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An increasing number of studies have revealed that the progression of colorectal cancer
(CRC) is related to gut microbiome composition. Under normal conditions, the gut
microbiome acts as a barrier to other pathogens or infections in the intestine and
modulates inflammation by affecting the host immune system. These gut microbiota are
not only related to the intestinal inflammation associated with tumorigenesis but also
modulation of the anti-cancer immune response. Thus, they are associated with tumor
progression and anti-cancer treatment efficacy. Studies have shown that the gut
microbiota can be used as biomarkers to predict the effect of immunotherapy and
improve the efficacy of immunotherapy in treating CRC through modulation. In this
review, we discuss the role of the gut microbiome as revealed by recent studies of the
growth and progression of CRC along with its synergistic effect with anti-cancer
treatment modalities.
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INTRODUCTION

Colorectal cancer (CRC) is one of the most common types of cancer and is the third highest leading
cause of death worldwide (1). Numerous epidemiological studies have demonstrated that the
prevalence of CRC is related to a western diet and intake of dietary fiber, thus highlighting the
important relationship between diet and CRC (2–5). In this context, the gut environment, including
the microbiome, has been in the spotlight and has emerged as an important factor related to
CRC (6).

A multitude of microorganisms live in the intestines of mammals. In the human intestine, there
are more than 1000 species and 1014 microorganisms forming a colony (7). They play an important
role in maintaining a normal physiologic environment, including energy metabolism, interacting
with the normal gut barrier system, promoting the survival of epithelial cells, and, importantly,
protecting our body against other external or opportunistic pathogens (8). Over the past few
decades, studies have shown that the gut microbiome influences the host significantly (9–11).
Dysbiosis in the intestines is known to be associated with the pathogenesis of a variety of diseases,
including neurological, gastrointestinal, and metabolic diseases (12). Changes in the gut
microbiome can be induced by eating habits or changes in environmental factors and studies
have shown that changes in the gut microbiome induce CRC through inflammatory diseases,
microbial metabolites, or virulence factors (13–15). The gut microbiome has been demonstrated to
affect not only the generation of CRC, but also its progression. Furthermore, the gut microbiome
has been associated with controlling the efficacy of cancer treatment and the toxicities of
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therapeutic agents. Thus, therapeutic agents, such as probiotics,
that can control the gut microbiome are expected to among the
most effective approaches for helping to fight CRC (16, 17).

Recent advances in our understanding of the role of the gut
microbiome are due to the development of technologies, such as
16S rRNA sequencing, that enable the discovery of many
microorganisms in the intestine that could not be identified
previously (18). Many studies related to metabolomics and
metagenomics describe the effects of these gut microbes on the
human body, and some studies revealed their involvement in
cancer prevention, tumorigenesis, and anti-cancer effects (19,
20). In particular, changes in gut microbial metabolites, such as
short-chain fatty acids (SCFAs), polyphenols, vitamins,
tryptophan catabolites, and polyamines produced or affected
by the gut microbiota, may have a wide range of effects on the
formation and progression of CRC and even metastasis (21). As
our understanding of the role of the anti-cancer immune
response in the tumor microenvironment during cancer
progression and treatment increases, the effect of the gut
microbiome on tumor immunity is also receiving greater
attention (21). It is known that changes in the gut microbiota
not only affect tumor immunotherapy, but also affect therapeutic
toxicity (22). Thus, modulation of the gut microbiome can be
used as a novel treatment modality.

The gut microbiome has emerged as an important factor in
various diseases, and the relationship between the gut
microbiome and CRC has become an important issue in
several studies. In this review, the potential role of the gut
microbiome will be reviewed with a focus on how the gut
microbiome affects the tumorigenesis processes associated with
CRC. Furthermore, we discuss methods of gut microbiome
modulation that can be used to treat CRC.
CORRELATION BETWEEN CRC AND
GUT MICROBIOME

With changes in western dietary habits worldwide, the incidence
of CRC is expected to increase steadily, resulting in 2.2 million
new cases by 2030 (23). Studies have shown that approximately
90% of CRC occurs sporadically and the remainder is caused by
genetic factors or exposure to specific environmental factors (24–
27). In particular, lifestyle factors such as physical inactivity,
smoking history, western diet, low fiber intake, alcohol intake,
and obesity are major influences on CRC. It is important to note
that most of these environmental factors can induce changes in
the gut microbiota (26, 28, 29). Many studies have confirmed
that susceptibility to CRC or tumor progression is affected by
changes in the gut microbiome, which has been found to induce
inflammation, DNA damage, or metabolites produced from
microorganisms (30).

