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Abstract

Background: Probabilistic record linkage is a process used to bring together person-based records from within the
same dataset (de-duplication) or from disparate datasets using pairwise comparisons and matching probabilities.
The linkage strategy and associated match probabilities are often estimated through investigations into data quality
and manual inspection. However, as privacy-preserved datasets comprise encrypted data, such methods are not
possible. In this paper, we present a method for estimating the probabilities and threshold values for probabilistic

privacy-preserved record linkage using Bloom filters.

Methods: Our method was tested through a simulation study using synthetic data, followed by an application using
real-world administrative data. Synthetic datasets were generated with error rates from zero to 20% error. Our method
was used to estimate parameters (probabilities and thresholds) for de-duplication linkages. Linkage quality was
determined by F-measure. Fach dataset was privacy-preserved using separate Bloom filters for each field. Match
probabilities were estimated using the expectation-maximisation (EM) algorithm on the privacy-preserved data. Threshold
cut-off values were determined by an extension to the EM algorithm allowing linkage quality to be estimated for each
possible threshold. De-duplication linkages of each privacy-preserved dataset were performed using both estimated and
calculated probabilities. Linkage quality using the F-measure at the estimated threshold values was also compared to the
highest F-measure. Three large administrative datasets were used to demonstrate the applicability of the probability and

threshold estimation technique on real-world data.

Results: Linkage of the synthetic datasets using the estimated probabilities produced an F-measure that was comparable
to the F-measure using calculated probabilities, even with up to 20% error. Linkage of the administrative datasets using
estimated probabilities produced an F-measure that was higher than the F-measure using calculated probabilities. Further,
the threshold estimation yielded results for F-measure that were only slightly below the highest possible for those

probabilities.

Conclusions: The method appears highly accurate across a spectrum of datasets with varying degrees of error. As there
are few alternatives for parameter estimation, the approach is a major step towards providing a complete operational
approach for probabilistic linkage of privacy-preserved datasets.
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Background

Record linkage is a process that allows us to gather
together person-based records that belong to the
same individual. In situations where unique identi-
fiers are not available, personally identifying informa-
tion such as name, date of birth and address are
used to link records from one or more data
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collections. As administrative collections typically
capture information for large portions of the popula-
tion, the linked data allows researchers to answer
numerous health questions for the whole population
at relatively low cost.

Privacy-preserving record linkage

Legal, administrative and technical issues can prevent
the release of name-identified data for record linkage.
New methods have emerged that do not require the
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release of personally identifying information by data
custodians; rather, data custodians use specific encod-
ing processes to transform personally identifying in-
formation into a permanently non-identifiable state
(an irreversible ‘privacy-preserved’ state). These
methods are collectively referred to as privacy-
preserving record linkage (PPRL). Under a trusted
third party linkage model [1], this operation occurs
before the release of any data to record linkage units.
Thus, personally identifying information is not
disclosed by the data custodian. These PPRL methods
can be used within existing record linkage frame-
works, and are subject to some of the same
challenges [2].

One of the most promising PPRL techniques to
emerge is a method which uses Bloom filters in
record linkage [3]. A Bloom filter is a probabilistic
data structure originally developed to check set
membership that can also be used to approximate the
similarity of two sets. The ability to provide similarity
comparisons on two sets of data is highly desirable
for accurate record linkage.

An evaluation of Bloom filters in large-scale prob-
abilistic record linkage has shown high linkage quality
(equal to that achieved with unencrypted linkage)
with relatively good efficiency [4]. This evaluation
utilised single field Bloom filters as opposed to
record-level Bloom filters, where all identifiers are
added into a single Bloom filter [5]. One of the
outstanding challenges for a practical probabilistic
PPRL approach is to accurately estimate parameter
settings [4]. Typical methods to estimate parameters
involve manually examining small samples of data. In
the privacy-preserving case, this data is not available
to examine so alternate parameter estimation methods
are required.

Probabilistic record linkage

In probabilistic record linkage, individual records are
compared on a pairwise basis. This process makes the
number of possible comparisons extremely large for
all but small data files. To reduce computation over-
head, records are usually only compared if they have
information in common i.e. they have the same value
in a particular field or set of fields. Known as block-
ing, this method reduces the computational compari-
son space. Pairs of records in each block are
compared and assessed through comparison of the
values in each matching field (e.g. first name, sur-
name, address, etc.). As shown in Fig. 1, each field
comparison is assigned a field score, the value of
which depends on whether the field value agrees or
disagrees. These agreement and disagreement scores
(weights) are computed separately for each field. All
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field scores are then summed to produce a final
score. If this score is greater than a set threshold
value, the record pair is designated a match. The set
of fields used in the linkage are chosen based on
characteristics such as completeness, consistency and
discriminating power within each dataset. The dis-
criminating power is a measure of entropy, indicating
how useful an identifier might be in the record link-
age process [6, 7].

