from −100 to −1 and exon sequence
from 0 to +100), (D) Dataset TS II (141 sequences length 201 nucleotides, intron sequence from −100 to −1 and exon sequence from 0 to +100).

BS and 3′SS. Location and sequence of silencers and en-
hancers is highly variable.

To correlate these important sequence positions to the
corresponding state of DNA structure and energy, we
put a simplified structure and energy parameter plot (in-
volving 26 parameters only) just below it (as Figure 4B–
E) (details in method section). Further, to gain some in-
sights into the underlying correlations/anti-correlations
among these 26 parameters, position specific correlation
coefficients were calculated for the positions from −25
to −35, for both the datasets (Supplementary File S3)
and corresponding heat plots were also generated (Sup-
plementary Figure S1.5). For Dataset I, all the pairs ex-
hibited strong correlations/anti-correlations; correlation
coefficients values ranged from 0.911 (between Tilt and
Rise) to 1 (for the pairs of Buckle-Inclination, Propel-
Inclination, Propel-Buckle, Shift-Stagger, Slide-X-Disp.,
Delta-Gamma, Phase-Delta, Amplitude-H-bond energy,
X-Disp-Inclination, Tip-Ax-bend) while anti-correlation
coefficient values were observed in the range of −0.942
(for the pairs of Tilt-Tip, Tilt-Ax-bend) to −1 (for
the pairs of Stretch-Shear, Stagger-Stretch, Zeta-Gamma,
Zeta-Delta, Phase-Zeta, H-bond energy-Inclination, H-
bond energy-Propel). In Dataset II, moderate to high
level of correlations/anti-correlations were observed be-
tween various pairs of parameters, as evident from Sup-

plementary file S3; correlation coefficients values ranged
from 0.528 (between Rise and Tilt) to 1 (for the pairs of
Propel-Inclination, Beta-Inclination, Propel-Stagger, Beta-
Propel, Zeta-Slide, Gamma-Delta, Gamma-Phase, Delta-
Phase) whereas anti-correlation coefficient values varied
from −0.634 (between Rise-Slide) to −1 (for the pairs
of Gamma-X-Disp., Amplitude-Shift, Slide-Gamma, Slide-
Epsilon, Beta-H-rise, Gamma-Zeta, Zeta-Phase). Such an
observation opens up gates for understanding many under-
lying mechanisms governing DNA structure as well as the
purpose behind the changes in various structural parame-
ters at the intron-exon boundary junctions, definitely calling
for more research for further clarity. Some changes corrob-
orated well with the established facts like––the negative cou-
pling of two pairs of dihedral angles: epsilon-zeta (epsilon
increased while zeta decreased) (63) and alpha–gamma (al-
pha decreased while gamma increased (64), which are as-
sociated with change of DNA structure from canonical to
non-canonical state.

Spliceosome assembly occurs by the ordered interaction
of the spliceosomal snRNPs (small nuclear ribonucleic pro-
teins) and numerous other splicing factors (SF) (65–66). In
the first step, the 5′SS is recognized by U1 snRNP, the BS
by SF1, and the PYT by U2AF65 (SF). The BS and PYT
show poor sequence consensus while for the −3 to +6 region
of the 5′ SS, >9000 sequence variants have been recently
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Figure 4. Pictorial representation of a genomic fragment (5′ to 3′) showing positions of two splice sites: 5′SS (from exon to intron, first two positions of
intron are generally occupied by GT), and 3′ SS (from intron to exon, with last two positions of intron generally having AG sequence). The last 50 nucleotides
of intron have two important cis-acting elements: Branch-point (BS), generally located 18–40 nucleotide upstream of 3′SS and polypyrimidine tract (PYT)
between BS and 3′SS (A). Normalized values of 13 parameters showing increase near −25 positions in Dataset I (B) and Dataset II (C). Normalized values
of 13 parameters showing decrease near −25 position in Dataset I (D) and Dataset II (E). Position-wise frequency of four bases for a region of −25 to +25
with respect to each splice site for both datasets: Dataset I (F) and Dataset II (G).
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recorded (67). Our effort to find the nucleotide frequency at
individual positions, from −25 to +25 with respect to each
splice site, also revealed no significant consensus frequen-
cies for these positions (Figure 4F and G) (Position wise
frequency data is given in Supplementary File S4). What
then drives the initial identification of these three important
sites? Figure 4B–E indicate towards a unique structural and
energetic state of DNA at these positions which might act
as the identification signal for these sites. In recent times,
many studies have emerged which show that DNA struc-
tural and energetic properties greatly aid the targeting and
functionality of DNA-binding proteins in a wide variety of
ways (24,68).

In the second step of spliceosome assembly, the U2
snRNP joins BS by replacing SF1 (forms the A com-
plex), followed by subsequent joining of the U4/U6.U5
tri-snRNP (the B complex); extensive structural rearrange-
ments occur at this stage to activate the spliceosome. After
the rearrangements (where U1 and U4 snRNP leave the as-
sembly), the U6 snRNP directly interacts with 5′SS and U5
snRNP directly interacts with 3′SS. Since U6 and U5 are
linked, being part of tri-snRNPs, it brings 5′SS and 3′SS
in a juxtaposed orientation (activated B complex). It is fol-
lowed by first trans-esterification reaction at 5′SS, resulting
in formation of C complex where second catalytic reaction
occurs at 3′SS, resulting in release of intron and ligation of
exon ends. In the light of the results obtained in the present
study, it can be speculated that exact pattern of structural
and energy changes occurring at both ends of intron (Fig-
ures 1 and 4) might have some role to bring the two ends of
intron in juxtaposed orientation; more studies are definitely
needed to corroborate the fact.

The above results, undoubtedly, affirm the active role of
DNA structure and energetics at the SS junctions, though
from the present study it is difficult to interpret the exact
nature of their role. On further contemplation, a surge of
queries emerges. What type of structure and energy state
DNA adopts at SS junctions? Why is the DNA undergoing
such changes at SS junctions when it is not directly interact-
ing with spliceosome? How RNA polymerase II responds
to this change in template? Does splicing of pre-mRNA at
SSs is affected/stimulated by structure and energy states of
corresponding sites at template DNA, if yes then how? Nu-
merous evidences do exist for post-transcriptional mecha-
nisms of pre-mRNA splicing, but the role of DNA template-
based changes is unclear. Attempts to answer above ques-
tions would reveal fundamentally new insights into the reg-
ulation of gene expression. We plan to address some of these
questions in near future and anticipate that many new di-
mensions would be added by the scientific community in-
volved in similar work.

CONCLUSION

Structural and energy analysis of 6 56 736 genomic se-
quences, pertaining to exon–intron boundary sites (3 28
368 sequences of each type––exon to intron and vice versa)
clearly points to the existence of physico-chemical finger-
prints for these locations, irrespective of whether consen-
sus exists at sequence level or not. Identification of precise
splice sites in eukaryotic genes/genome annotation has re-

mained a big challenge till date because of poor sequence
consensus at these sites. Using the observations of present
study, we hope to develop an efficient algorithm/method for
splice site prediction. Existence of physico-chemical finger-
prints conveying the functional destiny of DNA sequences
has earlier been used for identification of many elements,
like promoters, operator/regulators as well as for different
classes of RNAs, in genome/genomic segments by many sci-
entific groups.
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