Evidence from several studies has suggested the existence of a
close link between the gut microbiome and the host during the
development of CRC (31–33). Studies using high-throughput
microbiome sequencing have been conducted to investigate the
microbiome community in tumor-formed and normal colon
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tissues (27), enabling a better understanding of the differences
in gut microbiome between CRC and healthy patients. Reports
have shown that the diversity and richness of the gut microbiome
decreases in CRC patients (33, 34). In particular, analysis of the
gut microbiome of CRC patients revealed that significant
changes in specific microbial groups occurs, leading
researchers to hypothesize that these changes might have a
greater impact on the mucosal immune response of CRC
patients compared to that of healthy individuals (34). A total
of 11 operational taxonomic units (OTUs) belonging to the
genera Enterococcus , Escherichia/Shigella , Klebsiel la ,
Streptococcus, and Peptostreptococcus were significantly found
to be more abundant in the gut microbiota of CRC patients,
while 5 OTUs belonging to Roseburia and other butyrate-
producing bacteria from the Lachnospiraceae family were less
abundant (35). In addition, dysbiosis was observed in the
gut microbiome of CRC patients as the balance between
microorganisms was disrupted (36). Dysbiosis of gut
microbiota and increased intestinal permeability induce colonic
inflammation and may cause the promotion or progression of
CRC (37). Fusobacterium nucleatum (F. nucleatum) is
significantly increased in human CRC compared to healthy
patients (38). Moreover, early-stage CRC patients (advanced
adenoma) have a different microbiome composition compared
to advanced-stage CRC patients (definitive CRC) (35, 39). These
studies indicate a very close correlation between CRC and the gut
microbiome; however, further investigation is still required to
fully elucidate the effect of the gut microbiome on CRC.
INFLUENCE OF THE GUT MICROBIOME
ON CRC FORMATION

Although much is still unknown about the formation of CRC,
chronic inflammation has been implicated in the initiation of
malignancy. It is estimated that approximately 20% of malignant
tumors occurring in the colon are preceded by chronic
inflammation (40). During carcinogenesis, inflammatory
cytokines and chemokines produced by cancerous cells attract
immature myeloid cells or pro-inflammatory helper T cells. This
pro-tumorigenic microenvironment is characterized by the
synthesis of growth and angiogenic factors, as well as tissue
remodeling enzymes, and the suppression of anti-tumor T-cell
responses, favoring tumor progression (41).

Knowledge that the gut microbiome affects CRC formation
was first obtained in the early 1970s. When the colon was
exposed to a carcinogen called 1,2-dimethlylhydrazine in a
germ-free mouse model, the degree of CRC formation was
found to be significantly reduced (42). At the time, it was not
possible to specify which bacteria caused this phenomenon.
However, a similar experiment using various colon cancer
models confirmed that the presence or absence of intestinal
microbes had a significant effect on the formation of colon cancer
(43, 44). Since then, many studies using high-throughput
microbiome sequencing have identified the various intestinal
microorganisms that affect CRC formation.
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Streptococcus bovis (S. bovis) has been reported as one of the
risk factors for CRC (45–47). S. bovis is normally colonized in the
gastrointestinal tract. Thus, the occurrence of S. bovis-induced
endocarditis or bacteremia was an early clue to its involvement in
colon cancer (45). The association between inflammation and
colon carcinogenesis was confirmed when the relationship
between the pro-inflammatory potential of S. bovis proteins
and their carcinogenic properties was observed (48, 49). S.
bovis has been found to play an active role in CRC
development, perhaps through an inflammation-based
sequence of tumor development or propagation involving
interleukin (IL)-1, cyclooxygenase-2 (COX-2), and IL-8 (48).

