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ABSTRACT Protein folding is often considered the flux controlling process in pro-
tein synthesis and secretion. Here, two previously isolated Saccharomyces cerevisiae
strains with increased �-amylase productivity were analyzed in chemostat cultures at
different dilution rates using multi-omics data. Based on the analysis, we identified
different routes of the protein folding pathway to improve protein production. In
the first strain, the increased abundance of proteins working on the folding process,
coordinated with upregulated glycogen metabolism and trehalose metabolism,
helped increase �-amylase productivity 1.95-fold compared to the level in the origi-
nal strain in chemostat culture at a dilution rate of 0.2/h. The second strain further
strengthened the folding precision to improve protein production. More precise folding
helps the cell improve protein production efficiency and reduce the expenditure of en-
ergy on the handling of misfolded proteins. As calculated using an enzyme-constrained
genome-scale metabolic model, the second strain had an increased productivity of 2.36-
fold with lower energy expenditure than that of the original under the same condition.
Further study revealed that the regulation of N-glycans played an important role in the
folding precision control and that overexpression of the glucosidase Cwh41p can signifi-
cantly improve protein production, especially for the strains with improved folding ca-
pacity but lower folding precision. Our findings elucidated in detail the mechanisms in
two strains having improved protein productivity and thereby provided novel insights
for industrial recombinant protein production as well as demonstrating how multi-omics
analysis can be used for identification of novel strain-engineering targets.

IMPORTANCE Protein folding plays an important role in protein maturation and se-
cretion. In recombinant protein production, many studies have focused on the fold-
ing pathway to improve productivity. Here, we identified two different routes for im-
proving protein production by yeast. We found that improving folding precision is a
better strategy. Dysfunction of this process is also associated with several aberrant
protein-associated human diseases. Here, our findings about the role of glucosidase
Cwh41p in the precision control system and the characterization of the strain with a
more precise folding process could contribute to the development of novel thera-
peutic strategies.

KEYWORDS protein secretory pathway, protein folding precision, multi-omics
analysis, protein production, constraint-based modeling

The protein secretory machinery in eukaryal cells is a complex network involving
processes such as peptide translocation, glycosylation, protein folding, endoplas-

mic reticulum (ER)-associated degradation (ERAD), trafficking between the ER and Golgi
apparatus, and Golgi processing and sorting (1). In yeast, this machinery is responsible
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for the modification and maturation of more than 550 proteins (2) which are vital to
maintain cell function. High-fidelity protein folding is a crucial step in the secretory
pathway (1). Misfolded proteins, which can be caused by protein overproduction,
externally applied stresses such as heat or oxidative stress, or genetic factors such as
genetic mutations, transcription, or translation errors, are handled by the quality
control system to be either refolded or delivered to the proteasome for degradation
through ERAD (3). Without proper handling by this quality control system, accumula-
tion of misfolded proteins can be toxic to the cell. In humans, such accumulation can
cause a number of severe diseases, such as Alzheimer’s disease, Parkinson’s disease,
and type II diabetes (4). As a model eukaryal organism, the baker’s yeast Saccharomyces
cerevisiae is a good model to study the secretory pathway and unravel the mechanisms
related to these diseases (5). In addition, S. cerevisiae is also widely used as a cell factory
to produce recombinant proteins (6), including biopharmaceuticals and industrial
enzymes (7, 8). However, due to the complexity of the protein secretory machinery and
lack of a complete understanding of its underlying mechanisms, the utility of rational
strain engineering for the improvement of recombinant protein production has been
limited. Correspondingly, several random approaches and semirational approaches
have been performed (7), such as random mutagenesis coupled with high-throughput
screening (9), omics analysis-based strain engineering (10, 11), and mathematical
model-based strain engineering (12).

