Mirdita et al. BMC Genomics (2015) 16:430
DOI 10.1186/512864-015-1628-8

BMC
Genomics

RESEARCH ARTICLE Open Access

Genetic architecture is more complex for

@ CrossMark

resistance to Septoria tritici blotch than to
Fusarium head blight in Central European

winter wheat

Vilson Mirdita', Guozheng Liu', Yusheng Zhao', Thomas Miedaner?, C. Friedrich H. Longin?, Manje Gowda®,

Michael Florian Mette' and Jochen C. Reif'”

Abstract
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genetic architecture.

Background: Fusarium head blight (FHB) and Septoria tritici blotch (STB) severely impair wheat production. With
the aim to further elucidate the genetic architecture underlying FHB and STB resistance, we phenotyped 1604
European wheat hybrids and their 135 parental lines for FHB and STB disease severities and determined genotypes

Results: Cross-validated association mapping revealed the absence of large effect QTL for both traits. Genomic
selection showed a three times higher prediction accuracy for FHB than STB disease severity for test sets largely

Conclusions: Our findings suggest that the genetic architecture is less complex and, hence, can be more properly
tackled to perform accurate prediction for FHB than STB disease severity. Consequently, FHB disease severity is an
interesting model trait to fine-tune genomic selection models exploiting beyond relatedness also knowledge of the
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Background
Wheat improvement is characterized by the need to
control a high-dimensional trait space comprising grain
yield and its components, quality traits, as well as abiotic
and biotic stress resistances [1]. As a consequence of the
large number of relevant traits, multi-stage selection is
commonly applied in wheat breeding programs. Multi-
stage selection encompasses classical phenotypic selection
as well as marker-assisted [2] and genomic selection [3, 4].
In marker-assisted selection, a small number of prede-
fined functional markers is used to predict the perform-
ance of genotyped material for a trait [5]. This strategy
is worthwhile if major quantitative trait loci (QTL) are
present that contribute to a large proportion of the
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genotypic variance for traits which are difficult and
expensive to phenotype [2]. In contrast, in genomic
selection, a large number of markers is used to predict
the performance for complex traits controlled by many
QTL with small effects [6, 7]. For traits with presence of
a few large and several small effect QTL, alternative bio-
metrical approaches have been proposed to maximally
profit from a combined marker-assisted and genomic se-
lection [8, 9].

Fusarium head blight (FHB) caused by Fusarium
graminearum, F. culmorum and other Fusarium spe-
cies severely impacts wheat production worldwide
[10]. Septoria tritici blotch (STB) disease caused by
Mycosphaerella graminicola (anamorph Septoria tritici)
has become one of the most devastating leaf diseases
in Central European winter wheat [11]. Accurate
knowledge of the genetic architecture of FHB and STB
resistance is needed for a custom-tailored design of
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genomics-based breeding strategies. In this context, it
is important to take into account that prediction accuracy
of genomic selection is not only driven by the linkage
disequilibrium between molecular markers and QTL, but
also exploits genetic relatedness between members of the
training and the test population [12]. Especially in studies
based on small training population sizes, effects of re-
latedness may become of overwhelming importance [12,
13]. Consequently, genomic selection models are not ne-
cessarily stable across different cycles of selection.

The relative relevance of linkage disequilibrium in
comparison to relatedness for genomic selection is trait
specific. It is challenging to differentiate both sources
contributing to the accuracy of genomic selection as
their effects are intermingled [14]. Using mapping popula-
tions derived from factorial crosses offers a unique oppor-
tunity to untie linkage disequilibrium from relatedness as
test populations with defined gradual degrees of related-
ness to the training population can be established [15].

