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Breast cancer heterogeneity is evident at the clinical, histological and molecular level.

High throughput technologies allowed the identification of intrinsic subtypes that

capture transcriptional differences among tumors. A remaining question is whether

said differences are associated to a particular transcriptional program which involves

different connections between the same molecules. In other words, whether particular

transcriptional network architectures can be linked to specific phenotypes. In this work

we infer, construct and analyze transcriptional networks from whole-genome gene

expressionmicroarrays, by using an information theory approach.We use 493 samples of

primary breast cancer tissue classified in four molecular subtypes: Luminal A, Luminal B,

Basal and HER2-enriched. For comparison, a network for non-tumoral mammary tissue

(61 samples) is also inferred and analyzed. Transcriptional networks present particular

architectures in each breast cancer subtype as well as in the non-tumor breast tissue. We

find substantial differences between the non-tumor network and those networks inferred

from cancer samples, in both structure and gene composition. More importantly, we

find specific network architectural features associated to each breast cancer subtype.

Based on breast cancer networks’ centrality, we identify genes previously associated

to the disease, either, generally (i.e., CNR2) or to a particular subtype (such as LCK).

Similarly, we identify LUZP4, a gene barely explored in breast cancer, playing a role in

transcriptional networks with subtype-specific relevance. With this approach we observe

architectural differences between cancer and non-cancer at network level, as well as

differences between cancer subtype networks which might be associated with breast

cancer heterogeneity. The centrality measures of these networks allow us to identify

genes with potential biomedical implications to breast cancer.

Keywords: gene regulatory networks, breast cancer, molecular subtypes, network topology, clinical genomics

BACKGROUND

Breast cancer is a heterogeneous disease. The identification of molecular subtypes (Perou et al.,
2000) was a major breakthrough in order to categorize this heterogeneity, made possible by the
emergence of whole-genome microarray technology (Rueda, 2014). Molecular subtypes associate
expression of certain markers to phenotypical differences in cancer, pointing to different prognosis
as well as distinct therapies (Liu et al., 2014).

The identification of breast cancer molecular subtypes is a paramount example of the impact
of high throughput technologies in the study of cancer. These technologies are able to provide
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even deeper biological understanding, when analyzed by an
integrative, systemic framework. In this regard, network theory
has emerged as a major tool to achieve this goal (Newman, 2010;
Chen et al., 2015) under a systems biology view of matters.

A network is a mathematical construct composed by a
set of nodes or vertices, and a set of links that represent
a relation between them. A biological network, is a network
where nodes represent any kind of biological molecules: genes,
transcripts, proteins, metabolites, etc., and links represent
physical or chemical interactions between those molecules (Jeong
et al., 2000; Hasty et al., 2001; Jeong et al., 2001; Thattai
and Van Oudenaarden, 2001; Lee et al., 2002; Maslov and
Sneppen, 2002; Davidson and Levin, 2005; Guimera and Amaral,
2005; Levine and Davidson, 2005; Davidson and Erwin, 2006).
With gene expression microarray technologies, it is factible to
construct transcriptional networks where nodes are transcribed
genes, and links represent a correlation between expression
values of said genes, which point to a possible interaction between
them at the transcriptional level (Tovar et al., 2015).

Many correlation measures have been implemented in order
to construct biologically meaningful transcriptional interaction
networks based on the inference of statistical dependency
(Friedman et al., 2000; Gardner et al., 2003; Giuliani et al., 2004;
Wang et al., 2005; Cowell, 2006; Nielsen and Jensen, 2009). This
is especially fitting in view of the isomorphism existing between
a network structure and a correlation matrix whose elements are
the strength of the interaction between the intervening nodes.We
must notice, however, that this correlation structure is usually
given in the presence of an accompanying variance structure
among gene expression levels (Giuliani et al., 2004). It has long
been proven that the best estimator of statistic dependency is
mutual information (MI) (Basso et al., 2005; Margolin et al., 2006;
Hernández-Lemus and Rangel-Escareño, 2011; de Matos Simoes
and Emmert-Streib, 2012; Hernández-Lemus and Siqueiros-
García, 2013). These statistically inferred networks provide a
deeper level of biological understanding in two main directions:
giving support to previously identified biological observations,
and giving new insights regarding novel biological interactions.

Network structural properties have been related to features
in the biological context (Kitano, 2002; Albert, 2005; Serrano,
2007; Hakes et al., 2008). Therefore, analyzing these properties in
transcriptional networks may provides us better understanding
of the underlying biological phenomena. Global network metrics
often provide information regarding the system as a whole; while
local parameters provide information regarding the relevance
of particular nodes (Barabasi and Oltvai, 2004; Newman, 2010;
Barabási et al., 2011; Biane et al., 2016; Robinson and Nielsen,
2016). The transcriptional network approach has proven be
useful to unveil transcriptional regulation in cancer (Carro
et al., 2010; House et al., 2010; Pe’er and Hacohen, 2011;
Madhamshettiwar et al., 2012) and in particular in breast cancer
(Van De Vijver et al., 2002; Lim et al., 2009; Cicatiello et al., 2010;
Gu et al., 2010; Tovar et al., 2015; Castro et al., 2016).