In the Fellegi-Sunter model of record linkage [8],
the agreement and disagreement scores used in field
comparisons are based on the calculation of two spe-
cific probabilities, called the m-probability and
u-probability [8]. The m-probability is the likelihood
of two fields matching if the records belong to the
same individual. The u-probability is the likelihood of
two fields matching if the records do not belong to
the same individual. These two probabilities are con-
verted into agreement and disagreement weights for
each field as follows:

m
u

Agreement Weight = log( ),

1-
Disagreement Weight = log (1_m>

The Fellegi-Sunter model incorporates a simplifying
assumption where the chances of agreement or
disagreement for one field is independent of the chances
of agreement or disagreement for another field [8]. This
independence assumption allows us to calculate agree-
ment and disagreement weights for each field separately.
Extensions to the Fellegi-Sunter model have been devel-
oped for approximate comparisons, allowing the assign-
ment of a partial weight for partial agreement that lies
somewhere between agreement and disagreement [9].
While there are many types of approximate comparisons
for various types of data, most deal with the distance
between two strings [10-12]. To fit these approximate
comparisons into a probabilistic model, the distance is
converted into a partial weight [13].

Missing values can be problematic in probabilistic
record linkage. Comparisons are typically treated in
one of three ways: a missing value is assigned the dis-
agreement weight, a zero weight, or a separate weight
accounted for explicitly. The last option extends the
independence assumption to include probabilities for
missing values, altering the calculations for weights.
Other approaches involve removing the field from
matching or even removing the entire record [10, 14].

Parameter estimation
Several methods have been developed to estimate m-
and u-probabilities [15, 16]; in practice, most methods
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Threshold

Record 1 Robert Smith 176B Hill View Tce Bentley 27/03/1979
Record 2 Bob Smith 40 Dunedin St Mount Hawthorn 27/03/1979
Agreement Weight 5 10 16 3 12
Disagreement Weight -2 -4 -3 -3 -4
Total |
2 10 3 -3 12 14|

Fig. 1 Record comparison example

are based on investigations around data quality and
prior knowledge, such as the iterative refinement pro-
cedure [17].

Automated methods for deriving m-probabilities,
such as through EM (expectation-maximisation) esti-
mation have been devised [16, 18, 19]. The EM
algorithm has the potential to provide accurate esti-
mates for m-probabilities, in some cases outperform-
ing the probabilities obtained via the iterative
refinement procedure [13]. Other estimation methods
do exist, such as an algebraic solution by Fellegi and
Sunter [8] and the IMSL routine ZXSSQ (an implementa-
tion of the Levenberg-Marquardt algorithm) [20]; how-
ever, these are more sensitive to initial parameters and
require adjustment functions to keep estimates within
bounds [21]. An extensive analysis of parameter
estimation techniques for the Fellegi-Sunter model of
linkage has been detailed by Herzog et al. [15].

Determination of the appropriate threshold setting
above which to accept record-pairs as valid matches
typically occur through manual inspection of record-
pairs within a range of weight scores [22]. The use of
PPRL methods within a probabilistic linkage frame-
work, where only encrypted identifiers are used for
linkage, preclude the use of any manual, clerical re-
view and so must rely on the use of alternative, com-
puterised methods to determine the best cut-off
values. This ability to correctly estimate parameters is
of paramount importance if PPRL techniques are to
be practical [4].

In this paper, we present a method for accurately
estimating probabilities and an optimal threshold cut-
off value that can be applied when using Bloom filters
within the Fellegi-Sunter model for record linkage.
The work builds on a previous privacy-preserving
study, which utilised a probabilistic record linkage
framework [4]. In this paper, we evaluate our param-
eter estimation method in two ways: firstly, in a
simulation study using synthetic datasets with varying
degrees of error; and secondly, on three large-scale
administrative datasets, comparing the resultant link-
age quality against the quality achieved using calcu-
lated m- and u-probabilities.

Methods

Simulation study using synthetic datasets

A series of synthetic datasets were created for our
simulation study. Firstly a single ‘master’ dataset was
created, containing 1 million records, with multiple
records belonging to the same individual. This dataset
did not contain any missing values, or errors typical
of what would be seen in administrative data. Then, a
series of new datasets were created by first taking the
error-free master dataset, and removing or degrading
the quality of particular fields.

The synthetic data was generated using an amended
version of the FEBRL data generator [23]. The distri-
bution of duplicate records (how many records per-
tain to each individual) was based on the distribution
found in the Western Australian hospital morbidity
data collection. The values found in the master data-
set were based on frequency distributions found in
the Western Australian population. Each record in the
dataset contained first name, middle name, surname, sex,
date of birth, address, suburb, and postcode information.
Address information was randomly selected from the
National Address File, a public dataset containing all valid
Western Australian addresses."

Additional ‘corrupted’ datasets were created by
modifying the master dataset with a set level of error.
In the 1% error file, 1% of field values to be used for
linkage were randomly selected to have their values
set to missing; a further 1% were randomly selected
to have their values corrupted, through the use of
typographical errors, misspellings, truncation and
replacement of values. In this way, each record could
potentially have multiple fields set to missing or cor-
rupted. The same procedure was used to generate a
5% error file, 10% error file and 20% error file. A
privacy-preserved version of each dataset was created,
using single field Bloom filters.

