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Abstract
We analyzed the effects of the clinical hyperbaric oxygen therapy (HBOT) on the plasma

antioxidant response and levels of endothelin-1, Interleukine-6 (IL-6) and vascular endothe-

lial growth factor (VEGF) in patients with chronic wounds (20.2±10.0 months without heal-

ing). They received 20 HBOT sessions (five sessions/week), and blood samples were

obtained at sessions 1, 5 and 20 before and 2 hours after the HBOT. An additional blood

sample was collected 1 month after wound recovery. Serum creatine kinase activity

decreased progressively in accordance with the wound healing. Plasma catalase activity

significantly increased after the first and fifth sessions of HBOT. Plasma myeloperoxidase

activity reported significantly lower values after sessions. Plasma VEGF and IL-6 increased

after sessions. Endothelin-1 levels were progressively decreasing during the HBOT, being

significant at the session 20. Plasma malondialdehyde concentration was significantly

reduced at the last session. Both creatine kinase activity and malondialdehyde levels were

maintained lower 1 month after wound recovery respect to initial values. In conclusion,

HBOT enhanced the plasma antioxidant defenses and may contribute to activate the heal-

ing resolution, angiogenesis and vascular tone regulation by increasing the VEGF and IL-6

release and the endothelin-1 decrease, which may be significant factors in stimulating

wound healing.

Introduction

Hyperbaric oxygen therapy (HBOT) is the clinical utilization of the oxygen at pressures higher
than atmospheric pressure, habitually at 2–3 atmosphere absolute (ATA) pressure with 100%
oxygen exposure. Breathing oxygen at elevated pressure increases the oxygen availability for
the body tissues. Moreover, HBOT increases the capacity of blood plasma to transport oxygen
with respect to normobaric conditions. HBOT has been successfully employed to manage
diverse clinical diseases [1], such as non-healing diabetic and selected problem wounds, and
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necrotizing soft tissue infection. The wound healing is a complex process and requires an
orderly and coordinated sequence of steps involving the production and participation of many
growth factors, components of the extracellularmatrix, and several cell types. Tissue repair
involves the mobilization and activation of the immune system that is responsible for the clear-
ance of the damaged tissue from dead cells and matrix debris, and for the mediators synthesis
that stimulates angiogenesis and fibroblast growth [2]. The repair process includes an inflam-
matory phase, but also a resolution phase of the inflammation and wound healing returning to
tissue homeostasis [2, 3].
The main basis behind the use of HBOT in the management of chronic non-healing wounds

is the increase in the amount of oxygen in blood and the generation of a favourable gradient for
the diffusion of oxygen into the affected tissues. In most of the pathological situations with
delayed wound healing, there is a direct association with the harmful effects of prolonged oxy-
gen deficit [4]. In this way, diverse processes essential for normal wound healing such as fibro-
blast proliferation, angiogenesis, collagen deposition or resistance to infection are oxygen-
dependent [5]. The increase of oxygen levels in the hypoxic wound is essential for the cells
involved in the healing process (neutrophils, fibroblasts, macrophages) to carry out their spe-
cific repair functions [6]. Linked to this observation,HBOT has been evidenced to diminish
the number of major lower limb amputations among diabetic people [7, 8]. The increased oxy-
gen availability during HBOT is an essential mediating factor associated to wound collagen
deposition, cross-linking and neovascularization [9]. HBOT is not able to increase the quantity
of oxygen bound to hemoglobinmolecules, but can raise the quantity of dissolved oxygen in
the plasma [10]. Moreover, the increased oxygen availability increases ROS generation which is
directly associated with the modulation of the inflammatory process [11–13]. HBOT increases
the expression of diverse growth factors and activates the hypoxia-inducible factor 1 (HIF-1)
that may enhance angiogenesis and fibroblast proliferation [14, 15]. In addition, most authors
have indicated that the resulting hyperoxia may cause vasoconstriction, thereby decreasing tis-
sue oedema [8, 16], although this oedema decreasemight be cause by an inflammation reduc-
tion after HBOT [17]. HBOT treatment also induces changes in the oxidative capabilities of
immune cells, which can actively participate in the process of wound healing [18]. Further sig-
nificant effects of HBOT associated to wound healing are an enhanced capacity to kill bacteria
by leukocytes, suppression of bacterial proliferation due to its bactericidal effect on anaerobes
and microaerophilic aerobes, down-regulation of inflammatory pathways by reducing the
expression of pro-inflammatory cytokines, and prevention of leukocyte activation after an
ischemic reperfusion [11, 19, 20].
HBOT exposure can increase the production of reactive oxygen species (ROS), directly