The genetic architecture of STB resistance has been
recently analyzed based on a mapping population of ap-
proximately 1000 European wheat hybrids that were
phenotyped in two environments [11]. The related
cross-validation study suggested that the genetic archi-
tecture underlying STB resistance in this population is
complex with absence of large effect QTL, which is in
accordance to previous findings [16—18]. The failure to
detect large effect race-specific resistance genes such as
Stb1 originating from a Bulgarian landrace [19] in this
collection can be explained by the fact that the related
favorable alleles have not yet been introgressed into
European elite wheat lines [11]. The potential of genomic
selection in the above mentioned hybrid population was
previously found to substantially depend on genetic re-
latedness [11]. The accuracy to predict STB resistance
amounted only to 0.3 when using a test set mostly unre-
lated to the training set. This accuracy is surprisingly low
and comparable to that observed for grain yield in a simi-
lar experimental make-up [20]. Verification of this result
is relevant in order to assess the stability of genomic selec-
tion models for STB resistance.

Major QTL for FHB resistance have been identified in
populations derived from crosses with exotic donor lines.
Examples comprise QTL Fhbl from line Sumai 3 or QTL
FhbS from line CM82036 [21]. Despite worldwide efforts,
however, the favorable alleles of these QTL have so far not
been used in wheat breeding in Central Europe [22]. As
alternative strategy, identification of alternative QTL in
adapted European wheat germplasm has been approached
based on biparental QTL mapping [10, 23, 24] and associ-
ation mapping [25-27]. The lack of congruency of QTL
results across studies [24], however, points to the presence
of multiple QTL exhibiting small effects. First experimen-
tal results on the potential of genomic selection suggested
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that precise calibration can be achieved to improve FHB re-
sistance in wheat breeding [27, 28]. Nevertheless, it is not
clear whether the obtained calibration models mainly
exploited relatedness between training and test sets and to
what extent functional QTL information contributed to the
prediction model.

Based on phenotypic data obtained from multi-
environment field trials and genotypic data generated using
a wheat 90 k SNP array for a large collection of 1604 F1
elite winter wheat hybrids and their 135 parental inbred
lines, we contrasted the genetic architecture of FHB and
STB disease severities applying association mapping and
genomic selection in combination with a cross-validation
approach. The objectives of our study were to (1) examine
the correlations among FHB and STB disease severities, (2)
investigate the genetic architecture of both traits, and (3) as-
sess the potential of marker-assisted and genomic selection
for improving FHB and STB disease resistance.

Results

Extensive field evaluation resulted in high heritabilities of
FHB and STB disease severities

In the three environments Harzhof 2012, Harzhof 2013 and
Rosenthal 2013 FHB and STB disease severities were scored
on the same plots, but we observed no significant correla-
tions between FHB and STB disease severity values for all
three environments (Additional file 1: Figure S1) and Conse-
quently: This finding is in accordance to a previous study in
wheat investigating the potential to simultaneously test for
FHB and STB resistance in the same plot [29], it is unlikely
that the combined evaluation of both diseases impaired the
quality of phenotypic data, thus representing an efficient
phenotyping strategy.

FHB and STB disease pressures were high in all environ-
ments as reflected by the wide range of phenotypic values
and genotypic variances significantly (P< 0.05) larger than
zero observed for all environments (Additional file 1: Figure
S1). The Pearson moment correlations among phenotypic
values of the 1604 hybrids and their 135 parental lines esti-
mated for single environments were on average moderate (r
=031, P<0.01 for FHB disease severity and r=0.31, P<
0.01 for STB disease severity). These levels of Pearson mo-
ment correlation are characteristic for diseases where sus-
ceptibility is controlled by multiple gene loci. Consequently,
multi-location field trials are needed to precisely estimate
the genotypic value for FHB and STB disease severity.

In the analyses across environments, we observed a wide
range of FHB and STB disease severity values approximat-
ing a normal distribution (Figs. 1 and 2). This suggests the
absence of large effect QTL, which, if present, should be
reflected by discrete phenotype classes. The genetic vari-
ances of FHB and STB disease severities were signifi-
cantly (P < 0.01) larger than zero. Heritability estimates
for lines and hybrids were high and similar for both
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Fig. 1 Distribution of FHB and STB disease severities. a Fusarium head blight (FHB) and b Septoria tritici blotch (STB) at a rating scale from 1 to 9
(1 = healthy plants; 9 =100 % infected plants) as well as the estimates of broad-sense ¢ heritability for the population of 1739 wheat genotypes
(1604 hybrids and 135 parental lines) evaluated in up to seven environments. p indicates average of diseases severities. Heritabilities where calculated
in broad sense
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Fig. 2 Association between Fusarium head blight (FHB) and Septoria
tritici blotch (STB) disease severities. The data correspond to the best
linear unbiased estimates of 1604 wheat hybrids (circle) and their
135 parental lines (squares) evaluated in up to seven environments.
Lines labeled pg and pgy indicate the average of FHB severities for
parental lines and hybrids, respectively, lines labeled pg and psy
indicate the average of STB severities. C;, Cy, and Cy indicate
correlations of both disease severities in parental lines, hybrids, and