Testing using administrative datasets

Three datasets comprising real administrative data
(hospital admissions records from New South Wales
(NSW), Western Australia (WA) and South Australia
(SA)) were used to demonstrate the applicability of



Brown et al. BMIC Medical Research Methodology (2017) 17:95

the method to real-world data. These datasets have
previously been de-duplicated to a very high standard
using full identifiers. The results of those de-
duplication linkages are used in this study and act as
our ‘truth set’. The information in this ‘truth set’ was
not used during the linkage process or the estimation
of parameters, but was used only as a standard by
which to evaluate our results. This data was made
available as part of the Population Health Research
Network Proof of Concept 1 project [24].

Privacy-preserved versions of each administrative data-
set were created, using single field Bloom filters, in the
same way as the synthetic datasets. Due to the size of
these administrative datasets, five samples (a random
10%) of each privacy-preserved dataset were created;
probabilities are estimated for each sample. A de-
duplication linkage was performed on each sample and
also against the full dataset. The resulting quality was
calculated using the ‘truth set’.

Application of Bloom filters

The privacy-preserved versions of the synthetic and ad-
ministrative datasets were created using Bloom filters.
Bloom filters were constructed in line with previous
work [3]. An empty (or missing) field in the original
datasets was left as empty in the privacy-preserved
versions.

Matching strategies used for the datasets were based
on the strategies used in a published evaluation of link-
age software [25]. Two blocking strategies were used;
last name Soundex with first name initial, and date of
birth with sex. The matching identifiers included Bloom
filters for names, address and suburb, using the
Serensen-Dice coefficient comparison for similarity [3].
Serensen-Dice coefficient values are converted to partial
agreement values using a piecewise linear curve, created
using Winkler’s [13] method. All other fields, including
blocking variables, which are created at the same time as
the Bloom filters, used exact matches on cryptographic-
ally hashed values. Missing value comparisons were
assigned a zero weight.

Measuring linkage quality

In line with earlier work [3, 26], we used precision, recall
and F-measure as our linkage quality metrics. Precision
(also known as positive predictive value) measures the
proportion of true positive pairs (correct matches) found
from all classified matches. Recall (also known as sensi-
tivity) measures the proportion of true positive pairs
found from all true matches. Both precision and recall
return a score between 0 and 1, with higher scores indi-
cating less false positives and false negatives (missed
matches) respectively. The F-measure is the harmonic
mean between precision and recall, providing a single
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figure with which we can compare results. Typically, a
middle-ground is sought between precision and recall,
as there is a trade-off between these values. As the prob-
abilistic linkage threshold is increased, the number of
false positives decreases (and so precision increases);
however, the number of correct matches missed will also
increase, leading to a decrease in recall.
The calculations for these metrics are provided below.

True Positives

Precision =
True Positives + False Positives
True Positives
Recall = — -
True Positives + False Negatives
2 X Precision x Recall
Fmeasure =

Precision + Recall

Estimating m and u probabilities

The EM algorithm has been used to calculate the m-
probabilities (m), u-probabilities (#) and the proportion
(p) of record pairs that match in probabilistic linkage
[21]. It is an iterative algorithm that uses the output
values of one iteration as the input to the next. We
added two additional variables to the EM algorithm as
described by Jaro [21], the missing m-probability and
missing u-probability values (denoted by m,, and u,, re-
spectively), to more accurately estimate a single thresh-
old cut-off value (discussed later).

Jaro [21] suggests the algorithm is not particularly sen-
sitive to the starting values (m, u, m,, u,,p). However,
the starting values for m should be higher than those for
u. We thus set an initial value of 0.1 for m,, and u,, 0.8
for m and 0.1 for u.

Given two files, A and B, we began by iterating
through all possible combinations of field comparisons
between A and B. The count of each field state combin-
ation was tabulated (an example is shown in Table 1).
There are, at most, 3" possible field state combinations
for n fields, assuming each field either agrees, disagrees
or is missing. The ‘missing’ state occurs when a pairwise
comparison involves a missing or empty value.

The first part of the EM algorithm is the expect-
ation step. For each field state combination, we calcu-
late recall and false positive rate (fpr). For recall, each
agreement in the table is replaced with m, each

Table 1 Field state combinations

First Name Last Name Sex Year of Birth Count
Agree Agree Agree Agree 1502
Agree Agree Missing Disagree 2142
Agree Disagree Disagree Missing 28,644
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disagreement with (1 — m,, — m), and each missing
with m,,. The product of these is the recall for that
field state combination. Similarly, for the fpr, each
agreement in the table is replaced with #, each dis-
agreement with (1 — u,, — u) and each missing with
u,,. The product of these provides the fpr.

The recall and fpr allow us to calculate the proportion
of true matches for each field state combination j:

precall;
(porecallj) + ((1—p)fprj)

The maximisation step involves the calculation of m, u,
m,,, u,, and p. The m value for each field is calculated
as the ratio of true matches that ‘agree’ for that field to
the total true matches. Likewise, the u value for each
field is calculated as the ratio of false matches that
‘agree’ for that field to the total false matches. The m,,
and u,, values use the ratio of matches that are
‘missing’.