related to the amount of oxygen present. ROS overproduction is detrimental for cells because it
can damage cell components including proteins, lipids, and nucleic acids leading to significant
alteration of health status [21]. However, a moderate increase in ROS can be beneficial because
ROSmay also act as cellular messengers in many signal transduction pathways [22]. Accord-
ingly, vascular endothelial growth factor (VEGF) is up-regulated when cells are exposed to
both hypoxic and hyperoxic conditions, whereas endothelin-1 seems to be decreased after a
depth dive which is related to the hyperoxia condition [23]. VEGF is considered a key pro-
moter of the angiogenic process which is essential for the maintenance of the integrity of blood
vessels, while endothelin-1 participates in the maintenance of the basal vascular tone and blood
pressure by activating the vascular smooth muscle. In addition, endothelin-1 together with
other proteins operate in a network that promotes myofibroblast differentiation and persis-
tence during wound repair [24]. Acute production of IL-6 has direct anti-inflammatory effects
or stimulates immune cell production of anti-inflammatory components, such as the IL-
1-receptor antagonist and IL-10 [25]. IL-6 treatment of wound enhances healing by switching
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immune cells to resolution of inflammation [26]. In addition, IL-6 has been reported to
enhance mesenchymal stem cells proliferation in order to protect from apoptosis and to
increase the rate of in vitro wound healing [27].
The aim of this study was to define the time course of various changes in response to HBOT

in chronic wounded patients in which conventional treatments have been reported to be inef-
fective. Specifically, the activities of antioxidant enzymes were measured in erythrocytes and
plasma as well as plasma myeloperoxidase activity and malondialdehyde adducts. Moreover,
plasma levels of endothelin-1, VEGF and IL-6 were determined.

Materials and Methods

Patient characteristics

14 patients, ten men and four women, (65.8 ± 5.8 years old) presenting a chronic non-healing
wound situation were recruited and volunteered to participate in the study. The protocol pro-
cedures were designed in compliance with the recommendations for clinical research of the
Declaration of Helsinki and were revised and approved by the Ethical Committee of Clinical
Investigation of the Government of Balearic Islands (Palma de Mallorca, Balearic Islands,
Spain) with number IB1295/09PI. At the beginning of the study, 18 patients were recruited but
two decided to abandon before the finishing all sessions because they suffered from claustro-
phobia and another two were excluded due to health complications: one reported ear pain dur-
ing the first HBOT and the second one suffered a bowel obstruction secondary to radiation
enteritis. All the participants were informed about the research protocol before giving their
written consent to participate in the study. Seven of the subjects suffered from diabetic foot
ulcer, four of them from osteomyelitis, two from enteritis radica and one from osteoarthritis.
Previous conventional treatments, included topical antibiotics (selected after bacterial culture
and antibiotic sensitivity tests), topical dressings, and debridement of tissue, reported to be
ineffective in this kind of patients. In the case of osteomyelitis, which is an infectious process,
antibiotics were supplied systemically and topically. All participants were non-smokers and did
not take any antioxidant dietary supplement for 1 month before the study. Before beginning
the HBOT, all participants passed a standard medical and physical revision at the hospital.
During the HBOT, wounds were cleaned with saline solution, treated with antibiotics, and
daily wound curettage or debridement of necrotic tissue was performed to get a well-bleeding
granulating base.