Transcriptional networks are representations of the regulatory
programs behind phenotypes. Given the intrinsic heterogeneity
of breast cancer molecular subtypes, a fundamental question
which remains unsolved is whether the transcriptional

architecture of these subtypes is different. To answer this
we constructed transcriptional networks for breast cancer
molecular subtypes based on mutual information of genome-
wide gene expression. We compared them to a network of
healthy mammary tissue.

We identified differences in network architecture between
phenotypes. We observed major differences between the cancer
subtype networks and the non-tumor network. Particular
architectural features were associated to the different molecular
subtypes. We find that in these networks, the connectivity
of particular genes may indicate differences of their role
in the transcriptional program of each subtype. Identifying
such differences may be key to understand how the specific
transcriptional program shapes a particular phenotype. This
in turn, will enhance our insight on the nature of molecular
subtypes, with basic and clinical implications.

METHODS

Sample Data and Classification
Four hundred and ninty three-microarray expression profiles
for breast cancer samples and 61 microarray expression profiles
corresponding to healthy breast tissue were collected from several
experimental datasets that are available on the Gene Expression
Omnibus site (Edgar et al., 2002). We used microarray data from
GSE 4922 (Ivshina et al., 2006), 1456 (Pawitan et al., 2005), 7390
(Desmedt et al., 2007), 1561 (Farmer et al., 2005), 2603 (Minn
et al., 2005), 2990 (Sotiriou et al., 2006), GSE 9574 (Tripathi et al.,
2008), GSE 15852 (Pau Ni et al., 2010), GSE 6883 (Liu et al., 2007)
and 3494 (Miller et al., 2005). All experiments were performed
following protocol GPL96, using total mRNA on the Affymetrix
HGU133A microarray platform. This platform contains probes
for 18,400 transcripts and variants. Raw microarray data was
processed following a pipeline for Robust Multi-array Average
(Irizarry et al., 2003), previously implemented in our workgroup
(Baca-López et al., 2012; Tovar et al., 2015). Breast cancer samples
were classified using the well-validated PAM50 algorithm (Parker
et al., 2009).

Since all samples were downloaded from properly
documented public databases, no ethics committee approval was
required. All raw data is available in the NCBI-GEO database,
with accession keys and references as stated above to guarantee
full data availability.

Sample Comparability
Comparability is a key issue during analysis from microarrays, in
particular when dealing with data coming from different sources
(laboratories, technicians, etc.). Biases may exist even when the
same protocols have been followed (Grass, 2009). Chen et al.
(2011) tested six different algorithms to eliminate this so-called
batch effect and found that the best results were obtained by using
the empirical Bayesian assessment methods, such as ComBat

(Johnson et al., 2007). The strategy followed here consisted
in preprocessing all arrays with the frma algorithm (McCall
et al., 2010), and using summarization with robust weighted
average with no background correction, we split the datasets
into cases/controls, and then applied ComBat to both datasets
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separately. After that, we re-joined the two resulting datasets
and re-normalized them together with the cyclic loess algorithm
(Ballman et al., 2004), in such way that both conditions belong
now to the same dynamic range.

In order to assess the extent of this effect within our samples,
so that we could remove the corresponding bias as accurately as
possible, we resort to Principal Variance Component Analysis
(PVCA) which is an algorithm combining the advantages of
the principal component analysis (reduction of dimensionality)
with the statistical reliability of the analysis of variance (Grass,
2009). After bias reduction, a PVCA analysis corroborated that
such a confounding or batch effect almost disappeared. (Further
information can be found in Supplementary Material 1).

Transcriptional Network Inference
Gene regulatory network inference from experimental data
involves the solution of an inverse problem (also called a
deconvolution) which consists in unveiling the interactions
(edges or links) from the properties of observables such as gene
expression levels. Inferring a network implies the uncovering
of the statistical dependencies within a Joint Probability
Distribution (JPD). A usual way to do this is by quantifying the
new information content that arise when we compare the full JPD
to a series of successive independent approximations. In practice
doing this is rather difficult because one is faced with large
numbers of variables with a strong nonlinear behavior. Mutual
Information (MI) is a measure from information theory that is
able to deal with these issues since it is model independent, non-
parametric and capable of capturing non-linear dependencies
(Hernández-Lemus and Siqueiros-García, 2013).