The output values of (m, u, m,,, u,,p) are then used as
the input into the next iteration. Iterations are run until
values converge. Convergence will occur when the output
values differ only minimally from the input values.

Determining a threshold/cut-off setting

In addition to estimating probabilities for a probabil-
istic linkage, it is important to specify a threshold
value that provides optimal resultant linkage quality.

Using the information generated during the EM
step, we can estimate the quality of linkage for every
combination of weights between a range of possible
threshold values (i.e. using precision, recall and
F-measure). However, the table of field state combina-
tions used for the EM step only contains field state
combinations that were present in the datasets A and
B. The full set of possible combinations is required to
calculate a suitable threshold setting. Field state com-
binations that are not present in the field state com-
bination table were added with a count of zero, and
recall and fpr were calculated.

Using the full field state combination set, we calcu-
lated the weight for each field state combination.
Each agreement entry in the table was replaced with
the corresponding agreement weight for that field
using m and u calculated by the EM algorithm. Like-
wise, each disagreement entry was replaced with the
disagreement weight for that field using the same m
and u#. Each ‘missing’ entry was replaced with a
weight of zero.

To estimate precision, recall and F-measure, we cal-
culated the True Positives and False Positives for every
field state combination. For these estimations, we re-
quired the total True Matches (true positives and
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false negatives) and False Matches (true negatives and
false positives). The total True Matches was estimated
as part of the EM algorithm, and thus we used the
value calculated in the final iteration of the maximisa-
tion step. The total False Matches was re-estimated
as the total comparison space less the True Matches.

For a single file de-duplication, the total comparison
space is:

. RecordCount x (RecordCount-1)
total comparisons = 5

To calculate the True Positives and False Positives, we
multiplied the recall and false positive rate for each field
state combination by the total True Matches and False
Matches respectively.

True Positives; = True Matches-recall;

False Positives; = False Matchesfpr;

We calculated the True Positives and False Positives
for each field state combination so that precision could
be estimated. To calculate the precision for a particular
threshold, each field state combination with a weight
above that threshold value had their True Positives and
False Positives summed before precision was estimated.

We did not calculate False Negatives, as this can be
derived from the total True Matches (True Positives plus
False Negatives) value calculated earlier to estimate
recall. To calculate recall for a particular threshold, the
True Positives were summed from values for each field
state combination that have a weight above that
threshold.

As the computation requirements for calculating
precision, recall and F-measure are relatively low; we
calculated these for all possible weight combinations.
With a list of threshold values and corresponding
precision, recall and F-measure values, we were able
to determine an optimal threshold value for each
linkage (i.e. the single threshold score with the high-
est estimated F-measure).

Evaluation of parameter and threshold estimation

For each version of the synthetic datasets, and addition-
ally, for the administrative datasets, probabilities for m
and u were estimated together with a threshold cut-off
value. The EM algorithm was used to estimate m only
for each de-duplication linkage. The frequencies used
for our EM algorithm were calculated on blocks, and as
such, the number of non-matches observed was greatly
reduced, thereby introducing an undesirable bias into
the EM algorithm’s u# estimates [21]. Consequently, we
elected to use Jaro’s u-probability estimate (on
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unblocked data) u, together with the EM algorithm’s
estimated m value.

As part of our simulation study, a de-duplication
linkage was run on each synthetic dataset using this
combination of values, and a linkage was also run
using calculated m- and u- probabilities. Optimal
threshold values were estimated for both sets of prob-
abilities. The highest F-measure and estimated thresh-
old F-measure were recorded and compared for all
synthetic dataset de-duplication linkages. Similarly, in
our test using real data, de-duplication linkages were
run on the administrative data; calculated m- and u-
probabilities were obtained using the administrative
data ‘truth sets’. The accuracy of the probability
estimates on the administrative dataset samples was
measured using the root-mean-square error (RMSE),
comparing the F-measure obtained from the EM algo-
rithm probabilities with that obtained from calculated
probabilities. RMSE was also used to compare the F-
measure obtained at the estimated threshold with that
which would be obtained at the correctly chosen
threshold. The formula used was as follows:

Dataset n
2
RMSE = ,|— (Fmeasureestimated—Fmeasure eiyar)
Dataset 1

Results

Synthetic data

The characteristics of the synthetic datasets are shown
in Table 2. As the dataset error rates increase, the num-
ber of unique values for each field increases significantly
because of the corruption introduced during dataset
creation. The discriminating power for each field also
increases with the simulated data corruption.

Table 2 Synthetic dataset characteristics
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The results from de-duplication linkages of the syn-
thetic datasets using calculated probabilities and EM
probabilities are shown in Table 3. These results show
that the use of EM for probability estimation,
combined with our threshold estimation technique,
provided linkage quality comparable to the best
achievable using calculated probabilities, on data with
up to 20% error.