Experimental procedure

The protocol procedure consisted of 20 HBOT exposures in a hyperbaric chamber during a
month (five sessions/week formMonday to Friday). Patients breathed 100% oxygen at a pres-
sure of 2.2 ATA in the hyperbaric chamber during 1 h.
Blood samples were obtained before and 2 hours after the first, the fifth and the twentieth

HBOT sessions. In addition, another blood sample was collected 1 month after ending HBOT
with wound recovery and was utilized as control sample for routine analysis plus plasma mal-
ondialdehyde (MDA) levels, as an indicator of lipid peroxidation. Venous blood samples were
collected from the antecubital vein of patients in appropriate vacutainers. Hematological
parameters including blood cell counts, hematocrit and hemoglobin concentration were deter-
mined using an automatic flow cytometer analyzer Technicon H2 (Bayer) VCS system follow-
ing the standard clinical procedures. Creatine kinase (CK) was measured in serumby standard
procedures using an autoanalyser (Technicon DAX System).
Plasma was obtained after centrifugation of the blood samples at 900g at 4°C for 30 min.

The plasma phase was removed, and the erythrocytes at the bottom were washed with
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phosphate buffered saline and centrifuged again at 900g for 30 min. Erythrocyteswere lysed
with distilledwater and reconstituted in the same volume as the initial plasma volume. Eryth-
rocytes and plasma were immediately stored at -80°C until use. Biochemical procedures were
carried out in duplicate.

Antioxidant enzyme activities

Superoxide dismutase (SOD) and catalase (CAT) activities were measured in erythrocytes and
plasma, glutathione peroxidase (GPx) and glutathione reductase (GR) activities were deter-
mined in erythrocytes, and myeloperoxidase (MPO) activity was determined in plasma by
methods previously described [28]. CAT activity was determined by a spectrophotometric
method based on the decomposition of H2O2. SOD activity was determined using a xanthine/
xanthine oxidase system to produce the superoxide anion. The produced anion induces the
reduction of cytochromeC, which was monitored at 550 nm. GPx activity was determined by
an assay that requires H2O2 and NADPH as substrates and GR as enzyme indicator. The
decrease in NADPH absorbance was followed at 340 nm during the oxidation of NADPH to
NADP+. GR activity determines the rate of conversion of oxidized glutathione (GSSG) to
reduced glutathione (GSH) by monitoring the oxidation of NADPH at 340 nm.MPO activity
was measured following the oxidation of guaiacol. The reactionmixture contained 13.5 mM
guaiacol and the reaction was initiated with 300 μMH2O2, and the absorbance at 470 nm was
monitored. All enzymatic activities were determined at 37°C in a spectrophotometer Shimadzu
UV-2100.

MDA-protein adducts

The levels of plasma MDA-protein adducts were measured by an enzyme immunoassay (Cell
Biolabs, Inc.). Briefly, protein samples or standards (10 μg mL-1) were adsorbed onto a 96-well
plate and incubated overnight at 4°C. MDA–protein adducts were visualizedwith a specific
anti-MDA antibody, followed by an HRP-conjugated secondary antibody. The concentration
of MDA-protein adducts in the samples was calculated using a standard curve of known
concentrations.

Nitrite determination

Nitrite levels were determined in plasma by the acidic Griess reaction using a spectrophotomet-
ric method. Plasma was deproteinized with acetone and kept overnight at -20°C. Samples were
centrifuged at 15,000g for 10 min at 4°C, and supernatants were recovered. A 96-well plate was
loaded with the samples or nitrite standard solutions in duplicate. Sulfanilamide in 5% HCl
and N-(1-napthyl)-ethylenediamine (0.1% w/v) in water was then added to each well. The
absorbance at 540 nm was measured following an incubation of 30 min.