Transcriptional network inference based on MI has been
successfully employed (Hernández-Lemus and Siqueiros-García,
2013; Khosravi et al., 2015; Rodriguez-Barrueco et al., 2015).
ARACNE (Margolin et al., 2006) is one of many algorithms used
to calculate MI based on gene expression. ARACNE algorithm
presents a relatively fast and reliable implementation of the
inference of gene regulatory network from gene expression data.
The method works as follows: a normalized gene expression
matrix (i.e., an N by M matrix containing the gene expression
levels of N genes in M samples) is used as input. The algorithm
then calculates the empiricalmarginal probability distribution for
the expression levels for all genes (i), as well as the empirical
joint probability distribution for all the gene-couples (i,j) by
approximating them by using Gaussian kernels. With these
probabilities, a value of the MI between any two genes is
calculated.

The method associates a MI value to each significance value
(p-value) based on permutation analysis, as a function of the
sample size. Therefore, aMI threshold (MI0) can be defined. For
every pair of genes withMIi,j > MI0 an interaction of weightMIi,j
is reported. Pairs of genes with MIi,j < MI0 are considered to be
non-interacting. Correlation analysis is made in the presence of
range restriction, i.e., a sufficient amount of variance to allow for
the detection of correlation structure. Hence a system observed
at different scales (as given by the cut-off values) will give rise
to different solutions. As it has long been known, in biological
systems there is no preferential scale of observation a fact that

makes scaling analysis a relevant approach to the quantitative
analysis in biology (Giuliani et al., 2004).

Using the previously described expression data, we inferred
transcriptional networks for each of the following molecular
subtypes of breast cancer: Luminal A, Luminal B, Basal and
HER2-enriched, and one for the non-tumor breast tissue
phenotype. The construction of our networks proceeded as
follows:

1. MI was calculated for every pair of (non-self) probesets in the
microarray platform, using the ARACNE algorithm.

2. Those interactions ranked highest by Mutual Information
values were kept.

3. Probesets were mapped to HUGO gene symbols. Those
probesets that did not correspond to a gene symbol were
discarded.

Network Analysis and Comparison
In order to compare the network structure of each phenotype,
we analyzed each network by calculating the following metrics:
the number of nodes and edges; the node degree (number of
nodes connected to a specific node); connected components
(a subset of nodes connected among them and not connected
to the rest of nodes in the graph); and clustering coefficient
(the number of existing node triplets over the total number
of triplets) (Luce and Perry, 1949; Watts and Strogatz, 1998).
Network connectivity degree is perhaps the most obvious
centrality measure, i.e., it is an indicator of the relevance of
a particular node to the large scale structure of the network.
Genes that are more connected (that is, have a higher degree)
are the ones that partake in most interactions, thus connecting
a largest number of biological processes. Hence, highest degree
genes are known to be quite important for the establishment of
phenotypes.

The number of connected components (or islands) in
a complex biological networks is a simple yet important
indicator about the way in which different parts of the network
(subnetworks) work together. A small number, or even a
single connected component means that most (or all of the)
interactions in the network have impact at a global level,
whereas a higher number of connected components may imply
a certain degree of modularity in which interactions within a
subnetwork are somehow autonomous from interactions in other
subnetworks.

The clustering coefficient in these networks is also indicative
of the modularity and connectivity patterns at a lower (more
local) scale than that of the number of connected components.
Higher values of the average clustering coefficient can be related
to greater redundancy and robustness in biological networks.
Network topological analysis and visualization was performed by
using Cytoscape v.3.0 (Shannon et al., 2003).

As previously mentioned, a network is defined by a set
of nodes and a set of links between said nodes. Particularly
in these inferred networks, nodes are representing genes
and links correspond to potential transcriptional interactions.
Similarity in these sets among phenotypes points to similarity
in transcriptional programs. To compare these sets we used the
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Jaccard index J, this is obtained by dividing the size of the
intersection over the size of the union of two sets. This was done
for gene sets and link sets.

Jaccard indexes are used as measures of similarity between two
sets: the closer J is to 1, the more similar the sets; Conversely, J =
0 implies completely dissimilar sets. Indeed, Jaccard indexes are
actual probability measures. Here, Jaccard indexes are calculated
for the sets of nodes (genes) of different networks, to see
to what degree transcriptional networks representing different
phenotypes (breast cancer subtypes) share genes, regardless
of their particular interactions. On the other hand, Jaccard
indexes calculated for the sets of interactions or links in
those networks, reveal to what extent different transcriptional
regulatory programmes share, not only groups of genes but also
connection patterns among those genes.

Since biological functions depend not only in sets of specific
molecules, but also in the interaction patterns among them,
the joint consideration of similarities (and dissimilarities also)
between gene sets (lists) and interaction sets may broaden our
scope as to what are the differences and commonalities of breast
cancer subtypes in terms of biological features (García-Campos
et al., 2015).