In previous studies (9, 13), we constructed the S. cerevisiae strain AAC, in which
�-amylase is expressed through a POT1 plasmid system, and used it as the original
strain for several rounds of UV radiation-based mutagenesis coupled with microfluidic
screening to isolate evolved strains with improved �-amylase production. Transcrip-
tional analysis of seven evolved strains cultured in batch fermentation revealed several
general rules for efficient protein production, such as an increased fermentation/
respiration ratio and tuning of amino acid biosynthesis and thiamine biosynthesis (14).
However, transcriptomic differences do not necessarily translate into proteomic differ-
ences, which better reflect the state of the protein secretory machinery in cells. Thus,
here we further studied the protein secretory pathway and specifically unraveled the
mechanisms in the evolved strains that lead to improved �-amylase production by
performing multi-omics analysis for two representative isolated strains, MH34 and B184,
as well as for the original strain, AAC. MH34 and B184 were sequentially isolated from
AAC (Fig. 1A), and whole-genome sequencing revealed that B184 inherited all 58 point
mutations of MH34 and obtained 30 more point mutations (9). A previous study
showed that the �-amylase yields of MH34 and B184 increased 1.21-fold and 4.04-fold,
respectively, in batch culture compared to the yield of AAC (14). To avoid bias caused
by differences in the growth rates of different strains and delays in protein synthesis, we
used steady-state chemostat cultures at two dilution rates as the culture conditions in
the present study. In addition, chemostat culture is also an important mode for

FIG 1 �-Amylase production of yeast strains in chemostat cultures. (A) Relationships among the strains
used in this study. All three strains were grown in chemostat cultures operated at dilution rates (D) of
0.1/h and 0.2/h. (B) �-Amylase productivity of strains in steady-state chemostat cultures. Data shown are
mean values � standard errors of the means of biological duplicates. DCW, dry cell weight.
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recombinant protein production in an industrial setting (15). We performed absolute
quantification of the proteome, transcriptome, and exo-metabolome for the three
strains grown at two different dilution rates in chemostat cultures. Through systematic
multi-omics analysis, we identified two different routes for improving protein produc-
tion.

RESULTS
�-Amylase productivity in chemostat culture. Previous work showed that a

higher specific growth rate was coupled to higher recombinant protein production in
chemostat cultures (16). In view of the maximum specific growth rates of these three
strains (0.276/h, 0.329/h, and 0.310/h for AAC, MH34, and B184, respectively) (14), we
cultured the strains at dilution rates of 0.1/h and 0.2/h. Compared with the reference
strain AAC, we found that the �-amylase productivity of MH34 and B184 was signifi-
cantly improved at both dilution rates (Fig. 1B), which is in agreement with the results
obtained for batch cultures (14). However, in batch culture, B184 produced �-amylase
with a 1.29-fold increase of yield and 47% increase of productivity compared with levels
for MH34. In contrast, in chemostat cultures, we found that the yield or the productivity
of B184 was only 14% greater than that of MH34 at 0.2/h and even 22% lower at 0.1/h,
which indicated the different mechanisms for improved protein production between
MH34 and B184 and the importance of specific growth rate on the regulation of the
mechanisms.

Cellular resource allocation revealed by quantitative multi-omics analysis. We
performed absolute quantitative proteome and transcriptome analysis for AAC, MH34,
and B184 grown in steady-state chemostat cultures at dilution rates 0.1/h and 0.2/h,
with measurement of 2,869 and 2,551 protein-transcript pairs, respectively. We found
that the correlation between protein and mRNA abundances is improved at 0.2/h (R2 of
0.50, 0.50, and 0.52 for AAC, MH34, and B184, respectively) compared to that at 0.1/h
(R2 of 0.37, 0.48, and 0.34, respectively) (see Fig. S1A to F in the supplemental material),
which could suggest that at a higher specific growth rate, cells coordinate transcription
and translation better to avoid redundancy or a shortage of transcripts, which helps to
reduce energy expenditure. We also annotated mRNAs and proteins based on the Yeast
Gene Ontology (GO)-Slim bioprocess mapper (17) and found that the proteome and
transcriptome fractions allocated to a specific process are better correlated (R2 of 0.66
to 0.78) (Fig. S1G to L) than individual proteins/transcripts.