VEGF and endothelin-1 immunoassay

Quantification of VEGF and endothelin-1 in plasma was performed using a commercially
available immunoassay kits (Assay Designs, Inc., Ann Arbor, MI) following the manual
instructions. All determinations were realized in duplicate, and absorbance was measured
using a microplate reader at 450 nm.

IL-6 determination

Plasma IL-6 was determined using an ELISA kit (Diaclone, lit for GENPROBE) following the
manufacturer’s instructions for use. The overall intra-assay coefficient of variation was
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calculated to be 4.4% for IL-6; the calculated overall inter-assay coefficient of variation was
9.1% for IL-6.

Statistical analysis

Statistical analysis was performed using Statistical Package for Social Sciences (SPSS ver-
sion17.0). Data are expressed as mean ± SEM and considering p< 0.05 statistically significant.
To assess the normal distribution of the data the Kolmogorov–Smirnov test was applied. The
statistical differences between the obtained data were evaluated by two-way analysis of variance
(ANOVA). The analyzed factors were the HBOT (HBOT), the number of the session (T) and
their possible interaction (Int). When significant differences were reported, a post hoc testing
(DMS) was used to establish the differences between the different data. Student’s t-test for
paired data was used for hematological parameters, CK activity and MDA levels before the first
session and 1 month after wound recovery.

Results

Previous conventional treatments to heal the chronic wounds (including antibiotics, topical
dressings, and debridement of tissue) were ineffective in these patients. The patients presented
wounds with an average time without symptoms of healing of 20.2±10.0 months when they
began with the HBOT. All patients participating in the present study were recovered after 20
HBOT sessions. The diabetic wound recovery in the patients’ foot before the first HBOT ses-
sion was observed, being this recovery higher after the last HBOT session. The statistical analy-
sis addressed to determine if there were differences between the diabetic and non-diabetic
patients reported no significant differences in any of the parameters studied (data not shown).
Changes in hematological parameters, serumCK activity and MDA concentration in sam-

ples from wounded patients obtained before and after the sessions 1, 5 and 20 of the HBO
treatment are shown in Table 1. Significant statistical effects were not evidenced in any on the
hematological parameters analyzed. The duration of HBOT significantly influenced serumCK
activity with a progressive decrease along the sessions. The results at the session 5 were signifi-
cantly lower than the ones from the first session and the results from the session 20 were also
lower than the ones found in the sessions 1 and 5; finally, at the session 20, serumCK activity
attained a 54% reduction with respect to the session 1 (initial value). Similarly, the plasma con-
centration of MDA adducts was significantly influenced by the treatment duration; plasma
MDA was significantly reduced at the last session with respect to the session 1 (p< 0.05). In
addition, the hematological parameters did not report any significant differences between the
data before the first treatment and 1 month after wound healing. On the contrary, CK activity
and MDA adducts were significantly lower 1 month after wound recovery respect to initial
values.
Erythrocyte enzymatic activities are reported in Fig 1. No significant effects of HBOT and

treatment duration on erythrocyte antioxidant activities were observed.The initial antioxidant
enzymatic activities of erythrocyteswere maintained after each HBOT session and along the
treatment.
Plasma enzymatic activities are reported in Fig 2. Plasma SOD activity was not influenced

by HBOT and treatment duration with similar values in all situations. Plasma catalase activity
responded to the HBOT, but not to the duration of the treatment, with a significant raise after
the sessions 1 and 5 (p< 0.05), although this increase was not significant after 20 HBOT ses-
sions. A significant reduction of plasma MPO activity was evidenced after each analyzed
HBOT sessions while duration treatment did not affect it.

HBOT Therapy in Chronic Wound

PLOS ONE | DOI:10.1371/journal.pone.0163371 September 21, 2016 5 / 14



Table 1. Hematological parameters, creatine kinase activity and MDA in samples obtained from wounded patients (n = 14) before and after the

sessions 1, 5 and 20 of the HBO treatment and 1 month after wound recovery.