F. nucleatum is one of the most widely known strains related
to CRC tumor formation (50). Metagenomic analysis showed
that the commensal Fusobacterium spp. are associated with CRC
in humans; however, it remains unclear whether this is indirect
or causal (38). Castellarin and coworkers confirmed that the
transcripts of the strain were increased approximately 400 times
in CRC tumor tissue compared to normal tissue (50). In a study
using the adenomatous polyposis coli (APC) +/- mouse CRC
model, F. nucleatum developed a pro-inflammatory environment
which induced neoplasia progression in intestinal epithelial cells
and recruited tumor-infiltrating immune cells (38). In addition,
studies demonstrated that IL-17a was highly expressed in CRC
patients with abundant F. nucleatum (51). This strain induces
early carcinogenesis through increased bacterial adherence in the
mucosal surface (52). F. nucleatum produces a unique protein
called Fusobacterium adhesin A (FadA), which induces
activation of the b-catenin signaling pathway after binding to
E-cadherin, which is a potent oncogenic stimulator.

Enterococcus faecalis (E. faecalis) is a gut commensal bacterium
that produces a superoxide from the autoxidation of membrane-
associated demethylmenaquinone (53). Infection with E. faecalis
induces DNA damage to intestinal epithelial cells by forming the
superoxide. Thus, the abundance of E. faecalis was shown to be
significantly increased in CRC patients compared to healthy
individuals (35, 54, 55). Moreover, in vitro and in vivo studies
demonstrated that E. faecalis can produce hydroxyl radicals (56,
57), which are potent mutagens that cause DNA breaks, point
mutations, and protein-DNA crosslinking, thereby contributing to
chromosomal instability and CRC risk (58).

Enterotoxigenic Bacteroides fragilis (ETBF) is a bacterium
that produces B. fragilis toxin (BFT) and causes diarrhea and
inflammatory bowel disease (IBD) (59–62). This strain plays a
role in promoting tumors by elevating signal transducer and
activator of transcription 3 (STAT3) and the Th17 response
during colon tumorigenesis (60). Although STAT3 activation is
required for colon tumorigenesis, it alone is not sufficient to
trigger colon tumorigenesis by ETBF. Notably, IL-17-dependent
nuclear factor kappa B (NF-kB) activation results in the
formation of a proximal to distal mucosal gradient of CXC
chemokines, which mediates the recruitment of CXCR2-
expressing polymorphonuclear immature myeloid cells to
cause ETBF-mediated distal colon tumorigenesis in parallel (62).

Peptostreptococcus anaerobius (P. anaerobius) induces a pro-
inflammatory immune microenvironment and promotes tumor
Frontiers in Immunology | www.frontiersin.org 3
formation in the intestine. This strain plays a role in tumor
formation by increasing the expression of pro-inflammatory
cytokines in a mouse model and recruiting tumor-infiltrating
immune cells such as immunosuppressive myeloid-derived
suppressor cells (63). P. anaerobius increases the levels of
reactive oxidative species that interact with toll-like receptor
(TLR) 2 and TLR4 in colon cells to promote cholesterol synthesis
and cell proliferation, ultimately causing dysplasia of colon
cells (64).

Salmonella infections and colonization can be chronic and
increase the risk of chronic cholecystitis and other
gastrointestinal diseases, including cancers (65). Salmonella
promotes colon tumorigenesis by relying on AvrA protein,
which can activate both the Wnt/b-catenin and STAT3
signaling pathways in colon tumor cells (66–68). Salmonella
also produces a genotoxin called typhoid toxin, which damages
DNA via the phosphoinositide 3-kinase (PI3K) pathway in
colonic epithelial cells (69). The reduced DNA repair capacity
and inability to activate appropriate checkpoint responses have
been associated with increased genomic instability in APC-
deficient cells exposed to genotoxin. Campylobacter jejuni
produces a cytolethal distending toxin (CDT), a genetic toxin
with DNAse activity that causes DNA double-strand breaks and
promotes colorectal tumorigenesis (70). Rapamycin, which
inhibits mammalian target of mTOR signaling in mammals,
has been shown to attenuate C. jejuni-induced colitis and
carcinogenesis (70, 71).