Next, we analyzed the changes of specific bioprocesses in the proteome and
transcriptome and listed the processes changing significantly (P � 0.05) in MH34 or
B184 as revealed by proteome (Fig. 2) and transcriptome (Fig. S2) analysis. Out of 99
Yeast GO-Slim bioprocesses, 78 were upregulated or downregulated at the transcrip-
tome level, with a log2 fold change from �0.36 to 0.83. In the proteome, only 18
processes were differentially expressed, with the a log2 fold change from �0.82 to 1.55.
Clearly, the transcriptome is remodeled in a global manner but at a smaller scale, while
the proteome changes in a more specific manner that precisely impacts bioprocesses
related to protein production, including amino acid transport, vitamin metabolism,
protein modification, protein phosphorylation, and so on. The differences between
transcriptome and proteome showed the reserves in translational capacity of yeast (18).
Hence, we focused our analysis on differential expression at the proteome level
between the three �-amylase production strains.

Significant factors relevant to protein production. Since we observed differential
expression of the process of amino acid transport at the proteome level (Fig. 2), we
measured the amino acid uptake rates for 14 amino acids supplemented in our growth
medium, which was optimized for protein production (19) (Fig. 3A). The total amino
acid uptake rate for all strains was higher at 0.2/h than at 0.1/h, which means that it
correlates well with the specific growth rate. However, compared with the rate for AAC,
at both dilution rates the total uptake rate was low in MH34 and B184, which suggested
that amino acid uptake may not be a limiting factor for �-amylase production. The
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higher amino acid uptake rate but lower productivity in AAC at 0.1/h could indicate less
efficient metabolism in the strain, which was also revealed by previous work (14).

In addition to amino acid uptake, energy metabolism is also important for protein
synthesis and secretion (20). We next investigated the abundance of proteins involved
in carbohydrate transport and oligosaccharide metabolism, which were upregulated in
the high-�-amylase production strains (Fig. 2). The upregulated proteins mainly participate
in glycogen metabolism (Fig. 3B), which links carbohydrate metabolism to protein glyco-
sylation and folding via the production of UDP-glucose (21). �-Amylase is a glycoprotein
which carries one N-glycan, and UDP-glucose is a critical precursor of N-glycans, the
changes in composition of which act as a signal that guides the folding process for
glycoproteins. For example, when the N-glycan changes from Glc3Man9GlcNAc2 (G3M9) to
Glc1Man9GlcNAc2 (G1M9), the protein is better folded by relevant enzymes and chaper-
ones, and when it changes from Man8GlcNAc2 (M8) to Man7GlcNAc2 (M7), there is in-
creased targeting of the protein to ERAD for degradation (3). Thus, the upregulation in
glycogen metabolism is able to offer more available sugars, which could be recruited by
N-glycans, and store more sugars that are trimmed from N-glycans, which could support
the increased protein production in MH34 and B184.

Different from glycogen metabolism, trehalose metabolism showed differences
between MH34 and B184. The proteins in trehalose metabolism were upregulated
mainly in MH34 but not in B184 (Fig. 3B). Previous studies had shown that trehalose
exerts bidirectional effects on protein folding (22, 23). On the one hand, trehalose can
help to prevent folded proteins from denaturing and misfolded proteins from aggre-
gating. On the other hand, trehalose interferes with refolding of denatured proteins by
relevant molecular chaperones. Therefore, the upregulation of the trehalose cycle in
MH34 suggests a dynamic control of the trehalose concentration in the cell, which
could indicate that there are more misfolded proteins in MH34 than in B184.

To compare the fraction of misfolded �-amylase between the three strains, we
measured the intracellular �-amylase abundance and activity (Fig. 3C and D). We found

FIG 2 The differentially expressed biological processes (P � 0.05) in MH34 and B184 revealed by
proteome allocation. All proteins were allocated to the 99 Yeast GO-Slim biological processes. The
proteome fraction (gram/gram) for each process was used. The expression levels of processes in AAC at
0.1/h and 0.2/h were used as the respective references.
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that in MH34 the abundance was greater but the activity was lower than that in B184,
which means a higher fraction of misfolded �-amylase in MH34 than in B184.