Session 1 Session 5 Session 20 1 month after wound healing

Before After Before After Before After

Erythrocytes (106�μL-1) 4.18 ± 0.08 4.23 ± 0.07 4.11 ± 0.07 4.16 ± 0.06 4.12 ± 0.08 4.17 ± 0.11 4.24 ± 0.11

Hematocrit (%) 38.9 ± 0.6 39.0 ± 0.6 38.0 ± 0.5 38.8 ± 0.5 38.4 ± 0.6 39.0 ± 0.8 39.4 ± 0.7

Hemoglobin (g�dL-1) 12.9 ± 0.8 13.0 ± 0.9 12.6 ± 0.8 12.8 ± 0.9 12.7 ± 1.0 12.8 ± 1.2 12.9 ± 0.7

Leukocytes (103�μL-1) 5.99 ± 0.16 6.35 ± 0.18 6.38 ± 0.16 6.39 ± 0.17 6.64 ± 0.23 6.61 ± 0.28 5.79 ± 0.28

Creatine kinase (U/L) 258 ± 29 231 ± 26 181 ± 15 # 174 ± 15 # 119 ± 9.1 $ 124 ± 9.2 $ 123 ± 15 *

MDA (μmol�mL-1) 0.51 ± 0.02 0.48 ± 0.01 0.44 ± 0.02 0.42 ± 0.03 0.34 ± 0.02 # 0.32 ± 0.02 # 0.31 ± 26 *

The effects of HBOT sessions and before/after data were evaluated by one way ANOVA, P < 0.05,
# indicates significant differences respect to session 1.
$ indicates significant differences respect to sessions 1 and 5.

Significant differences between the data before the first treatment and 1 month after wound healing were analysed by Student’s t-test for paired data,

* P < 0.05.

doi:10.1371/journal.pone.0163371.t001

Fig 1. Erythrocyte enzyme activities obtained from wounded patients (n = 14) before and after the sessions 1, 5 and 20 of the

HBO treatment. One way ANOVA, P < 0.05, * indicates significant differences between samples obtained before and after HBO

treatment.

doi:10.1371/journal.pone.0163371.g001
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Plasma VEGF, endothelin-1 and IL-6 levels are presented in Fig 3. VEGF and IL-6 levels
reported a significant increase after each HBOT session respect to the pre-session values
(p< 0.05), without differences between the basal values of session 1, 5 and 20. A progressive
decrease in endothelin-1 levels were observedduring the HBOT, although statistical differences

Fig 2. Plasma enzyme activities obtained from wounded patients (n = 14) before and after the

sessions 1, 5 and 20 of the HBO treatment. One way ANOVA, P < 0.05, * indicates significant differences

between samples obtained before HBO treatment and after HBO treatment.

doi:10.1371/journal.pone.0163371.g002
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were only evidenced at the session 20 with respect to the session 1 (p< 0.05). Plasma nitrite
levels as a marker of the NO synthesis, a blood pressure modulator remained unchanged dur-
ing all the HBOT.

Discussion

The patients included in this study had infections and/or venous or arterial insufficiencywith
long-standing wounds lasting for mean of 20.2 ± 10 months, without having experienced any
improvement. In the present study, the HBOT for 1 month (20 HBOT sessions) has showed to
induce considerable decreases in the wound size and fast healing rates similar to previous stud-
ies [11]. Patients with chronic wounds have high values of oxidative and tissue damage markers
includingMDA levels and CK activity respect reference values and the values determined one
month after the wound healing [29, 30]. The decrease observed in the oxidative damage mark-
ers during HBOT is in accordance with the recovery process reported in the patients. In this
way, it has been reported that the subjects with first myocardial infarction which received
thrombolytic therapy alone evidenced a higher peak of CK activity respect to a HBOT group