Sulfate-reducing bacteria (SRB) are a microbiome component
that is of particular interest with respect to colitis (72). These
microorganisms can produce hydrogen sulfide (H2S) by using
methionine and cysteine as substrates. Studies have shown
increased amounts of SRB in the stool of CRC patients
compared to healthy individuals (73). H2S produced by SRB
can stimulate CRC progression by inhibiting butyrate oxidation
and destroying the gut barrier, as well as induce DNA damage
through reactive oxygen species (ROS) (74, 75).

Research to understand the relationship between other
intestinal microbes with CRC formation is still ongoing. Thus,
the bacteria discussed above do not constitute all of the causative
bacteria of CRC.
INFLUENCE OF GUT THE MICROBIOME
ON CRC PROGRESSION

The gut microbiome affects not only the formation of colon
malignancy, but also its progression. Published literature related
to the development of CRC has demonstrated that many bacteria
affect tumor development and growth. In addition, it was
observed that the progression of colon adenoma was promoted
in a spontaneous CRC mouse model characterized by expression
of mutated Apc, a tumor suppressor gene (76). This section will
describe research findings associated with progression-related
mechanisms rather than tumor formation. Figure 1 summarizes
the bacteria and their mechanisms of involvement in CRC
initiation and progression.
January 2022 | Volume 12 | Article 807648
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The presence of F. nucleatum is associated with worse
prognosis in CRC patients (77, 78). Expression of tumor
necrosis factor alpha, b-catenin, and NF-kB was increased in
the F. nucleatum-abundant group and COX-2, matrix
metallopeptidase 9, and NF-kB were highly expressed in the B.
fragilis-abundance group. Immunohistochemical analysis
showed that Kirsten rat sarcoma virus (KRAS) and proto-
oncogene B-Raf (BRAF) expression were increased in the
presence of F. nucleatum and B. fragilis (78). F. nucleatum-
high cases were inversely associated with the density of CD3+ T
cells (79). Experimental evidence suggests that F. nucleatum
can promote colonic tumor development by downregulation
of anti-tumor T cell-mediated adaptive immunity. Natural
killer cells (NK cells) were also found to be affected by
F. nucleatum in various carcinomas including CRC (80).
Gur and colleagues found that the Fap2 protein of F.
nucleatum directly interacts with T cell immunoreceptor with
Frontiers in Immunology | www.frontiersin.org 4
Ig and ITIM domains (TIGIT) to inhibit the cytotoxicity of
NK cells.

ETBF was also revealed to support the progression of
malignancy as well as tumorigenesis (81). This strain induces
the secretion of exosome-like nanoparticles in intestinal
epithelial cell lines and contains chemokine CC motif ligand
20 and prostaglandin E2 in the particle. Thus, ETBF induces the
recruitment and proliferation of CD4+CCR6+IL17A+ Th17 cells
via the IL-17 signaling pathway, thereby participating in
tumorigenesis and cancer cell growth.