Network Threshold Assessment
As already mentioned the cut-off value in theMI distribution will
affect the membership of particular interactions as well as the
structure of the inferred networks. In some sense, the choice of
this threshold is indeed related to feature selection. The choice
of cut-off value to construct meaningful (at the light of the
feature selection procedure) networks is an open problem in
contemporary research in biology. This is to say that, a particular
cut-off choice depends on what kinds of features are to be selected
(Giuliani et al., 2004; Censi et al., 2011). In order to avoid
unnecessary biases, we decided to test differentMI cut-off values
compliant with quite general topological structure constraints of
the underlying networks. Network size, for instance, is one of
the most important constraints: extremely small and stringent
networks will not capture the essential biological information,
whilst extremely large, low confidence networks will present
a larger number of false positive interactions and are much
harder to analyze in order to unveil biological function. We
assessed the threshold influence by calculating network metrics
for different cut-off values, restricting our analysis to those
networks which have a node-to-link ratio around 0.1, as this ratio
value is characteristic of biological complex networks (Albert
and Barabási, 2002; Barabasi and Oltvai, 2004; Barabási et al.,
2011).

RESULTS

We inferred transcriptional networks for each breast cancer
molecular subtype and for non-tumor mammary tissue. Network
approaches are highly relevant for the understanding of the
connection between sample state-variability and gene expression
patterns, essential to elucidate the role that such expression
patterns play in the establishment of cellular phenotypes.
In this work we decided to pursue this by calculating

mutual information correlation measures rather that parametric
correlation coefficients due to the higher generality of the
former.

Based on the evaluation of network threshold
(Supplementary Material 2), we will present the results for
networks constructed from the 10,000 interactions ranked with
highestMI values, which are also, as previously mentioned, those
with the highest statistical significance (p-value < 10−10). This
cut-off value lies in the identified range (between the 103 and
105 highest ranked interactions) in which the node-to-link ratio
is consistent with the expected values for biological complex
networks.

Transcriptional Networks Show Different
Architectures
A graphical representation of all phenotype networks constructed
with our approach can be observed in Figure 1, starting with the
4 breast cancer subtypes (Figures 1A–D), and the non-cancer
mammary tissue network (Figure 1E). In this representation,
nodes correspond to genes and links are a representation of
the MI value. We will now show the main differences in
the transcriptional network gene composition, highlighting the
differences both between non-tumor and tumor networks as well
as between tumor subtypes.

Figure 1 shows the differences in transcriptional network
architectures among phenotypes. These differences in structure
can be thought of as a representation of potential differences in
the transcriptional regulatory program. As it has been discussed
previously (Censi et al., 2011), in systems under stress (high
correlation, and high variance) (Gorban et al., 2010) changes
in the general correlation structure become visible as changes
in the associated networks. The most evident differences in
network structure are seen between the tumor and the non-
tumor networks: the non-tumor network is dominated by a
giant component; meanwhile, the subtype networks are formed
by several coexisting components of different sizes. In this
regard, we can expect that changes in the gene correlations
between the normal and disease conditions may appear, at
the local—pairwise correlations—, modular—or functional—
and global—at the genome-wide transcriptional network—levels
(Censi et al., 2011). It is also evident that while more similar
among themselves, each breast cancer subtype has a unique
network architecture. This is reflected in the network metrics
reported in Table 1.

Non-tumor Transcriptional Network Architecture
The transcriptional network for non-tumor tissue is shown in
Figure 1E. This network is dominated by a giant component
which contains 913 genes and 9823 links between them; in other
words, about 90% of the genes in the network belong to this larger
component, with the rest scattered in small islands of less than
ten genes. The network’s clustering coefficient (CC) is 0.3722,
which indicates a sparse network structure. This particular
network architecture, a sparse network mostly comprised by a
giant component, was found to be unique to the non-tumor
phenotype.
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FIGURE 1 | Network architectures for breast cancer subtypes and non-tumor breast tissue. In each panel, the transcriptional network structure of each

breast tumor subtype is shown: (A) Luminal A (red nodes); (B) Luminal B (green); (C) Basal (blue) (D) and HER2-enriched molecular subtype (orange). (E) Shows the

transcriptional architecture for non-tumor breast tissue. Please notice the that (A–D) show networks with a large component and multiple medium-sized components,

while (E) presents a network dominated by a single giant component, followed by small components.

Breast Cancer Transcriptional Networks Show

Different Topologies between Molecular Subtypes
The transcriptional networks for each molecular subtype
are shown in Figures 1A–D. This graphical representation
makes immediately evident the architectural differences between

networks. Luminal A subtype (Figure 1A) shows a network with
one larger component, four other mid-sized components with a
small number of connected genes, and several small islands of less
than 10 genes. This network contains 1451 annotated genes, with
9,941 links between them, and a CC of 0.3658.
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TABLE 1 | Network metrics.