As one would expect, de-duplication of the master
dataset (without error) produced a perfect result with
F-measure of 1.0 at a threshold of 49 (the sum of all
agreement weights for each field). The use of EM
estimated m-probabilities produced the same result.
However, estimation of a threshold value for the
master dataset was significantly lower, with a value of
8 for both calculated and estimated probabilities.
Note, however, that although this threshold estimate is
much lower, it results in just 60 false positives from the en-
tire comparison space, giving an F-measure of 0.9999995.

While it is possible for the threshold to be esti-
mated to one or two decimal places, the use of a
whole number here was made for simplicity. It is pos-
sible that a better estimate could be made with a
finer precision but the differences between thresholds
shown here wusing whole numbers are already
negligible.

As Table 3 shows, using our estimation technique,
there is a slight decrease in linkage quality as error
rates in the data increase (i.e. for 1% error, an
F-measure of 0.9979 vs. 0.9979, compared to 20%
error with an F-measure of 0.5217 vs. 0.4917).
However, even at 10% error, the difference is very
small with an F-measure of 0.8443 vs. 0.8436.

Administrative data
The characteristics of the fields in each administrative
dataset, such as the number of unique values, missing

Field 0% Error 1% Error 5% Error 10% Error 20% Error
Unique Discriminating Unique Discriminating Unique Discriminating  Unique Values Discriminating Unique  Discriminating
Values  Power Values  Power Values  Power Power Values  Power
First Name 31,183 891 34595 892 45914 899 58,046 9.08 78256  9.29
Middle Name 25,002 733 28224 735 38285 745 48,973 7.59 67,160 795
Last Name 56,507  10.87 61,198 10.88 77,088 1096 94,925 11.07 125483 1135
Dob Year 112 6.49 114 6.49 116 6.50 117 6.51 119 6.53
Dob Month 12 3.58 12 3.58 12 3.58 12 3.58 12 3.58
Dob Day 31 494 31 494 31 494 31 4.94 31 493
Sex 2 1.00 2 1.00 2 1.00 2 1.00 2 1.00
Address 171,088 12.89 178,583 1292 207,909 13.04 241,966 13.21 304,353 13.66
Suburb 1962 833 7390 836 19664 848 31,054 865 49929 9.0
Postcode 379 6.77 1755 6.80 2579 6.91 2981 7.06 3395 745
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Table 3 Synthetic dataset linkage quality - estimated vs. calculated
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Data Calculated Probabilities EM m-probs and Estimated u-probs
E{rarg Highest Estimated Highest Estimated

Threshold FMeasure Threshold FMeasure Threshold FMeasure Threshold FMeasure
0% 49 1.0000 8 0.9999 49 1.0000 8 0.9999
1% 9 0.9979 16 0.9978 13 0.9979 " 0.9979
5% 8 0.9549 16 0.9541 12 0.9549 " 0.9549
10% 8 0.8443 16 0.8399 12 0.8439 1 0.8436
20% 8 0.5217 16 04938 12 0.4999 " 04917
percentage, and discriminating power were recorded, Discussion

shown in Table 4. The random samples generated for
each administrative dataset were highly representative of
the full dataset.

Linkage quality from EM estimates

The estimated m- and u-probabilities of the samples
reflect the characteristics described above, with negli-
gible differences observed between the samples for
each dataset. The estimated probabilities for each
dataset are shown in Table 5.

Comparisons of linkages using the calculated prob-
abilities and the EM m-probabilities with estimated
u-probabilities are shown in Table 6. The highest F-
measure obtained using the estimated probabilities
was slightly higher than that achieved using calcu-
lated probabilities in all cases.

Accuracy of threshold estimation

The quality of linkage using the F-measure at the esti-
mated threshold is compared to the highest F-measure
for each sample, as shown in Table 7. The RMSE values
for each dataset were 0.0019 for NSW, 0.0001 for SA
and 0.0046 for WA. The estimated threshold value was
slightly below the best threshold for each dataset.

Table 4 Administrative dataset characteristics

In our simulation study, the use of the EM algorithm to
estimate probabilities for a de-duplication linkage pro-
duced results comparable to those produced by calcu-
lated probabilities, even with synthetic datasets that
contained 20% introduced error. Similarly, in our tests
using administrative datasets, the probability and thresh-
old estimation technique produced very high-quality
linkage results. In comparison to the quality of linkage
using calculated probabilities, the probabilities used from
the EM algorithm produced linkage quality of the simu-
lation datasets that was comparable to the best possible.
However, we found better quality results using estimated
probabilities on the real administrative datasets, at least
in regards to F-measure. This is a somewhat surprising
result, and why this occurred for all three administrative
datasets is not entirely clear. A recent analysis of the
popular F-measure metric suggests that it may not
provide a fair comparison between linkage methods if
the selected thresholds produce a different number of
predicted matches [27]. This behaviour is one possible
explanation for our results, and future work will
consider additional metrics for measuring linkage qual-
ity. It should be noted that the differences between the
linkage quality results were relatively small, and we

NSW(13,534,177 records)

SA(2,509,914 records)

WA(6,772,949 records)

Field Unique Missing Discriminating Unique Missing Discriminating Unique Missing Discriminating
Values % Power Values % Power Values % Power