traits (Fig. 1). This clearly underlined the excellent qual-
ity of the phenotypic data, that thus should be suitable
to investigate the genetic architectures of both traits via
association mapping and genomic selection.

Simulation study suggests a high power to detect

major QTL

The potential power of our experimental setting to de-
tect QTL was explored using simulations using detection
frequency as a measure (Fig. 3). For small or intermedi-
ate effect QTL explaining 1 % or 5 % of the genotypic
variance, detection power was predicted to be low to
moderate. In contrast, for QTL explaining 10 % of the
genotypic variance, detection power is predicted high
provided the presence of SNPs in tight linkage disequi-
librium to the QTL with * values above 0.8. The average
genetic map distance among adjacent SNP pairs
amounted to 0.72 cM in our study, with average r°
values of 0.54 (Additional file 2: Figure S2). Conse-
quently, QTL detection power in our study was limited
by the available marker density and might have been en-
hanced by increasing the genotyping depths of the 135
parental lines.

Marker-assisted selection did not facilitate precise
prediction of FHB and STB disease severities in unrelated
genotypes

Cross-validated accuracies of prediction for FHB and
STB disease severities obtained by association mapping
largely differed depending on the relatedness of mem-
bers of training and test sets and the significance thresh-
olds applied (Fig. 4). For the T2 scenario with the test
set highly related to the training set, we observed more
than fourfold larger accuracies of prediction in compari-
son to the TO scenario involving an unrelated test set for
both traits. The cross-validated accuracies of prediction
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Fig. 3 Simulations study of QTL detection power. Detection
frequency of a simulated QTL explaining 1 % (0.01), 5 % (0.05), or
10 % (0.1) of the genotypic variance, assuming markers in linkage
disequilibrium (LD) with the simulated QTL within r’ value classes
0.2-04, 0.4-06, 0.6-0.8, and 0.8-1.0

were for both traits close to zero with a stringent signifi-
cance threshold for the TO test population level and in-
creased only slightly with relaxed significance thresholds.

Genomic selection allowed more accurate prediction of
FHB and STB disease severities than marker-assisted
selection

Cross-validated accuracies of prediction of disease severity
among unrelated hybrids (T0O scenario) were low to mod-
erate and amounted to 0.58 for FHB and for 0.23 STB
(Fig. 5). Among related hybrids T2 scenario, accuracies of
prediction accuracy increased 1.6 - and 3.6 - fold, respect-
ively for FHB and STB disease severity. Both genomic
selection models applied, BayesCrt and RR-BLUP, resulted
in very similar prediction accuracies. A combined predic-
tion approach considering additive and dominance effects
was only slightly superior in predicting FHB and STB
disease severities than the approach based on additive
effects only (Additional file 3: Table S1).
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Fig. 4 Cross-validated accuracies of prediction for marker-assisted
selection of a Fusarium head blight and b Septoria tritici blotch
disease severity. Markers included were selected based on different
levels of significance (P values) of associations. T2 test sets included
hybrids sharing both parental lines, T1 test sets hybrids sharing
one parental line and TO test sets hybrids having no parental line
in common with the hybrids in the related training sets. Numbers
in brackets indicate the average number of significant marker-trait
associations based on 100 cross-validation runs