We also investigated energy metabolism-related pathways, including glycolysis, the
tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and the pentose phosphate
pathway (PPP), at the proteome level (Fig. S3). With the increase of specific growth rate
from 0.1/h to 0.2/h, the abundance of glycolytic proteins in MH34 was increased while
the expression levels of other pathways were maintained. In contrast, in AAC and B184
the expression of multiple enzymes involved in energy metabolism pathways was
decreased. Specifically, the expression of proteins involved in glycolysis and the PPP

FIG 3 Overview of significant factors relevant to protein production. (A) Total amino acid uptake rates of strains in chemostat
cultures. Data shown are mean values � standard errors of the means of biological duplicates. (B) Differentially expressed
proteins (P � 0.05) related to glycogen and trehalose metabolism. The expression levels in AAC at 0.1/h and 0.2/h were used
as the respective references. (C) Relative intracellular �-amylase abundance of strains in chemostat culture. Data shown are
mean values � standard errors of the means of biological duplicates. (D) Intracellular �-amylase yield of strains in chemostat
culture. Data shown are mean values � standard errors of the means of biological duplicates. (E) The non-growth-associated
maintenance energy (NGAM) in chemostat cultures as calculated with help of the ecYeast8.3 model.
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decreased in AAC, while the expression of proteins involved in glycolysis, the TCA cycle,
and the PPP decreased in B184. Since protein production needs a considerable fraction
of energy in the overall cell metabolism (20), we assumed that the differences in energy
metabolism also reflected the differences in protein synthesis and secretion.

To test this hypothesis, we calculated the energy used for protein synthesis and
secretion based on a genome-scale metabolic model with enzyme constraints (ecY-
east8.3) (24). Energy used for protein production is a component of the non-growth-
associated maintenance energy (NGAM) in ecYeast8.3, which we found to be always
lower in B184 than in other strains (Fig. 3E). Especially compared with MH34, due to
their similar �-amylase productivity levels in chemostat, the low NGAM level in B184
indicated that B184 expended less energy than MH34 to produce the same amount of
correctly folded �-amylase, which was in line with the finding that the fraction of
misfolded �-amylase was greater in MH34 than in B184.

Regulation of N-glycans helps to increase the �-amylase yield. The overall
proteome allocation analysis revealed significant differences in protein synthesis-
associated processes in addition to energy metabolism (Fig. 2 and 3). We next focused
specifically on the protein secretory pathway, which involves more than 160 proteins
that are responsible for different posttranslational processes in yeast. A previous yeast
protein secretory model divided the secretory machinery into 16 subsystems (2). To
reduce the complexity, we merged subsystems with similar functions and simplified the
secretory pathway into 8 subsystems, including translocation, ER glycosylation, folding,
ER glycosylphosphatidylinositol (GPI) anchoring, ERAD, trafficking between the ER and
Golgi compartment, Golgi processing, and sorting. The components of each subsystem
are listed in Data Set S1.

Proteome analysis revealed the differences in protein glycosylation and folding
processes between strains. Since �-amylase is a kind of glycoprotein, the folding
pathway is directed by the change of the composition of its N-glycans (Fig. 4A).
Therefore, we further investigated the proteins involved to elucidate the specific
contributors in these strains.

Within the ER glycosylation process, there were more downregulated proteins in
MH34 than in B184 (Fig. 4B). Among them, Alg11p and Ost1p, which regulated the
synthesis of N-glycan (3), are downregulated at both dilution rates in MH34 but not in
B184. Correspondingly, within the folding process, the glucosidase Cwh41p, which
catalyzes the first step in N-glycan trimming and initiates the folding process (Fig. 4A),
was upregulated at both dilution rates in B184 and only at 0.2/h in MH34. On the other
hand, Pdi1p was the only protein in the folding pathway to be upregulated at both
dilution rates in MH34 (Fig. 4B). This is in line with its role in disulfide bond formation
during protein folding as well as in guiding misfolded proteins to ERAD (3). Previous
studies already reported that overexpression of PDI1 can increase �-amylase produc-
tion (10, 25).

To validate if the regulation of synthesis and trimming of N-glycans could increase
protein yield and cause the differences between MH34 and B184, we studied the role
of Cwh41p on protein production. First, we tested different promoters for overexpres-
sion. We overexpressed CWH41 under the control of either a strong promoter or the
CWH41 native protomer carried by a multicopy-number plasmid in AAC. We also tested
the overexpression of Rot2p, which catalyzes the second step in N-glycan trimming
(Fig. 4A). The �-amylase titer increased with overexpression of CWH41, particularly
when it was expressed under its native promoter, reaching a 40% increase in �-amylase
production (Fig. 4C). Interestingly, the final biomass was significantly increased in this
strain as well, which was rarely observed in previous engineering studies (10, 14, 26). In
general, the final biomass is most often lower in strains engineered to overproduce
recombinant proteins since increased protein production overloads the folding burden
of the cell, leading to accumulation of misfolded proteins and increased energy
expenditure in response to cell stress (27). One example is the overexpression of PDI1,
which increased �-amylase yield but decreased final biomass (10). Here, the increases
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in both �-amylase production and final biomass suggest that CWH41 overexpression
improves protein production without the accumulation of misfolded proteins. In other
words, CWH41 overexpression might lead to more precise protein folding, consistent
with the decreased fraction of misfolded �-amylase in B184.