First Name 168,766 2.9% 8.61 124,849 5.5% 9.18 78,992 0.3% 8.54
Middle Name 114,686 54.2% 6.96 22,180 754% 7.19 61,241 40.8% 7.13
Last Name 291,595 0% 1092 81,431 53% 10.81 123,481 0% 10.73
Dob Year 123 0% 647 115 0% 6.45 118 0% 6.39
Dob Month 12 0% 3.58 12 0% 3.58 12 0% 3.58
Dob Day 31 0% 4.94 31 0% 4.94 31 0% 4.94
Sex 2 0% 1.00 2 0% 1.00 2 0% 0.99
Address 3,084,889 1.5% 16.96 690,615 8.1% 14.92 1,350,796 0.2% 16.05
Suburb 49,843 0.5% 930 10,729 6.9% 7.85 5542 0.1% 773
Postcode 3947 0.8% 8.17 2238 8.5% 6.90 2319 0.2% 6.58
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Table 5 Estimated probabilities
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NSW SA WA
Field EM m-prob Est. u-prob EM m-prob Est. u-prob EM m-prob Est. u-prob
First Name 0.9817 0.0024 0.8707 0.0015 0.9732 0.0027
Middle Name 0.4686 0.0017 0.1846 0.0004 04385 0.0025
Last Name 0.9916 0.0005 0.8931 0.0005 0.9823 0.0006
Dob Year 0.9973 0.0113 0.9997 0.0114 0.9935 0.0119
Dob Month 0.9987 0.0834 0.9988 0.0834 0.9949 0.0835
Dob Day 0.9965 0.0325 0.9988 0.0325 0.9963 0.0326
Sex 0.9999 0.5008 1.0000 0.5010 0.9998 05018
Address 0.8325 7.99E-06 0.6486 2.8E-05 0.7338 1.7E-05
Suburb 0.9303 0.0016 0.7462 0.0038 0.8402 0.0047
Postcode 0.9540 0.0034 0.7574 0.0070 0.8640 0.0104

would not expect this to be the case for datasets of all
sizes and quality.

The original unencrypted versions of these datasets
had previously been linked by Boyd et al. using probabil-
ities estimated with knowledge of previous linkages and
refinement through pilot linkages [24]. The probabilities
derived from the EM algorithm produced a higher F-
measure for both the NSW (0.996 vs. 0.995) and WA
(0.992 vs. 0.990) Bloom filter datasets; data for the unen-
crypted SA dataset was unavailable. On face value, at
least, these results indicate that use of the EM algorithm
for probability estimation is a viable option, especially
where sampling techniques for estimation are not avail-
able due to the privacy-preserved nature of the data.

Our study found that the m-probabilities estimated via
the EM algorithm did not necessarily match the calcu-
lated m-probabilities for each field; however, there was a
general consistency of the m-probabilities across all
fields. Both our synthetic datasets and the administrative
datasets contained many matches and were thus good
candidates for probabilities estimated through the EM
algorithm. The EM algorithm is known to perform
poorly with datasets that have too few matches [15].
Being able to identify and address this issue for privacy-
preserved data will require further research.

Our threshold estimation technique also returned very
good linkage quality, with a resulting F-measure that
consistently approached the best F-measure achievable

Table 6 Linkage quality (max F-measure) — EM vs. calculated

given the probabilities used. To our knowledge, no alter-
native method of estimating thresholds exists for use
with privacy-preserved data. Without the ability to
provide any manual review post-linkage, it is important
to be able to estimate a single accurate threshold cut-off
value. As such, this technique should be considered for
use with Bloom filters for probabilistic linkage.

The threshold values estimated in our study were con-
sistently higher than the optimum threshold when using
the calculated probabilities, with fewer false positives
and more false negatives returned in each of the linkages
(with the exception of the ‘perfect’ synthetic dataset).
Interestingly, we found the opposite to be true when
using the estimated probabilities, with a consistently
lower threshold. Additional simulation studies may help
to understand this effect and improve the estimation
accuracy. This effect may be a result of the blocking
technique used to gather field state combinations and
the similarities in the estimation methods for both prob-
abilities and threshold. Although it may be possible to
adjust for this underestimation, an advantage of using a
lower threshold is that alternative approaches can be
implemented which specifically target false positive
matches. It may be possible to run automated clerical
review procedures on the results, such as graph theory
techniques, to find and correct false positive errors [28].
The effectiveness of these techniques on privacy-
preserved data is unknown, however.