Parameter Luminal A Luminal B Basal HER2-enriched Non-tumor

Nodes 1451 1018 1046 2100 1027

Edges 9941 9898 9966 9856 9894

Connected components 88 70 56 162 46

Clustering coefficient 0.3658 0.4044 0.4114 0.3586 0.3722

Min P-value 5.09× 10−25 1.34× 10−23 2.2× 10−21 1.95× 10−12 9.06× 10−19

The Luminal B subtype network (Figure 1B) shows one larger
component, followed by four other smaller components, and
several genes scattered in small islands of less than 20 genes. This
network has a total of 1018 genes, with 9898 links between them,
and a CC of 0.4044.

In the Basal subtype network (Figure 1C), we observe again a
larger component, but in this network, the next two components
in size are in the same order of magnitude, and smaller sized
islands ranging from thirty to two nodes in size. This network has
1046 nodes and 9966 links between them, and a CC of 0.4114.

Finally, the network for the HER2-enriched subtype (1d)
has an architecture dominated by a larger component, which is
composed by several clusters linked together by few genes acting
as bridges; the rest of the network is composed from islands
ranging in size from 40 to 2 nodes. This network has the largest
number of individual genes (2100) and 9856 links between them,
with a CC of 0.3586.

It is important to notice that the disruption of connected
components in the cancer networks is a phenomenon that it
is very likely intertwined with the presence of stress induced
correlations (Gorban et al., 2010), as such one need to be cautious
as to assign a degree of importance to each of these two features
on the issue of phenotypic differences on subtype-associated
networks.

Network Composition Analysis
Networks were constructed following restrictions that makes
them comparable in size. However, it was found that each
phenotype is has a unique network composition of both genes
and links between them. Network composition constitutes a
different level of analysis in the multi-scale characterization of
biological systems (Giuliani et al., 2004). The actual molecular
make-up of gene regulatory networks extends its influence not
only to the upper level—the topological network structure itself—
but also to the somewhat lower scale level of description given
by the molecular pathways and particular biochemical processes
behind physiological functions and phenotypes (Censi et al.,
2011), for this reason, in what follows we will present a detailed
description of the molecular composition for phenotype (i.e.,
subtype)-specific networks.

Transcriptional Networks Reveal Different Gene

Compositions
Each transcriptional network inferred contains a particular set of
genes. Each of these sets is not completely dissimilar to another,
as there are intersections between them. Figure 2 shows a Venn

FIGURE 2 | Venn diagram of network node composition. A five-set Venn

diagram of the nodes that form each transcriptional network: Luminal A is

outlined in red, Luminal B in green, Basal in blue, HER2-enriched in yellow and

non-tumor breast tissue in purple. Numbers in graph represent how many

genes belong to each subset. Notice that the intersection of the four breast

cancer molecular subtypes is large (453, marked in bold); meanwhile the

number of shared genes between tumor and non-tumor networks is much

smaller, with only 52 genes shared by all networks.

diagram representation of the overlap between gene sets for
each transcriptional network. In this figure, it can be seen that
the intersection of genes in all breast cancer and non-cancer
transcriptional networks is relatively small, containing only 52
genes. Meanwhile, the intersection of genes in all breast cancer
networks, excluding those shared with the non-cancer network,
contains 453 genes, a “breast cancer core set” which we will
discuss later. Finally, notice how the number of non-shared,
“exclusive” genes for each breast cancer transcriptional network
is different.

The differences between network genesets can also be seen
in Table 2, containing J for each network pair. This table shows
varying levels of similarity between molecular subtypes: we can
see how the Luminal A and Basal subtypes are the most different
in gene composition, and interestingly, the most similar in gene
composition are the Luminal B and Basal subtypes.
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TABLE 2 | Jaccard indexes for each pair of transcriptional network node

sets.

Luminal Luminal Basal HER2- Non-

A B enriched tumor

Luminal A – 0.4165 0.3360 0.3595 0.0658

Luminal B 0.4165 – 0.4935 0.3556 0.0450

Basal 0.3360 0.4935 – 0.3519 0.0391

HER2-enriched 0.3595 0.3556 0.3519 – 0.0543

TABLE 3 | Jaccard indexes for each pair of transcriptional network link

sets.

Luminal A Luminal B Basal HER2 Non-tumor

Luminal A – 0.2181 0.1461 0.0956 0.0024

Luminal B 0.2181 – 0.2254 0.1176 0.0014

Basal 0.1461 0.2254 – 0.1189 0.0014

HER2 0.0956 0.1176 0.1189 – 0.0014

Even more striking is the fact that similarity between any
cancer network nodeset and the non-tumor network nodeset is
about an order of magnitude smaller than any J value for any
cancer network pair, indicating that non-tumor network vastly
differs from any breast cancer network; with 774 unique genes,
the non-tumor transcriptional network is 90% unique.

Transcriptional Networks Reveal Different

Gene-Interaction Compositions
Transcriptional networks show even more differences in their
link composition. Table 3 shows J values indicating the similarity
in link sets between networks. Again, it is interesting to note
that the highest similarity in links is between the Luminal B
and the Basal networks, followed by the similarity between the
Luminal A and Luminal B networks. Again, the linkset similarity
between non-tumor and any tumor network, is about two orders
of magnitude smaller than between any two tumor networks.