Long, et al. found that the surface protein of P. anaerobius,
putative cell wall binding repeat 2 (PCWBR2), promotes CRC
development in APC+/- mice (63). PCWBR2 initiates the
oncogenic PI3K-Akt signaling pathway that directly binds to
the intestinal epithelial cell receptor integrin a2/b1 and
promotes tumor cell proliferation via the PCWBR2-integrin
a2/b1-PI3K-Akt-NF-kB signaling axis.
FIGURE 1 | The relationship between the gut microbiome and sequential progression of colorectal carcinoma. Specific gut microorganisms induce chronic
inflammation in the colorectal epithelium. For example, typhoid toxin or colibactin secreted by Salmonella or E. coli, respectively, leads to pro-inflammatory cytokine
production and bacterial adherence. Chronic inflammation is one of the major causes of CRC and increased ROS with epithelial cell DNA damage also play a major
role in cancer initiation by the gut microbiome. Some microorganisms like F. nucleatum and B. fragilis induce a tumor-favorable immune microenvironment by
reducing CD3+ T cell density along with the recruitment and proliferation of CD4+CCR6+IL17A+ Th17 cells. Furthermore, bacterial components such as putative cell
wall binding repeat 2 surface protein in P. anaerobius activate the NF-kB signaling pathway in CRC tumor cells and promote tumor cell proliferation. Colibactin-
producing E. coli encodes enzymes responsible for HGF synthesis and induces senescence and tumor growth.
January 2022 | Volume 12 | Article 807648
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Escherichia coli (E. coli), which is the most highly abundant
strain residing in the intestine, is also closely related to the growth of
CRC. Studies have shown that the level of mucosal-associated E. coli
is increased in CRC tumor tissues compared with in normal colon
tissues (82). The pathogenic E. coli strain showed a correlation with
inflammation and ROS production, which may propagate tumor
infiltration (83). E. coli has polyketide synthase which codes for
production of colibactin, the polyketide-peptide genotoxin found to
play a significant impact on tumor growth (84, 85). In a xenograft
model, colibactin-producing E. coli indirectly promotes tumor
growth by inducing hepatocyte growth factor (HGF) (86). HGF is
the main mechanical link between pks+ (which encodes enzymes
responsible for HGF synthesis) E. coli-induced senescence and
tumor growth. Other factors, including microRNA-20a-5p,
sentrin-specific protease 1 (SENP1), and activated HGF receptors,
are also affected by the presence of pks+ E. coli in human CRC.

In contrast, the presence or enrichment of certain intestinal
strains leads to anti-cancer effects on the growth of CRC. Numerous
animal studies have shown several emerging chemical candidates as
key mechanisms for probiotics to induce protective effects against
CRC. Faecalibacterium prausnitzii is a potential probiotic that can
downregulate the NF-kB pathway in gut epithelial cells by
producing hydrophobic microbial anti-inflammatory molecules
and prevent colitis in animal models (87). Lactobacillus
rhamnosus GG and Bifidobacterium lactis Bb12 help to prevent
abnormal epithelial proliferation in patients with a history of polyps
and improve the intestinal epithelial tight junction barrier (88).
Lactobacilli and Bifidobacteria were suggested to play a role in
suppressing tumor progression and volume in a CRC mouse model
(89, 90). The presence of these probiotics was confirmed to induce
increasing SCFA production, thus inducing apoptosis and
inhibiting tumor proliferation (91). Butyrate, one of the SCFA
metabolites produced by probiotics, can induce the expansion of
T reg lymphocytes for regulating the immune response in colorectal
tissues and suppressing carcinogenesis and tumor growth (92).
INFLUENCE OF THE GUT MICROBIOME
ON CRC TREATMENT

Because the gut microbiome has been closely associated with
CRC, numerous studies have been focused on investigating its
effect on CRC treatment. Research related to the effect of gut
microbiome on tumor treatment is the most important part of
the cancer-microbiome research field and many studies are being
conducted in combination with various treatment modalities to
apply it to clinical cancer treatment. In addition to existing
chemotherapeutic agents or radiotherapy, new discoveries are
being made about the synergistic effects of the gut microbiome
with immune checkpoint inhibitors (ICIs) (93). Figure 2
summarizes the research findings discussed below.
CHEMOTHERAPY

The gut microbiota can modulate the efficacy of conventional
chemotherapy. For example, it is known that certain gut
Frontiers in Immunology | www.frontiersin.org 5
microbiota may play a role in regulating cytotoxicity by
participating in the metabolic process of anti-cancer drugs.
The anti-cancer effect of platinum-based chemotherapeutic
agents such as oxaliplatin and CpG oligodeoxynucleotides was
decreased in mice treated with antibiotics (94), which exhibited
lower cytokine secretion and ROS production, resulting in
reduced tumor necrosis following anti-tumor therapy in the
MC38 mouse colon tumor transplant model.