A previous study reported that the overexpression of PDI1 under the control of the
TEF1 promoter resulted in a higher �-amylase yield than overexpression using its native
promoter (10). In the cases of CWH41 and ROT2, the native promoters led to better

FIG 4 The protein folding pathway. (A) N-Glycan-directed protein folding pathway. (B) Differentially expressed
proteins (P � 0.05) related to the ER glycosylation process and the folding pathway. The expression levels in AAC
at 0.1/h and 0.2/h were used as the respective references. (C) Promoter evaluation for overexpression of CWH41 or
ROT2 from plasmids. The plasmid pSPGM1 was used for gene overexpression. (D) �-Amylase titer, biomass, and
�-amylase yield of engineered strains in the background of strain AAC. (E) �-Amylase titer, biomass, and �-amylase
yield of engineered strains in the background of MH34. For panels C, D, and E, data shown are mean values �
standard errors of the means of biological triplicates. Statistical significance was determined by a two-tailed
Student’s t test. *, P � 0.05.
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results (Fig. 4C). Therefore, here we performed single-copy combinatorial overexpres-
sion in AAC with the superior promoter for each gene to further evaluate the role of
Cwh41p (Fig. 4D). The data showed that the overexpression of CWH41 itself did not
increase the �-amylase yield in AAC, but the combinational overexpression of PDI1 and
CWH41 did further increase the yield compared with that of overexpression of PDI1
alone, which could indicate that the increase in folding precision is more important for
strains with improved protein folding capacity. To further validate this, we engineered
strain MH34, which has an improved folding capacity compared to that of AAC. The
single-copy overexpression revealed that CWH41 itself can help to increase the
�-amylase yield by 27%, with a 43% increase in B184 under the same condition (Fig. 4E),
which is in line with the observation that overexpression of CWH41 helped to further
increase the yield in an AAC strain already overexpressing PDI1. For PDI1, the expression
level was already upregulated in MH34 (Fig. 4B), and overexpression therefore did not
result in a significant difference. In addition to the single-copy integration, multicopy
overexpression via plasmid in MH34 also showed that CWH41 can increase the
�-amylase yield (Fig. S4).

To further study the regulatory mechanisms of Cwh41p and Pdi1p, the mRNA
abundance, protein abundance, and translation propensity (protein abundance/mRNA
abundance [protein abundance/mRNA abundance is abbreviated as P/T]) were deter-
mined (Fig. 5). For Cwh41p, compared with AAC, at the transcriptional level there was
a limited increase in the evolved strains (less than 5% increase in B184 at 0.1/h and even
a decrease under the other three conditions), and at the translational level the
abundance significantly increased (over 100% increase in B184 at both dilution rates).
Thus, the increase in Cwh41p mainly depends on posttranscriptional regulation. For
Pdi1p, there was already a significant increase at the transcriptional level in the two
evolved strains, but the different levels of posttranscriptional regulation led to different
protein abundances (over 50% increase in the P/T value in MH34 at both dilutions and
a decrease in the P/T value in B184). Thus, the regulation of Pdi1p needs both
transcriptional and posttranscriptional regulation.