Discussion

Independent genetic architectures of FHB and STB
disease severities

Miedaner et al. [29] suggested that in European elite
wheat lines FHB and STB disease severities are only
marginally influenced by pleiotrophic and linkage effects,
resulting in low genotypic correlations. Our results
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Fig. 5 Cross-validated accuracies of prediction for genomic selection of a Fusarium head blight and b Septoria tritici blotch disease severity in
wheat. The results are based on the two genomic selection models BayesCr and ridge regression Best Linear Unbiased Prediction (RR-BLUP).
T2 test sets included hybrids sharing both parental lines, T1 test sets hybrids sharing one parental line and TO test sets hybrids having no parental
line in common with the hybrids in the related training sets

confirm this view, as no significant correlation (r = 0.10;
P > 0.05) between both disease severities was detected
(Fig. 2). In consequence, multivariate approaches mod-
eling the covariance among traits as suggested for in-
stance by [30] cannot be expected to improve neither
phenotypic analysis, nor association mapping or gen-
omic selection approaches. Therefore, we focused on
univariate analyses of the genetic architecture of FHB
and STB disease severities.

Genetic architecture of FHB is less complex than for STB
disease severity in Central European elite wheat
Cross-validated association mapping results are known
to be influenced by relatedness between training and test
populations as well as by functional QTL information
[27]. The use of a hybrid population produced based on
factorial mating designs enables the disentaglement of
the two factors by inspecting the accuracy of prediction
in a TO test set largely unrelated to the estimation set in
comparison to more related T1 and most related T2 test
sets [15]. In our study, we failed to detect major QTL
for both traits, which was reflected by a low accuracy of
prediction of marker-assisted selection even in the TO
scenario (Fig. 4). This clearly suggests that even though
several major QTL controlling FHB and STB disease se-
verities have been identified in exotic genotypes [10, 19,
21, 31], none of them is currently exploited in the sam-
pled European elite varieties. The absence of large effect
QTL from exotic donors in the Central European wheat
lines is most likely due to substantial yield penalties [22].
The similar accuracy of prediction of genomic selec-
tion of FHB versus STB disease severity for the T2 sce-
nario (Fig. 5), in which relatedness between training and
test sets is mainly exploited [15], is not surprising as the

underlying phenotypic data were of similar precision
(Fig. 1C). In contrast, the accuracy of prediction of gen-
omic selection was nearly 3 times larger for FHB than
STB disease severity for the TO test set most unrelated
to the training set (Fig. 5). The observed difference can
be explained mainly by a better exploitation of func-
tional QTL information for FHB than for STB disease
severity. Thus, our findings suggest that the genetic
architecture is less complex in the case of FHB and,
hence, given the same level of relatedness between train-
ing and test sets, can be more properly tackled to predict
FHB than STB disease severity.

BayesCm does not improve the accuracy of prediction for
FHB disease severity, a trait with medium genetic
complexity

From the two genomic selection approaches tested, RR-
BLUP approximates the infinitesimal model using the
same shrinkage factor for all markers [32]. In contrast,
BayesCnt performs variable selection and assumes that a
fraction 1-m of markers is not contributing to the genetic
variance [33]. Considering the lower complexity of the
genetic architecture of FHB than STB disease severity
reflected by three times higher prediction accuracies in
the unrelated TO test sets (Fig. 5), it could be expected
that BayesCnt would outperform RR-BLUP. This was,
however, not the case in our study. A possible explanation
would be that several SNPs in linkage disequilibrium to
relevant QTL were counterbalancing the drawbacks of
RR-BLUP [34]. Moreover, the precision of estimating the
hyper parameters 1t tends to be overestimated [33], which
could reduce the advantages of BayesCrm in comparison to
RR-BLUP in modelling the genetic architecture of FHB
disease severity more properly.
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Conclusions

The diseases FHB and STB severely impair wheat pro-
duction worldwide. Both traits require intensive field tri-
als to precisely estimate genotypic values, making them
interesting targets for genomics-assisted breeding. Our
results suggest that the genetic architectures of both
traits are complex, which favors genomic versus marker-
assisted selection.

Contrasting the cross-validated accuracies of prediction
observed for tests sets with different degree of relatedness
to the training sets clearly underlines that the precision to
predict STB disease severity is mainly driven by relatedness.
In contrast, genomic selection models are still moderately
accurate predicting FHB disease severity in largely unre-
lated populations. Consequently, functional QTL variation
is exploited, which makes FHB disease severity an interest-
ing model trait to fine-tune genomic selection models tack-
ling besides relatedness also knowledge of the genetic
architecture. One promising option to improve the predic-
tion accuracy for FHB disease severity for instance, consists
in expanding the Bayesian alphabet by specifying distinct
prior distributions for small and large marker effects.