The differences (and similarities) in link sets are determinant
for phenotype definition. Even though gene composition
describes which molecules participate in the transcriptional
landscape, the potential transcriptional interactions that exist
between each other, are the essence of the regulatory program.

A Core Set of Genes Is Shared among Breast Cancer

Network Subtypes
As we have shown before, both gene and link composition define
distinct network architectures for each transcriptional network,
reflecting the heterogeneous nature of cancer. Particularly,
different connections between the same genes may be involved
in the development of features specific to each subtype. This
can be evident, for instance, in the connections between the
previously described breast cancer core set of genes shared by all
breast cancer networks. Figure 3 shows the subgraphs of each
breast cancer network containing only these core genes. These
highlight how, even when taking into account the same genes,
the interactions between them vary across the molecular subtype

landscape. As an example, take the isolated component which
contains the IRF8 transcription factor, present in all subnetworks;
notice how the degree of IRF8 is different in all subtypes: ranging
from only three neighbors in the Luminal A subtype, to 21
neighbors in the HER2-enriched subtype.

Node Degree As a Measure of Relative
Influence of Genes in the Transcriptional
Context
We have focused on global network properties which define
breast cancer network structures. In any network, each node has
individual topological properties related to the global structure.
For instance node degree, the number of neighbors of a particular
node, is a measure of its centrality in the network context. For
our purposes, we can think of node degree in breast cancer
transcriptional networks as a measure of the influence which
a particular gene may have in the regulatory program. In this
sense, transcriptional network architecture not only gives global
information about phenotypes, but also insights on the role of
particular genes.

Given the differences in network structures, it can be expected
that even the same genes may have different influences in
each specific molecular subtype; at the same time, it is not
unreasonable to think that some genes will play an important
role in all molecular subtypes. As a proof of context, we have
selected three genes which cover these scenarios: CNR2, LCK,
and LUZP4. Those genes were selected on the basis of their being
highly central in at least one of the cancer subtypes and being
present in all the subtypes’ networks, so as to have a rational
means for comparison of the different effects they may have in
different biological networks structures. Subnetworks containing
these genes and their first neighbors for each breast cancer
molecular subtype can be seen in Figure 4.

DISCUSSION

Deconvoluting transcriptional network architecture is a step
toward uncovering differences between health and disease, as
well as between different manifestations of disease. Doing this
is relevant for two main lines of research: basic biological
knowledge and clinical therapeutical interventions. On the one
hand, unveiling the hidden relationship between system’s level
transcriptional programmes—as sketched by gene regulatory
networks—and molecular and physiological phenotypes—given
by the different breast cancer subtypes—is of great importance
on the way to understand to a deeper level the elusive
genotype/phenotype relationships (Barabási et al., 2011; Censi
et al., 2011; Ahmad et al., 2012). On the other hand, detailed
and specific knowledge about the differences and similarities
of phenotype-specific gene regulatory networks, and their
underlying biochemical processes as represented by metabolic
and signaling pathways, may pave the way to find specific
pharmacological targets useful in the clinical and therapeutical
management of different breast cancer subtypes.

In this work, by using a computational approach based on
information theory, we inferred transcriptional networks from
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FIGURE 3 | Subnetworks of core genes shared by all breast cancer networks have different connections. (A–D) Show the 453 core genes for Luminal A,

Luminal B, Basal and HER2-enriched subtypes. All subnetworks have a component with IRF8 transcription factor (shown in black).

genome-wide gene expressionmicroarrays of the following breast
cancer subtypes: Luminal A, Luminal B, Basal, and HER2-

enriched; these were contrasted with comparable non-tumor

breast tissue networks. We showed that the architecture of
these transcriptional networks is unique to each phenotype, and

emphasize the major differences between non-tumor and cancer

networks, as well as the differences between different subtypes of

breast cancer. We propose that these transcriptional networks
reflect the transcriptional programs behind each phenotype,

which is involved in the physiopathological differences observed

in breast cancer. To our knowledge, this is the first time that

transcriptional network structure has been characterized at any

level of description for these clinically important breast cancer

subtypes.
Breast cancer heterogeneity is a widely acknowledged fact,

with molecular, histological, and clinical manifestations. In this

work, we have shown breast cancer heterogeneity manifested in
transcriptional network architectures; since molecular subtypes

are defined by differences in gene expression profiles (see

Supplementary Material 2), we could expect that transcriptional
networks, derived from such data, would reflect this. It is

well-known that network structure is intimately linked to

functionality in biological networks (Kitano, 2002; Albert, 2005;
Serrano, 2007; Hakes et al., 2008). In this case, we propose that
our inferred networks are a representation of an underlying

transcriptional program associated to each of the studied
phenotypes.