FIG 5 The mRNA abundance, protein abundance, and translation propensity (protein abundance/mRNA abundance) of
CWH41 or PDI1 of strains in chemostat cultures.
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DISCUSSION

In this study, we systematically analyzed the global differences among three S.
cerevisiae strains to identify potential mechanisms for improved �-amylase production
in the two evolved strains. In addition to the upregulated protein folding and protein
modification processes, which help the evolved strains produce more �-amylase than
the original strain, we also found significant differences between the two evolved
strains at the proteome and protein production levels. More proteins working on the ER
glycosylation process, such as Agl11p, Alg12p and Ost1p, were downregulated in MH34
than in B184 (27), and, correspondingly, MH34 produced a greater fraction of misfolded
�-amylase and thus needed to allocate more energy for protein production at both
dilution rates than B184. Further studies showed that the overexpression of CWH41 can
help MH34 increase �-amylase yield. Considering the role of Cwh41p in the protein
folding process and the importance of protein glycosylation to the folding process of
glycoproteins (28), we assumed that the overexpression of CWH41 decreased the
fraction of misfolded �-amylase in MH34 and thus increased the yield.

Examining the path from AAC to MH34 and then to B184 also reveals the precision
of protein folding as a novel target for improving recombinant protein production
through directed engineering. To date, efforts concerning the folding mechanisms to
improve protein production have primarily targeted folding capacity and degradation
of misfolded proteins (10, 29–31). Our study indicates that folding precision is another
important component in this process, and its improvement can lead to higher recom-
binant protein yield.

Here, we identified that the glucosidase Cwh41p plays an important role in protein
folding precision control, thus representing a valuable target that can be engineered
for improving recombinant protein production. Unlike Pdi1p, for which abundance
relies on both transcriptional and posttranscriptional regulation, Cwh41p mainly de-
pends on posttranscriptional regulation, which is in line with the promoter selection for
the overexpression of these two genes. The native promoter provided CWH41 with
better posttranslational regulation, and the strong promoter provided PDI1 with better
transcriptional regulation. The detailed regulatory mechanisms need further studies. In
addition, many human diseases caused by protein misfolding (4), including Alzheimer’s
disease, Parkinson’s disease, and type II diabetes, may benefit from further study of
glucosidase I (GI) (3), which is the mammalian homologue of Cwh41p, and its control
of protein folding precision as a possible target for new drugs to be used for treatment
of these protein misfolding diseases.

MATERIALS AND METHODS
Strains, plasmids, and primers. All strains, plasmids, and primers used in this study are listed in

Table S1 in the supplemental material. Plasmids for gene overexpression were constructed by insertion
of the gene fragment, which was amplified from the yeast genome by corresponding primer pairs and
then assembled with the expression vector pSPGM1 through the Gibson assembly method. The guide
RNA (gRNA) plasmid was constructed by recombining gRNA sequence-containing DNA fragments with
vector backbone through the Gibson assembly method. The standard lithium acetate (LiAc)/single-
stranded DNA (SS-DNA)/polyethylene glycol (PEG) method was used for yeast transformation.

