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1 .  SCENARIO

In the research lab, Dr. X and his team were investigating
the interaction between gene Z and smoking in relation
to the onset of diabetes. They used a logistic regression
model, incorporating an interaction term, and performed
the Wald test for evaluating the statistical significance of
the interaction term. However, their lab boss suddenly
urged them to consider marginal effects instead. He said
it was introduced in JAMA and told Dr. X to read the
paper [1]. Dr. X read it but could not understand why his
original analysis was inappropriate. For him, we will
review regression analysis and interaction term, and
explain what the marginal effect is.

The article is structured as follows. Section 2 briefly
explains linear regression, generalized linear regression,
and nonlinear regression, encompassing a review of the
interpretation of coefficients in regression analysis. Sec‐

tion 3 reviewed the interpretation of an interaction term
in multiple linear regression and logistic regression. It
highlights a notable misapprehension and offers a ratio‐
nale for an alternative approach. In Section 4, we intro‐
duce the concept of marginal effects. Lastly, in Section 5,
we present our systematic review concerning gene-
environment interactions (GEI) to evaluate the appropri‐
ateness of interpretation of an interaction term.

2 .  FUNDAMENTALS OF REGRESSION ANALYSIS

The objective of scholarly investigations is to
approximate population characteristics (e.g., mean sys‐
tolic blood pressure). Regression analysis is employed to
delineate this quantity, especially a subgroup-specific
comparison. Various nomenclatures exist for regression
analysis. We usually talk about linearity in the predictor
X. Some investigators might assert that linearity repre‐
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sents a linear association of X on the original scale or, at a
minimum, on alternative scales (e.g., log and logistic).
However, actually, it is so named because of the linearity
on coefficients β. Table 1 summarizes a definition of the
relationship between outcome Y and predictor X based
on the linearity on coefficients β. In certain publications,
generalized linear regression, as opposed to linear regres‐
sion, is designated as “non-linear regression” since Y is
not linear with respect to X on the original scale. We
refrain from emphasizing distinctions in terminology.
Our concentration in this article pertains to generalized
linear regression other than linear regression, where Y is
not linear with respect to X on the original scale but linear
with respect to X on alternative scales (e.g., logit or log).

We will provide readers some examples so that you can
envision each form of regression analysis.

Example 1
Simple linear regression, Y = β0 + β1X + εi(E[εi|Xi] = 0).
εi: error term = the part of Y that is not explained by X.
Simple linear regression is a model used to describe the
relationship between two variables by fitting a straight

line to the data points. The goal of simple linear regres‐
sion is to find the best-fitting line that minimizes the sum
of squared differences between the actual data points and
their corresponding predicted values on the line. In this
example, the slope β1 can be interpreted as difference in
mean value of Y comparing subgroups differing in their
value of X by a single unit. Here, we say the association is
“linear” when the association between a predictor and
the outcome is constant, that is fitted line perfectly
straight.

This interpretation is the same in multiple linear
regression. Y = β0 + β1X1 + β2X2 + εi(E[εi|Xi] = 0). The
slope β1 can be interpreted as difference in mean value of
Y comparing subgroups differing in their value of X1 by a
single unit and the same X2.

Example 2
Generalized linear regression (logistic regression),
logit(P(Y = 1)) = β0 + β1X.
Generalized linear regression, also known as generalized
linear model (GLM), is an extension of simple/multiple
linear regression that allows for a broader range of rela‐

Table 1 Terminology used for categorizing regression models

Estimator Equation

Linear model
Linear regression Least squares/maximum likelihood

estimation E[Y|X1 = x1, ... XK = Xk] = β0 + β1x1, ... + βKXK

Generalized linear regression Maximum likelihood estimation g*(E[Y|X1 = x1, ... XK = Xk]) = β0 + β1x1, ... + βKXK

Non-linear model Non-linear regression Non-linear least squares Yi = f**(Xi; β) + εi***

* g( ): link function.
** f( ): non-linear function.
*** εi: error term; E[εi|Xi] = 0

Fig. 1 Fitted plot of a simple linear regression
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tionships between Y and X. Generalized linear regression
can handle different types of response variables, such as
binary, count, or categorical data, by introducing a link
function and various kinds of a probability distribution
of Y. It enables us to describe a more complex relation‐
ship compared to simple/multiple linear regression. A
famous example is logistic regression. In the equation
above, logit or log-odds is used as a link function. The
distribution of Y is defined as the Bernoulli distribution.
Y~Bernoulli(p); 0 < p < 1. We can interpret β1 can be
interpreted as the logit or log odds ratio of Y = 1 compar‐
ing subgroups differing in their value of X by a single
unit. In other words, expβ1 can be interpreted as the odds
ratio of Y = 1 comparing subgroups differing in their
value of X by a single unit. We should be aware that logis‐
tic regression is linear according to X on the “logit or log-
odds” scale, but not on the original scale. Here, we say the
association is “nonlinear” when the association between
a predictor and the outcome is not constant, that is fitted

line is not perfectly straight.