Dataset Probabilities Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 RMSE
NSW Calculated 0.9941 0.9943 0.9942 0.9941 0.9940

EM 0.9961 0.9965 0.9963 0.9963 0.9961 0.0021
SA Calculated 0.9532 0.9521 0.9529 0.9553 0.9532

EM 0.9590 0.9567 0.9563 0.9582 0.9589 0.0046
WA Calculated 0.9907 0.9904 0.9910 0.9905 0.9906

EM 0.9920 09916 0.9921 0.9917 0.9918 0.0012
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Table 7 Linkage quality — max F-measure vs. F-measure at threshold estimate
Dataset Threshold Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 RMSE
NSW Best 14 0.9961 0.9965 0.9963 0.9963 0.9961

Estimated 12 0.9943 0.9946 0.9945 0.9944 0.9942 0.0019
SA Best 13 0.9590 0.9567 0.9563 0.9582 0.9589

Estimated 12 0.9589 0.9566 0.9563 0.9581 0.9588 0.0001
WA Best 13 0.9920 09916 0.9921 0.9917 0.9918

Estimated 11 0.9871 0.9870 09873 0.9871 0.9875 0.0046

Future research will examine the use of the EM al-
gorithm on composite Bloom filters. While single
field Bloom filters provide excellent quality with prob-
abilistic linkage, they may not provide a sufficient
level of privacy for some stakeholders. As such, the
use of composite Bloom filters may be necessary.
Row-level Bloom filters would not be viable; at least
two fields are required for probabilistic record link-
age. However, multiple Bloom filters comprising two
or three fields may function sufficiently. The use of
the EM algorithm and the threshold estimation
technique on Bloom filters comprising two or more
fields is untested, and more research into the per-
formance of the EM algorithm on data containing
composite fields is warranted.

Finally, it is worth noting that the EM algorithm
and threshold estimation technique described in this
paper have wider application and could be used for
any probabilistic linkage (encrypted and unencrypted),
not just Bloom filters for PPRL. Provided the datasets
being linked have sufficient matches, the estimation
technique will produce optimal m-probabilities and a
suitable threshold cut-off for the linkage. The u-
probabilities can be estimated using Jaro’s estimation
method. Unencrypted linkages would benefit from this
technique as well, providing a strong empirical foun-
dation from which to build a robust linkage strategy.

Conclusions

Previous evaluations have shown that privacy-preserving
record linkage can be as accurate as traditional un-
encoded linkage. An important element in developing a
practical probabilistic privacy-preserving approach is to
determine how to appropriately set parameters without
recourse to manual inspection or prior knowledge of
data. As we have shown, use of the EM algorithm and
our threshold estimation technique provides a robust
method of estimating parameters for probabilistic link-
age of Bloom filter datasets. This method appears highly
accurate on datasets with varying error levels. Further
testing is required on real-world datasets with poorer
quality data and on datasets with fewer potential
matches. The ability for these techniques to produce
consistently accurate results on a variety of data will

determine whether they are viable in an operational
setting.

Endnotes
!Available from https://data.gov.au/dataset/geocoded-
national-address-file-g-naf

Abbreviations

EM: Expectation-maximisation; FPR: False positive rate; NSW: New South
Wales; PPRL: Privacy-preserving record linkage; RMSE: Root mean square
error; SA: South Australia; WA: Western Australia

Acknowledgements
The project acknowledges the support of data custodians and data
linkage units who provided access to the jurisdictional data.

Funding

Data for the project was provided as part of a Population Health Research
Network (PHRN) ‘Proof of Concept’ collaboration which included the
development and testing of linkage methodologies. The PHRN is supported
by the Australian Government National Collaborative Research Infrastructure
Strategy and Super Science Initiatives. AB has also been supported by an
Australian Government Research Training Program Scholarship.

Availability of data and materials

The data that support the findings of this study are available from state data
linkage units in NSW, SA and WA, but restrictions apply to the availability of
these data, which were used under agreement with data custodians, and so
are not publicly available.

Authors’ contributions

AB, SR and JB designed the study. AB performed the evaluation and
analysed the data. AB and SR wrote the first draft of the manuscript. SR, AF,
JS and JB critically reviewed the manuscript. All authors read and approved
the final manuscript.

Ethics approval and consent to participate

Ethical approval for developing and refining linkage methodology, which
includes the parameter estimates for probabilistic linkage of privacy-
preserved datasets, was obtained from Curtin University Human Research
Ethics Committee (Reference: HR 15/2010) as well as approval from
South Australia Department of Health and Ageing Human Research
Ethics Committee (Reference: HREC 511/03/2015), New South Wales
Cancer Institute Human Research Ethics Committee (HREC/10/CIPHS/37)
and Western Australian Department of Health Human Research Ethics
Committee (HREC/2009/54). Ethics approval included a waiver of consent
based on the criteria in the national statement on ethical conduct in
human research.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.


https://data.gov.au/dataset/geocoded-national-address-file-g-naf
https://data.gov.au/dataset/geocoded-national-address-file-g-naf

Brown et al. BMIC Medical Research Methodology (2017) 17:95

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Received: 19 December 2016 Accepted: 23 June 2017
Published online: 10 July 2017

References

1.

20.

21.

22.

23.

24.

Vatsalan D, Christen P, Verykios VS. A taxonomy of privacy-preserving record
linkage techniques. Inf Syst. 2013;38(6):946-69.

Brown AP, Ferrante AM, Randall SM, Boyd JH, Semmens JB. Ensuring privacy
when integrating patient-based datasets: new methods and developments
in record linkage. Front Pub Health. 2017;5:34.

Schnell R, Bachteler T, Reiher J. Privacy-preserving record linkage using
Bloom filters. BMC Med Inform Decis Making. 2009,9(1):41.