Media and culture conditions. For strain constructions, yeast strains were grown in synthetic
dextrose-uracil (SD-URA) medium or yeast extract-peptone-dextrose (YPD) medium supplemented with
100 mg/liter nourseothricin at 30°C according to the auxotrophy or the resistance of the cells. For
�-amylase production in shake flasks, yeast strains were cultured for 72 h at 200 rpm at 30°C with an
initial optical density at 600 nm (OD600) of 0.1 in the SD-2�SCAA medium containing 20 g/liter glucose,
6.9 g/liter yeast nitrogen base without amino acids, 190 mg/liter Arg, 400 mg/liter Asp, 1,260 mg/liter Glu,
130 mg/liter Gly, 140 mg/liter His, 290 mg/liter Ile, 400 mg/liter Leu, 440 mg/liter Lys, 108 mg/liter Met,
200 mg/liter Phe, 220 mg/liter Thr, 40 mg/liter Trp, 52 mg/liter Tyr, 380 mg/liter Val, 1 g/liter bovine
serum albumin (BSA), 5.4 g/liter Na2HPO4, and 8.56 g/liter NaH2PO4·H2O (pH 6.0), supplemented with
100 mg/liter uracil if needed. For bioreactor carbon-limited chemostat cultures, 20 g/liter glucose in the
SD-2�SCAA medium was replaced by 7.5 g/liter glucose, and 5.4 g/liter Na2HPO4 and 8.56 g/liter
NaH2PO4·H2O in the SD-2�SCAA medium were replaced by 2 g/liter KH2PO4 (pH 6.0). For MH34 and B184
at the dilution rate of 0.1/h, 2 ml of pure ethanol was added to the bioreactor to prevent oscillations.
Overnight seed cultures which were grown to an OD600 of 3 to 4 were used to inoculate 400 ml of
SD-2�SCAA medium in 1-liter bioreactor vessels (DasGip) with an initial OD600 of 0.01. The bioreactor
system was run at 30°C with 600 rpm agitation and 24 liter/h airflow (pH 6; controlled by KOH).
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Sampling from bioreactor. Samples for transcriptome, proteome, biomass, �-amylase, and exo-
metabolome analysis were collected at the same time. First, the dead volume in the tube was collected
and discarded. For transcriptome sampling, biomass was collected into chilled 50-ml Falcon tubes filled
with 35 ml of crushed ice. Samples were centrifuged for 4 min at 3,000 � g at 4°C; cell pellets were
washed once with 1 ml of chilled water, transferred into 1.5-ml Eppendorf tubes, and flash frozen in liquid
nitrogen. For proteome sampling, biomass was collected into chilled 50-ml Falcon tubes. Samples were
centrifuged for 4 min at 3,000 � g at 4°C; cell pellets were washed once with 20 ml of chilled water and
once with 1 ml of chilled water, transferred into 1.5-ml Eppendorf tubes, and flash frozen in liquid
nitrogen. All samples for transcriptome and proteome analysis were stored at �80°C until analysis. For
biomass analysis, culture broth was collected into chilled 50-ml Falcon tubes. For �-amylase and
exo-metabolome analysis, culture broth was collected into chilled 1.5-ml Eppendorf tubes. Samples were
centrifuged for 10 min at 15,000 � g at 4°C; the supernatant was used for extracellular �-amylase and
exo-metabolome analysis and stored at –20°C.

RNA sequencing and quantification. RNA was extracted using a Qiagen RNeasy minikit (Qiagen)
according to the manufacturer’s protocol. RNA integrity was examined using a 2100 Bioanalyzer (Agilent
Technologies). RNA concentration was determined using a Qubit RNA HS assay kit (Thermo Fisher). An
Illumina TruSeq Stranded mRNA Library Prep kit (Illumina) was used to prepare mRNA samples for
sequencing. Paired-end sequencing (2 by 150 bp) was performed on an Illumina NextSeq 500 system.
Reads were quality controlled, mapped to the S. cerevisiae reference genome (Ensembl R64-1-1), and
counted using the nf-core transcriptome sequencing (RNA-seq) pipeline (SciLifeLab, Stockholm, Sweden).

The absolute concentrations of 36 transcripts, covering the entire dynamic expression range, were
measured using lysates of S. cerevisiae CEN.PK 113-7D cells. Linear regression between the absolute
concentrations of these mRNAs and their corresponding fragments per kilobase per million (FPKM)
values from RNA-seq were performed to obtain the slope and y intercept, which were used to quantify
all mRNAs in this study. The R2 value of the linear model was 0.92. The processed quantitative
transcriptomics data are given in Data Set S2 in the supplemental material.

Quantitative proteome measurements. All liquid chromatography-mass spectrometry (LC-MS)
experiments were performed on an Orbitrap Fusion Tribrid mass spectrometer (Thermo Fisher) interfaced
with an Easy-nLC1200 nanoflow liquid chromatography system (Thermo Fisher). Peptide and protein
identification and quantification were performed using Proteome Discoverer, version 2.2 (Thermo Fisher),
with Mascot (Matrix Science) as a database search engine.

The global relative protein quantification between the samples was performed via the modified
filter-aided sample preparation (FASP) method, which included the two-stage digestion of each sample
with trypsin in 1% sodium deoxycholate (SDC)–50 mM triethylammonium bicarbonate (TEAB) buffer and
labeling with Tandem Mass Tag (TMT) 10-plex isobaric reagents (Thermo Fischer) according to the
manufacturer’s instructions. The pooled reference sample was prepared from the aliquots of the lysates
of S. cerevisiae CEN.PK 113-7D cells. The combined TMT-labeled set was prefractionated into 20 final
fractions on an XBridge BEH C18 column (3.5-�m particle size; 3.0 by 150 mm; Waters Corporation) at pH
10, and each fraction was analyzed using a 60-min LC-MS method.