Fig 3. Plasma nitrite, VEGF, endothelin-1 and IL-6 levels. Nitrite, VEGF, endothelin-1 and IL-6 results in plasma obtained from

wounded patients (n = 14) before and after the sessions 1, 5 and 20 of the HBO treatment. One way ANOVA, P < 0.05, * indicates

significant differences between samples obtained before HBO treatment and after HBO treatment, # indicates significant differences

respect to the session 1.

doi:10.1371/journal.pone.0163371.g003
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[31]. However, some studies have showed small changes in markers of lipid peroxidation in
plasma after HBOT [32, 33]. In a prior study performedwith healthy subjects, HBOT did not
induce alterations in markers of oxidative damage in plasma and lymphocytes, but it induced
an antioxidant response characterized by an increased lymphocyte GPx activity and hemoxy-
genase-1 (HO-1) mRNA levels, which participates in a inflammatory pro-resolving circuit
[34]. In addition, no significant effect by HBOT and treatment duration was evidenced in
hematological parameters and erythrocyte antioxidant enzymes, in agreement with previous
results [32, 35].
The therapeutic basis behindHBOT is the increase in the quantity of dissolved oxygen car-

ried by the blood leading to a significant increase in oxygen concentration in the tissues of the
body. High oxygen concentration could increase reactive oxygen species (ROS) production;
but paradoxically HBOT induces an antioxidant environment in plasma by increasing the
plasma catalase activity. Diverse studies have evidenced increases in the total plasma antioxi-
dant capacity determined after a session with HBOT [36–38]. Moreover, it has also shown that
HBOTmay operate as a hormetic agent via activating antioxidant and cytoprotective genes in
order to protect against a stressful situation [39]. The increase of ROS levels couldmediate the
expression of key molecules of inflammation, resolution and wound repair. In this way, this
increase can be considered the primarymechanism of action for HBOT in wound healing [40].
HBOT could increase ROS generation, inducing a protective and adaptative response to help
cells and tissues to manage different endogenous and environmental stressors more efficiently.
The increased production of ROS after HBOT activates the nuclear factor κβ (NFκβ) which
up-regulates several pathways involved in the initiation of the protective mechanisms [41]. At
sites of neovascularization, ROS stimulate growth factor synthesis by enhancing synthesis and
stabilizing HIF-1 [40]. Plasma MPO activity significantly decreased after each HBOT session
throughout the experimental period. The observeddecrease in the plasma MPO activity could
be indicative of a reduced activation of neutrophils. It has been reported that hyperbaric oxy-
gen exposure at 3 ATA for 45 min prevents leukocyte adherencemediated by B2 integrins, pro-
tecting tissues from injury, although it did not reduce neutrophil viability and functions in
response to chemoattractants [42, 43]. Moreover, reductions in the blood supply in wounded
tissues can alter the mitochondrial electron transport chain increasing electron leakage and
consequently increasing ROS production [44, 45]. HBOT induces the ROS production which
can act as signals mediating physiologic responses in mitochondria. HBOT preservesmito-
chondrial integrity via maintenance of mitochondrialmembrane potential and reduction of
the mitochondrial pathway of apoptosis [46]. In accordance, repetitive sessions of HBOT could
induce adaptations to the oxidative machinery of neutrophils in order to decrease the respon-
siveness against stimulus, diminishing the inflammatory response and improving the recovery
process in the damaged tissues. In this sense, HBOT sessions promote an anti-inflammatory
response similar to the resolution inflammatory response by lipid mediators including resol-
vins and several cytokines [3]. Resolvins exert strong anti-inflammatory effects by blunting
excessive neutrophil infiltration into tissues and decreasing the production of pro-inflamma-
torymediators [3, 47]. Diabetic patients have an altered wound healing which is attributed to
diabetic impairment of wound healing resolution phase, even it is pointed out that stimulation
of the resolution phase with pro-resolving lipid mediators as resolvins could be a new approach
to treat chronic, non-healing wounds in diabetic patients [47]. IL-6 is a pleiotropic cytokine
with pro-inflammatory and anti-inflammatory functions [48]. In response to an acute infec-
tion, trauma or exercise, acute elevations of IL-6 mediate anti-inflammatory effects, whereas
chronic elevated levels of IL-6 are associated with pathogenic inflammation and with detrimen-
tal effects on metabolism [49]. IL-6 has been reported to play a role in the resolution of inflam-
mation and to achieve a satisfactory wound healing [26]. IL-6 enhances the induction of
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macrophages by an alternatively pathway, which are characterized by their anti-inflammatory
and wound healing capability [26]. HBOT treatment increased IL-6 plasma levels, which in
turn could promote alternative activated macrophages in the wounded tissue driving to the res-
olution phase of healing wounds. The repetitive sessions of HBOT produced repetitive inputs
of IL-6 that participated in the wound healing.
VEGF is an important angiogenic factor with a great growth-stimulatory effect on endothe-