Gemcitabine has been shown to convert into an inactivated
form with reduced anti-cancer effect when a specific
gammaproteobacteria is present in the tumor (95).
Gammaproteobacteria contain a long isoform of the cytidine
deaminase enzyme which converts gemcitabine into an
inactivated form. The anti-cancer effect was shown to be
suppressed when the bacteria were eliminated by antibiotic
treatment in a mouse model of CRC (95). Even in mouse tumor
experiments using 5-fluorouracil (5-FU), antibiotic administration
reduced the anti-cancer effect of 5-FU administration in the CRC
model (96). In 16S rRNA seq analysis, pathogenic bacteria such as
Escherichia shigella and Enterobacter were significantly increased
when antibiotics were administered, and these changes were
restored by taking probiotics.

F. nucleatum, which was previously known to greatly
influence tumor initiation and progression, affects CRC
treatment outcomes as well as CRC risk and dysplasia. A
qPCR analysis based on colorectal tissue samples from 122
CRC patients confirmed a better prognosis occurred in patients
with low F. nucleatum levels (77, 97). The level of F. nucleatum
enrichment was positively correlated with poor response to 5-FU
and oxalipatin in CRC patients (98). F. nucleatum stimulates the
TLR4 and Myd88 innate immune signals and interferes with
apoptosis, contributing to activation of the autophagy pathway
and CRC chemoresistance (98).
RADIOTHERAPY

Dysbiosis caused by radiation therapy has the potential to
adversely affect the other treatment modalities of CRC.
Analysis of the gut microbiome after radiation treatment
showed a decrease in commensal bacteria such as
Bifidobacterium, Faecalibacterium, and Clostridium spp., as
well as an increase in Bacteroides and Enterococcus spp (99). In
addition, in the case of patients receiving radiation therapy to the
pelvic region, there was a tendency for the Fusobacteria taxa to
increase by about 3% (100). These changes show the potential for
tumor-promoting capacities. These microbiota can pass through
the impaired gut barrier as a result of epithelial inflammatory
damage caused by radiation therapy, leading to an additional
intestinal inflammatory response and tissue damage (101).
IMMUNOTHERAPY

Certain intestinal microbes are involved in tumor growth by
regulating the immune response. Studies have been conducted to
January 2022 | Volume 12 | Article 807648
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elucidate the mechanism of intestinal microbes and how they
affect the efficacy of immunotherapeutic agents. In 2015, it was
reported that the commensal gut microbiome could enhance the
anti-tumor efficacy of programmed death-ligand 1 (PD-L1) ICIs
through two mouse studies. Cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4) inhibitors are one of the most widely used
ICIs in clinical practice. The efficacy of CTLA-4 inhibitors was
demonstrated to be altered by the population of the gut
microbiome (102). The literature has identified an important
role for Bacteroides species in the immunostimulatory
modulation of CTLA-4 blockade. The modulation of ICI
efficacy mediated by bacterial species in the gut microbiome is
not limited to CTLA-4 signaling. The efficacy of a PD-L1
inhibitor was also shown to be modulated by the gut
microbiota composition in a mouse tumor model (103). Recent
studies have indicated that the anti-tumor effect was found
associated with various bacteria such as Akkermansia,
Faecalibacterium, Clostridiales, and Bifidobacterium spp (104–
106). Although some details remain to be understood, this anti-
tumor effect has been partially attributed to SCFA microbial
metabolites such as butyrate and propionate (107). Another
mechanism for modulation of ICIs is that host immune cells
can interact directly with specific bacteria. Akkermansia
muciniphila improves the efficacy of immunotherapeutic
agents in an IL-12-dependent manner through direct
interaction with dendritic cells in the lymph node (106).
Bacteroides spp. can also directly increase Th1 and CD8 T cell
anti-tumor immune responses (102).
Frontiers in Immunology | www.frontiersin.org 6
MICROBIOME MODULATION FOR COLON
CANCER TREATMENT

Growing evidence clearly illustrates the significant influence that
the gut microbiome has on tumors. Thus, it is not surprising that
attempts have been made to inhibit tumor growth or modulate
the efficacy of tumor therapy by regulating the gut microbiota.
Efforts are ongoing to increase the effectiveness of tumor
treatment and reduce side effects through fecal microbiome
transplantation as well as probiotic therapy.