Methods

Plant materials and field trials

Fifteen European winter wheat (Triticum aestivum L.)
lines were crossed as males in a factorial scheme with 120
female lines by the use of chemical hybridization agents,
yielding sufficient seed for field trials from 1604 F; hybrids
[35]. The genetic make-up of this population of parental
lines and hybrids has been described in detail with regard
to a variety of traits [8, 11, 15, 20, 36].

The 135 parental lines and 1604 hybrids derived from
them were evaluated in parallel with 10 released reference
varieties for FHB disease severity in five environments (lo-
cation x year combinations, Additional file 1: Figure S1).
A reduced set comprising the 135 parental lines, 1055 hy-
brids and the 10 released reference varieties was evaluated
in further two environments. Test designs were unrepli-
cated in 5 environments, partially replicated in one envir-
onment, and replicated in one environment. In all
environments, lines and hybrids were artificially spray in-
oculated except in Harzhof 2012, where scoring was based
on natural infection. FHB inoculum production based on
autoclaved wheat kernels as substrate was performed as
described in detail by [37]. Directly before inoculation,
spores were rinsed off with tap water, counted, and diluted
for spray inoculation with a common plot sprayer. To
compensate for different heading times of the involved
wheat genotypes, inoculation was carried out in total three
to four times in intervals of three to four days, starting
when the first 20 % of genotypes were flowering. Thus, in-
oculation of each genotype at least once at full flowering
was facilitated. The inoculum had a concentration of 5 x
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10* spores mL ™" for Rosenthal 2012 and 2013 and of 2 x
10° spores mL™" for all other location-year combinations.
FHB infection was scored in an ordinal scale of 1 to 9,
where 1 refers to healthy plants and 9 stands for 100 % in-
fected plants. In Bohnshausen 2012, Bohnshausen 2013,
and Hohenheim 2013, FHB infection was scored at differ-
ent time intervals, with the mean of these scorings used
for analysis. In the other environments, disease severity
data were recorded at a single date with optimal differenti-
ation among the entries.

The population of 1749 genotypes was also evaluated for
STB disease severity at three locations in the year 2012 and
at five locations in the year 2013 (Additional file 1: Figure
S1). Test locations were Hadmersleben, Harzhof, Rosenthal,
Seligenstadt and Cecilienkoog. In Cecilienkoog, only a re-
duced set of 1200 genotypes (1055 hybrids, 135 parental
lines, and 10 released reference varieties) was evaluated for
STB disease severity. The experimental design was an alpha
design where replication and location effects were con-
founded. In Cecilienkoog, targeted inoculation with a mix-
ture of isolates was performed by spraying a spore
suspension with a concentration of 1 x 10° spores mL™" for
one time when all genotypes had fully expanded flag leaves.
In Rosenthal, Hadmersleben, and Harzhof, natural STB in-
fection facilitated by cultivation of susceptible spreader
varieties was followed. STB disease severity was visually
scored plot wise as coverage of flag leaves with lesions
bearing pycnidia on a scale from 1 (fully resistant) to 9
(fully susceptible).

Phenotypic data analyses

Evaluations for FHB and STB disease severities were per-
formed in up to seven environments reflecting a combin-
ation of replicated and unreplicated trials owing to the high
number of entries coupled with limited phenotyping capaci-
ties. Therefore, in the analysis of variance, we estimated best
linear unbiased estimates (BLUES) separately for the two en-
vironments with replicated data. In the next step, we used
these BLUESs along with the raw data from the other five en-
vironments without replications and carried out an analysis
of variance across environments as outlined in detail in [38].
In addition, we assumed fixed genotypic effects to obtain
BLUEs of the genotypic values. All statistical analyses were
performed by the restricted maximum likelihood method
using ASReml version 3.0 [39].