Randall SM, Ferrante AM, Boyd JH, Bauer JK, Semmens JB. Privacy-preserving
record linkage on large real world datasets. J Biomed Inform. 2014;50:205-12.
Schnell R, Bachteler T, Reiher J. A Novel Error-Tolerant Anonymous Linking
Code. In: Working Paper Series No WP-GRLC-2011-02. Nirnberg: German
Record Linkage Center; 2011.

Basharin GP. On a Statistical Estimate for the Entropy of a Sequence of
Independent Random Variables. Theory Probab Applic. 1959;4:333-6.

Wajda A, Roos LL. Simplifying Record Linkage: Software and Strategy.
Comput Biol Med. 1987;17(4):239-48.

Fellegi I, Sunter A. A Theory for Record Linkage. J Am Stat Assoc.
1969;64:1183-210.

DuVall SL, Kerber RA, Thomas A. Extending the Fellegi-Sunter probabilistic
record linkage method for approximate field comparators. J Biomed Inform.
2010;43:24-30.

Christen P. Data matching: concepts and techniques for record linkage,
entity resolution, and duplicate detection. Berlin/Heidelberg: Springer
Science & Business Media; 2012.

Winkler WE. Preprocessing of lists and string comparison. Rec Linkage Tech.
1985;985:181-7.

Thibaudeau Y. Fitting log-linear models when some dichotomous variables
are unobservable. In: Proceedings of the Section on statistical computing:
1989; 1989. p. 283-8.

Winkler WE. String comparator metrics and enhanced decision rules in the
Fellegi-Sunter model of record linkage. Paper presented at the Annual ASA
Meeting in Anaheim. Washington: Statistical Research Division, U.S. Bureau
of the Census; 1990.

Ong TC, Mannino MV, Schilling LM, Kahn MG. Improving record linkage
performance in the presence of missing linkage data. J Biomed Inform.
2014;52:43-54.

Herzog TN, Scheuren FJ, Winkler WE: Data quality and record linkage
techniques. Springer Science & Business Media. 2007.

Winkler WE. Using the EM algorithm for weight computation in the Fellegi-
Sunter model of record linkage. In: Proceedings of the Section on Survey
Research Methods, American Statistical Association: 1988; 1988. p. 671.
Newcombe HB, Kennedy JM, Axford SJ, James AP. Automatic Linkage of
Vital Records. Science. 1959:954-9.

Grannis SJ, Overhage JM, Hui S, McDonald CJ. Analysis of a probabilistic
record linkage technique without human review. Am Med Infom Assoc.
2003:259-63.

Bauman G John Jr: Computation of Weights for Probabilistic Record Linkage
using the EM Algorithm. (Masters Thesis). Available from All Theses and
Disserations (Paper 746): Brigham Young University; August 2006.

Inc IMaSL. User's manual: IMSL library: problem solving software system for
mathematical and statistical FORTRAN programming, Ed. 9.2, rev edn: IMSL; 1984.
Jaro MA. Advances in record-linkage methodology as applied to matching
the 1985 census of Tampa, Florida. J Am Stat Assoc. 1989,84(406):414-20.
Gill L: Methods for automatic record matching and linkage and their use in
national statistics. In: National Statistics Methodological Series No 25. Office
for National Statistics. 2001.

Christen P, Pudjijono A. Accurate synthetic generation of realistic personal
information. Adv Knowl Discov Data Min. 2009;5476:507-14.

Boyd JH, Randall SM, Ferrante AM, Bauer JK, McInneny K, Brown AP,
Spilsbury K Gillies M, Semmens JB. Accuracy and completeness of patient
pathways-the benefits of national data linkage in Australia. BMC Health
Serv Res. 2015;15(1):312.

25.

26.

27.

28.

Page 10 of 10

Ferrante A, Boyd J. A transparent and transportable methodology for
evaluating Data Linkage software. J Biomed Inform. 2012;45(1):165-72.
Randall S, Ferrante A, Boyd J, Semmens J. The effect of data cleaning on
data linkage quality. BMC Med Inform Decis Making. 2013;13(64).e1.

Hand D, Christen P. A note on using the F-measure for evaluating record
linkage algorithms. Stat Comput. 2017:1-9.

Randall SM, Boyd JH, Ferrante AM, Bauer JK, Semmens JB. Use of graph
theory measures to identify errors in record linkage. Comput Methods
Prog Biomed. 2014;115(2):55-63.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

* Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolVled Central




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Privacy-preserving record linkage
	Probabilistic record linkage
	Parameter estimation

	Methods
	Simulation study using synthetic datasets
	Testing using administrative datasets
	Application of Bloom filters
	Measuring linkage quality
	Estimating m and u probabilities
	Determining a threshold/cut-off setting
	Evaluation of parameter and threshold estimation

	Results
	Synthetic data
	Administrative data
	Linkage quality from EM estimates
	Accuracy of threshold estimation

	Discussion
	Conclusions
	Available from https://data.gov.au/dataset/geocoded-national-address-file-g-naf
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	References