lial cells, and also with a potent mediator effects on vascular permeability [50]. HBOT results
in a moderate ROS production, which can induce the release of VEGF and consequently can
promote angiogenesis [51]. The ROS, produced during wound healing, may participate as sig-
naling molecules that regulate the VEGF production and diverse cellular responses. HBOT
induces VEGF expression which in turn stimulates angiogenesis and improves the recovery
process. In a study with human umbilical vein endothelial cell model, it was reported a signifi-
cant induction in the VEGF gene expression after HBOT [52]. However, only few studies are
performed in humans to analyze the effects of HBOT on plasma VEGF concentration, and the
results found are controversial [53, 54], possibly as a consequence of different HBOT, experi-
mental procedure, and the different type of wounds evaluated. The release of nitric oxide by
smoothmuscle cells has been indicated to be involved in the signaling cascade that leads to
VEGF synthesis and release [55]. In subjects reporting wounds favorably affected by HBOT, an
increase in the levels of nitric oxide was observed after HBOT [9]. Nevertheless, although the
nitrite levels obtained in the present study tend to increase 2 hours after each HBOT session,
no significant changes were reported. It can be suggested that nitric oxide levels early peaked
after the HBOT session and consequently, the measured nitrite returned to background levels
after 2 hours.
Endothelin-1 is a strongly vasoconstrictive factor produced by vascular endothelial cells

playing a central function in the regulation of basal vascular tone [56]. Endothelin-1 evidenced
significant lower values after 20 sessions of HBOT than the initial values. These decreased lev-
els could be necessary to maintain an adequate vascular tone after HBOT and to increase the
vascular blood flow in order to facilitate the oxygen availability to wounded tissues. Nitric
oxide was reported to effectively suppress the release and the physiological action of endothe-
lin-1 and to nitrosylate endothelin receptors reducing the affinity for endothelin-1 [57]. Conse-
quently, and in addition to its direct vasodilator effects, nitric oxide can indirectly induce
vasodilation by inhibiting the release of endothelin-1 [58].
The reduced number of cases in our study and the different varieties of wound etiologies

could be a limitation; however, since this is a plasma study, the central responses to HBOT
may not depend on the wound type. The loss of patients throughout the study is another lim-
itation arising from the occurrence of complications or abandonment of the protocol for its
long duration. Controlled studies with larger number of patients are required for further
analysis. In conclusion, HBOTmay improve the healing process in chronic wounds. HBOT
is a potential therapeutic tool to treat chronic non-healing wounds derived from pathological
conditions compromising blood supply and tissue oxygen availability. Although a variety of
wound types was included in the current study, the healing wound after HBOT was achieved.
The present data evidenced that HBOT regulates wound healing by a common mechanism to
several pathologies that includes a plasmatic antioxidant response, the induction of an angio-
genic response, the regulation of vascular tone, and switching to resolution of inflammation
via increasing the release of IL-6. However, more strong investigations with a greater number
of patients and HBOT non-treated patients as control group are necessary so as to increase
the understanding of the molecular and beneficial effects of HBOT in the treatment of
chronic wounds.
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