Genotypic data

DNA was extracted according to standard procedures
from all genotypes and fingerprinting was performed
with a 90 k SNP array based on an Illumina Infinium
assay [40]. All markers that were either monomorphic,
had missing values of >5 %, heterozygosity of >5 % in in-
bred lines, or had a minor allele frequency of <5 % were
discarded from analysis [20]. After this filtering, 17,372
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high-quality SNP markers were retained (Dryad Digital
Repository: doi:10.5061/dryad.461nc).

Genome-wide mapping

Data from each environment were used in association
mapping scans correcting for population stratification
with a kinship matrix [20]. Kinship matrices for the in-
bred lines and hybrids were modelled as described previ-
ously [20, 41]. Genome-wide scans for marker—trait
associations were conducted to detect main-effect QTL.
The Bonferroni-Holm procedure [42] was applied to correct
for multiple testing at different significance levels.

Based on the adjusted entry means of all genotypes,
we applied Ridge Regression Best Linear Unbiased
Prediction (RR-BLUP) [43] and BayesC m [33, 44] con-
sidering additive and dominance effects. Details of the
implementation of the models have been described in
[20]. All statistical procedures for the genomic selection
approaches were executed using [45].

Cross validation

We evaluated the accuracy of prediction of FHB and
STB disease severities by association mapping and two
genomic selection approaches RR-BLUP and BayesC
using cross validations. In this work, we sampled 100
times 600 hybrids, 10 of their male, and 80 of their
female parental lines as the training set, and estimated
the additive and dominance effects applying the genomic
selection as well as the association mapping models out-
lined above. For the association mapping approach, we
corrected for population stratification with a kinship
matrix and identified significant marker-trait associa-
tions. The implementation of the two genomic selection
models was based on estimates of the genetic variances
and the broad-sense heritability on an entry-mean basis
of the full population. We tested the accuracies of predic-
tion for three types of test sets with gradually decreasing
degrees of relatedness to the training set. The most closely
related test set T included different hybrids derived from
the same parental lines as the hybrids evaluated in the
training set, while the less related test set T, included hy-
brids sharing one parental line with the hybrids in the
training set and the least related test set T, included only
hybrids having no parental lines common with the hybrids
in the training set [15]. Prediction accuracy was estimated
as Pearson’s correlation coefficient between the observed
and the predicted hybrid performance standardized with
the square root of the broad-sense heritability on an
entry-mean basis.

Simulation study

We performed a simulation study to examine the power
to detect QTL in our association mapping approach
using our 90 k SNP array data. Following [27], we
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simulated a trait with a heritability of 0.7 and assumed
the presence of one main effect QTL with an allele fre-
quency of 0.1, explaining 1 %, 5 %, or 10 % of the genotypic
variation. We performed 200 simulation runs for each
scenario, conducing genome-wide scans for marker-trait as-
sociations to detect main-effect QTL applying a
Bonferroni-Holm procedure correcting for multiple testing
at an significance level of 0.01, and recorded the frequency
of QTL detection as well as the detection of SNPs which
are in linkage disequilibrium with the simulated QTL (r*
values classes: 0.2-0.4, 0.4—0.6, 0.6—0.8, 0.8—1.0).

Data availability
The data is stored under Dryad Digital Repository:
doi:10.5061/dryad.461nc.

Ethics statement
This study did not involve taking actual samples from
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Additional files

Additional file 1: Figure S1. Correlation of FHB and STB disease severities
between the environments. Heat plots of Pearson moment correlation
coefficients among single environments entry-means for (A) Fusarium
head blight and (B) Septoria tritici blotch disease severity of the 1749
wheat genotypes (1604 hybrids, their 135 parental lines, and 10 released
reference varieties).

Additional file 2: Figure S2. Marker density and linkage disequilibrium
(LD). Genetic map distance between adjacent markers (A) and extent of
LD among adjacent marker pairs measured (B).

Additional file 3: Table S1. Average accuracies of prediction of
cross-validated explained genotypic variance for BayesCr and
RR-BLUP for resistance against Fusarium head blight (FHB) and
Septoria tritici blotch (STB) based on genotyping data from a 90 k
SNP array.
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