We expected a drastic difference between non-tumor and
tumor networks, just as there is a drastic difference between
non-tumor and tumor tissue. Indeed, we found a marked

difference in structure between breast cancer networks and
a non-cancer network; this is in agreement with the evident
differences in gene expression profiles between these two states
(see Supplementary Material 2). The non-tumor transcriptional
network is dominated by a giant component, while the networks
for each of the breast cancer subtypes studied present a larger
number of disconnected components. This suggests the existence
of generalized transcriptional communication in healthy cells,
which is lost and supplanted with a fractured, more autonomous
regulation in different cancer manifestations. We consider that
more research is needed in order to find mechanistic causes to
this phenomenon.

The differences between cancer and non-cancer networks are
also seen in the genetic composition of these networks, suggesting
differences in the importance of genes in the regulatory programs
of health and disease. There are only 52 genes which are part
of both the non-tumor and all the cancer networks. Most of
these are located in small “islands” in the network, where they
interact with few other genes, rendering their impact to the
global network topology negligible. Only 5 out of these 52 genes
belong to the larger network components. These genes seem to
be associated to general biological functions:

• ASCL3 encodes a transcription factor highly involved
in determination of cell fate and the development and
differentiation of numerous tissues (Yoshida et al., 2001;
Jonsson et al., 2004).

• DNAJ4 encodes a highly conserved heat shock protein which
serves a chaperone (Walker et al., 2010; Hageman et al., 2011).

• NCR1 encodes the natural cytotoxicity triggering receptor
recognizes a broad spectrum of ligands in natural killer cells
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FIGURE 4 | First neighbors of CNR2, LCK, and LUZP4 genes. Genes that are connected to CNR2 (violet), LCK (green) and LUZP4 (yellow) are shown. (A–D)

Show the same order than Figures 1, 2. It can be seen that CNR2 is highly connected in all subtypes; LCK gene has a high degree relevance in HER2-enriched

subtype. Finally, LUZP4 gene has different degree relevance depending on the molecular subtype. It is worth noticing that CNR2 and LUZP4 share first neighbors, but

not with LCK.

(Kruse et al., 2013), and has been observed to participate
regulating several functions in those cells (Pembroke et al.,
2014; Fu et al., 2015; Tanimine et al., 2016).

• SLN encodes sarcolipin, a Ca2+-ATPase located at the
sarcoplasmic reticulum, catalyzes the ATP-dependent
transport of calcium ion from the cytosol into the sarcoplasmic
reticulum in muscle cells (Fajardo et al., 2013; Gorski et al.,
2013; Espinoza-Fonseca et al., 2015).

• BMP15 encodes a protein associated to oocyte maturation,
and follicular development (Fenwick et al., 2013; Persani et al.,
2014; Sutton-McDowall et al., 2015).

Breast cancer heterogeneity, as reflected by molecular subtypes,
is mostly related to the cellular composition of the normal

mammary tissue: the mammary epithelium has an inner layer

composed by luminal cells, and an outer layer formed by

basal cells (Skibinski and Kuperwasser, 2015); the luminal
and basal subtypes show phenotypical similarities to these

cells. HER2-enriched breast cancer is mostly determined by an

overexpression of the ERBB2 receptor, regardless of whether its

cell exhibits luminal or basal characteristics. With this in mind,

we expected transcriptional networks to reflect this. It would be

expected to find common features in transcriptional networks for

the two luminal subtypes, and also to think that these networks
would be somewhat different from the basal network, with the

HER2-enriched network perhaps exhibiting commonalities with

all networks. Our results show the expected similarity between
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the luminal A and B transcriptional networks. However, it was
surprising to find that the highest similarity in both nodes and
links was not between them, but rather between the luminal B and
Basal networks. Meanwhile, the HER2-enriched subtype network
showed was found to have the most unique architecture, as well
as being the most different of all breast cancer networks. It is
worth noting that we were able to recover a genetic network
composition that captures the differences between normal breast
and breast cancer tissue, as well as the differences between the
various molecular subtypes, at the gene expression level (see
Supplementary Material 2).

We believe that these results suggest that the oncogenic
processes behind breast cancer originate unique transcriptional
programs which drive each molecular subtype. The similarities
of the luminal B subtype network to both the luminal A and
the Basal networks are in line with the idea of a common breast
cancer progenitor cell for these subtypes; at the same time, the
nature of the HER2-enriched network could be indicative of a
different molecular origin. (Skibinski and Kuperwasser, 2015).

The existence of a “core set” of genes which are shared
among all breast cancer subtype networks was noteworthy.
More interesting was the fact that even though all subtypes
share these genes, the wiring structure of these is not the
same in each phenotype, which again suggests that differences
in the regulatory program are driven not only by the genes
that participate, but by the relationships between them. The
transcriptional networks define a landscape in which different
elements may be playing distinct roles. Therefore, our breast
cancer transcriptional networks not only provide us with global
network features, but are also useful in order to identify the
influence that any given gene may have in the transcriptional
program. In order to illustrate how the same genes may have
different roles in different breast cancer manifestations, we
selected, based on their degree in each breast cancer network, the
CNR2, LCK, and LUZP4 genes.