An intensity-based absolute quantification (iBAQ) approach was used to estimate the absolute
protein concentrations in the pooled reference sample. An aliquot of 50 �g of the pooled sample was
spiked with 10.6 �g of the UPS2 Proteomics Dynamic Range Standard (Sigma-Aldrich) and digested using
the FASP protocol. The label-free data were processed using the Minora feature detection node in
Proteome Discoverer, version 2.2, and the quantitative values from three technical (injection) replicates
were averaged. Forty-three proteins from the UPS2 standard were detected with two or more unique
peptides and used to calculate the linear regression coefficients between the known concentrations of
the UPS2 proteins and their corresponding iBAQ measurements. The slope and y intercept of the linear
regression were used to quantify the yeast proteins in the pooled reference sample. The absolute
concentrations were calculated using the iBAQ-based absolute values for the pooled reference sample
and the relative abundance values from the TMT experiment. The processed quantitative proteomics
data are given in Data Set S3.

Biomass and exo-metabolome measurements. For biomass measurements, 5 ml of culture broth
was filtered by preweighed, 0.45-�m-pore-size filter paper. The cells were dried in a microwave at 360
W for 20 min and put in a desiccator for at least 3 days. For extracellular metabolite measurements,
including those of glucose, ethanol, glycerol, pyruvate, succinate, and acetate, the quantification was
performed using a high-performance liquid chromatography (HPLC) system (Thermo Fisher) with a
Bio-Rad HPX-87H column (Bio-Rad) at the temperature of 45°C, and 5 mM H2SO4 was used as the elution
buffer at a flow rate of 0.6 ml/min. For extracellular amino acid measurements, the quantification was
performed through an LC-tandem MS (LC-MS/MS) system (Thermo Fisher) with an amino acid analyzer
(AAA) C18 column (SCIEX). The method was developed according to the protocol of the aTRAQ reagents
application kit (SCIEX).

�-Amylase quantification. The �-amylase activity was measured using an �-amylase assay kit
(Megazyme) with a commercial �-amylase from Aspergillus oryzae (Sigma-Aldrich) as the standard.
Samples were centrifuged for 10 min at 15,000 � g at 4°C, and the supernatant was used for extracellular
�-amylase quantification. For intracellular �-amylase quantification, the cell pellet was washed with
distilled water and resuspended in 500 �l of phosphate-buffered saline (PBS) with 5 �l of Halt protease
inhibitor cocktail (Thermo Fisher). The cell suspension was added to a lysing matrix tube, and cell lysis
was performed using a FastPrep-24 tissue and cell homogenizer (MP Biomedicals) by two 60-s cycles at
a speed of 6.5 m/s (samples were put on ice for 5 min between the two cycles). Cell debris was removed
by centrifugation, and the supernatant fraction was used for amylase quantification.
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Enzyme-constrained modeling. The genome-scale metabolic model ecYeast8.3 (24) was used to
generate enzyme-constrained models (ecModel) for each strain (AAC, MH34, and B184) at each dilution
rate (0.1/h and 0.2/h) using the GECKO toolbox (32). Absolute quantitative proteome data were used as
upper limits for the protein usages in the model. The default parameter 0.5 for the f factor was used in
the generation of the models when the total protein pool was constrained. In order to measure the
accessory energy that each strain generates except for biomass production, aerobic carbon-limited
SD-2�SCAA medium was set in the model, and the non-growth-associated maintenance energy (NGAM)
reaction was set as the objective function to represent the accessory energy. Exchange fluxes such as
glucose uptake rate, amino acid uptake rates, and by-product production rates were set according to the
measurements (Table S2). A value of 1.03 was set to be the flexible factor for fermentation exchange
fluxes generated in the chemostat cultures in order not to overconstrain the model. Flux balance analysis
(FBA) was used during the simulation.

Data availability. The RNA-seq raw data are available at Genome Expression Omnibus under
accession number GSE147204 (33). The mass spectrometry proteomics data have been deposited with
the ProteomeXchange Consortium via the PRIDE (34) partner repository under the identifiers PXD012803
(35) for the iBAQ data set and PXD018116 (36) for the TMT-based relative quantification data set.
Reasonable requests for supporting data are available from the corresponding author.
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