We discussed results from studies showing that Lactobacilli
and Bifidobacterium affect the occurrence and progression of
CRC in animal models (89–91). Some probiotics can help to not
only enhance the effects of anti-cancer therapeutic agents but
also alleviate the side effects caused by conventional cancer
treatments (108). However, these probiotics also have the
potential to act as opportunistic pathogens that can easily
penetrate the intestinal barrier and immune environment after
weakening by intestinal tumors (109). Appropriate probiotics
with appropriate administration methods that can enhance anti-
cancer effects and alleviate side effects are needed.

Fecal microbiota transplantation (FMT) is an emerging
biotherapeutic method for altering the microbiota by
transplanting stool information from healthy donors to
patients (110). FMT can be applied to various gastrointestinal
diseases including C. difficile infection, IBD, and restored
eubiosis (111, 112). Many efforts are being made to apply FMT
in the clinic as a tumor treatment. Reports have shown that FMT
FIGURE 2 | Effects of gut microbiome modulation on cancer treatment. Therapies which modulate the gut microbiome, including administration of probiotics or fecal
microbiota transplantation, improve the efficacy of cancer treatment. Administration of antibiotics can reduce the efficacy of oxaliplatin and CpG oligodeoxynucleotides
chemotherapeutic agents. The use of antibiotics increases pathogenic bacteria such as Escherichia shigella and Enterobacter, as well as reduces the anti-cancer effect
of 5-FU. Radiation of the pelvic area causes dysbiosis and has the potential to affect the treatment modality of CRC. Furthermore, radiation-induced gut epithelial
damage worsens the prognosis of CRC patients. These radiation side effects can be ameliorated through fecal microbiome transplantation as well as probiotics
administration. The gut microbiota plays a role in modulating mucosal immunity in the colorectal region, acting to improve the efficacy of immunotherapy by enhancing
the CD8+ T cell immune response or SCFA metabolite production.
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could be used to overcome resistance to immunosuppressants in
the CRC mouse model (113). In addition, FMT can be helpful in
alleviating the side effects of ICIs such as immune checkpoint
inhibitor-associated colitis (114). Complete resolution of colitis
through FMT was sustained for 53 days after one dose and for 78
days after two doses. Although clinical application as a treatment
for CRC is still unexplored, a recent FMT study of melanoma
patients reported that FMT succeeded in overcoming resistance
to immunotherapy in patients who did not respond to
immunotherapy (115, 116). These results suggest that FMT
can be effectively used in the treatment of CRC. However,
since the gut microbiome environment consists of a very large
network with many unknowns remaining, more research is
needed before microbiome modulation can be administered as
an anti-cancer treatment in CRC.
CONCLUSION

Various animal and clinical experiments have demonstrated that
changes in the composition of the gut microbiota affect the
initiation of precancerous cancer lesions and cancer progression.
Because the colorectal region is a site where changes in the gut
microbiota can influence the organs directly, CRC is considered
to be affected by the gut microbiome more than other tumors.
Studies of the gut microbiome revealed that dysbiosis occurred
more frequently in CRC patients than in healthy people. The
proportion of butyrate-producing bacteria was found to be
reduced along with inflammation in the intestine while
opportunistic pathogens were increased. Epidemiological
studies have highlighted dietary factors such as western eating
habits and reduced dietary fiber intake as risk factors for CRC,
suggesting the gut microbiome as one of the mechanisms linking
these factors to CRC. Dietary fiber can be fermented into SCFAs
Frontiers in Immunology | www.frontiersin.org 7
by intestinal bacteria and animal experiments demonstrated that
various SCFAs such as butyrate could affect cancer initiation and
progression. Finally, the use of antibiotics may also be a risk
factor for CRC and studies of the gut microbiome demonstrate
its involvement in this effect.

Many published results have demonstrated that the gut
microbiome acts as an important key factor in the initiation
and progression of carcinoma in the treatment of CRC. However,
we still understand only a small part of the gut microbiome and
further research is needed to elucidate the underlying
mechanisms and to modulate the gut microbiome as an
important strategy in the treatment and prevention of CRC.
This review describes the gut microbiome strains that affect each
stage of the tumorigenesis process, including the underlying
mechanisms, supplying an overview of the microbiota species
likely involved in future studies examining the associations
between the gut microbiome and CRC.
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