CNR2 is a gene highly connected in all breast cancer networks.
CNR2 codifies the cannabinoid receptor 2 (CB2). This receptor
is associated to immunomodulation and related processes by
endocannabinoids (Munro et al., 1993). CB2 alterations have
been found in different types of cancer (Guida et al., 2010;
Jha et al., 2012; Pisanti et al., 2013), including breast cancer
(Nasser et al., 2011; Pérez-Gómez et al., 2015; Sophocleous
et al., 2015). Our analysis identifies CNR2 as one of the top 30
highest degree nodes in our breast cancer subtype transcriptional
networks. Based on this, CNR2might be pointed as an important
gene in the general breast cancer transcriptional architecture.
Cannabinoid receptors have been previously proposed as
pharmacological targets for cancer (Chakravarti et al., 2014;
Velasco et al., 2016), including breast cancer (Qamri et al.,
2009; Morales et al., 2015). Our transcriptional network findings
suggest that, if therapeutic benefits to this type of treatment are
found, they may be of use to all types of breast cancer.

LCK gene was identified as a key player in HER2-enriched
subtype while having a low degree in the other molecular
subtypes network. LCK codifies the LCK proto-oncogene, Src
family tyrosine kinase, a protein involved in signal transduction.
LCK has been found expressed in breast cancer (Köster et al.,

1990). Furthermore, a role in breast cancer progression and
angiogenesis has been identified (Chakraborty et al., 2006).
Interestingly enough, there are reports of a LCK-associated
molecular signature with prognostic utility in HER2-enriched
breast tumors (Rody et al., 2009). The result presented here
reinforces the functional implication of LCK in the context of
HER2-enriched breast cancer and emphasizes the necessity of
further, focused studies.

LUZP4 was identified as a high degree gene in all breast cancer
networks, except in the HER2-enriched. LUZP4 codifies a leucine
zipper protein. This protein has not been extensively explored,
however, recently, this leucine zipper has been identified as
involved in mRNA exporting in cancer cells (Viphakone et al.,
2015). Our results indicate that this gene may be an important
player in Luminal A, Luminal B, or Basal. Furthermore, unlike
the two previously discussed genes, LUZP4 has not been
extensively studied in the context of breast cancer. This gene is
an example of the type of new biological information that can be
recovered from existing data only with the use of network-based
approaches. We believe that further experimental exploration of
this molecule may be of interest in the future.

As it has been largely discussed (Margolin et al., 2006;
Baca-López et al., 2012), the probabilistic inference of gene
regulatory networks is fundamental (and in some cases almost
mandatory) to unveil complex transcriptional interactions that
would be otherwise extremely difficult to notice. However, as it
has also been noticed (Margolin et al., 2006), reverse engineering
methods have also a number of limitations. In the particular
case of transcriptional networks inferred via Mutual Information
calculations, one important aspect is that regulatory interactions
may include not only canonical transcription factor to target
interactions, but also a number of indirect and more complex
relationships. In this sense, MI-inferred networks (such as the
ones discussed here) provide us with information about statistical
dependency in the transcriptional profiles (Hernández-Lemus
et al., 2009; Baca-López et al., 2012; Creixell et al., 2015).

A major open question in the field of network reconstruction
is still how to establish a proper cut-off value to include a link in
a network (Serrano et al., 2009). We decided to make this choice
based on two constraints: on one hand, to include links with a
high statistical confidence, as measured with the associated p-
value provided by ARACNE, and on the other one, to obtain a
network that belongs to the complex network regime, as described
by Albert and Barabási (2002), which exhibit a node-to-link ratio
in which nodes << links.

It is evident that the threshold choice will modify network
parameters. We identified that, in an interval surrounding
our selected node-to-link ratio (0.1), network parameters
are generally stable (Supplementary Material 3). More
importantly, even though the actual numeric values may be
modified, is important to notice that the behaviors such as
similarity between networks (Supplementary Material 4) and
the relative influence of genes, based on their node degree
(Supplementary Material 5) are preserved in this interval.
Importantly, this shows robustness of the transcriptional
regulatory program, while at the same time allowing us to
observe structural differences between phenotypes along the
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interval. It is worth noticing that the network structures obtained
with our methodology are quite different to networks generated
at random (see Supplementary Material 6).

We have shown how a network approach can be useful to
understand the heterogeneity of breast cancer. We were able to
infer and compare the transcriptional programs of breast cancer
molecular subtypes, and contrast them with that of healthy
mammary tissue. We showed how this paradigm can help to
identify novel roles of molecules in different manifestations of
breast cancer, with potential biomedical implications.
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