Example 3

Non-linear regression, Y =
β0

X + β1
+  ϵi  E ϵi Xi = 0 .

Nonlinear regression allows for much more complex and
curved relationships between X and Y. The aforemen‐
tioned equation is just one example of non-linear regres‐
sion. This particular model, designated as the hyperbolic
model, encapsulates the Michaelis-Menten kinetics,
which we likely encountered long time ago (perhaps dur‐
ing the high school days).

3 .  INTERACTION

Henceforth, our attention will be devoted to generalized
linear regression and interaction, especially logistic
regression which is frequently employed in clinical inves‐

Fig. 2 Fitted plot of logistic regression

Fig. 3 Fitted plot of a non-linear regression
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tigations. In this context, we assert the presence of an
interaction when the relationship between one predictor
is dependent upon the influence of another predictor.
First, we will contemplate multiple linear regression with
an interaction term, Y = β0 + β1X1 + β2X2 + β3X1X2 +
εi(E[εi|Xi] = 0). We might describe the relationship as
“nonlinear” even though fitted lines are perfectly straight.
It is because the association between a predictor and the
outcome is not constant. Nonetheless, this semantic
nuance does not hold an importance in the interpretation
of the coefficients. β1 can be interpreted as the association
between X1 and Y among the subgroup of X2 = 0. β3 can
be interpreted as the difference in the association
between X1 and Y comparing subgroups differing in X2

by one unit. If the p-value of β3 is “statistically signifi‐
cant”, we may describe there is an interaction.

Subsequently, we will deliberate on generalized linear
regression with an interaction term other than multiple
linear regression, logit(P(Y = 1)) = β0 + β1X1 + β2X2 +
β3X1X2.

Please remember logistic regression is linear according
to X on the “logit or log-odds” scale, but not on the origi‐
nal scale. Most of the time, our principal focus is on the
probability of Y = 1, not logit of Y = 1. In that situation,
the model is inherently interactive because the associa‐
tion between X1 and Y is not constant and can be influ‐
enced by the value of X2 (i.e., logit(P(Y = 1)) = β0 + β1X1 +
β2X2). Remember in logistic regression, the change of the
intercept moves the fitted curve of the association
between X1 and Y upward or downward (Fig. 5). Because
the fitted curve is S-shaped, the change in probability of
Y = 1 based on the change from x1→x2 would change. It

Fig. 4 Fitted plot of multiple linear regression with an interaction term (blue: subgroup A and red: subgroup B)

Fig. 5 Shift of fitted curve based on intercept-only change in logistic regression
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also applies to multivariable logistic regression, logit(P(Y
= 1)) = β0 + β1X1 + β2X2. When X2 changes, the fitted
curve will move upward/downward and the change in
probability of Y = 1 based on the change from x1→x2

would change as well. In other words, the relationship
between one predictor is dependent upon the influence
of another predictor, which is a definition of interaction.
Thus, logistic regression has inherent interaction of X2 on
the association between X1 and P(Y = 1). In this logistic
regression, the coefficient on the interaction term does
not necessarily indicate the presence of interaction
between X1 and Y based on X2. Then, what is the mean‐
ing of adding an interaction term? This phenomenon is
applied to other generalized linear regression such as
Poisson regression and log-risk model (i.e., relative risk
model or log-binomial model). It aims to improve the
model fitness (Fig. 6). In the field of sociology and eco‐
nomics, researchers are recommended to avoid interpret‐
ing the coefficient of interaction terms in “non-linear”
models (i.e., generalized linear regression other than
multiple linear regression) [2]. In the medical field, our
previous meta-epidemiological study elucidated even
among the randomized controlled trials published in 10
high-Journal-Impact-Factor journals, the coefficients of
non-linear regression models were not appropriately
interpreted [3].

4 .  MARGINAL  EFFECT

Instead of interpreting the coefficients of interaction
terms, several alternatives have proposed recommenda‐
tions [4]. One of them is the marginal effect, or the incre‐
mental change in the outcome associated with a one-unit
change in a particular predictor, while holding all other

variables constant (Fig. 7).

Marginal effect
= η xk = b,  X−k = X* −  η xk = a,  X−k = X*

xk: a predictor of interest
X−k: control variables
η( ): difference between two predictions from xk = a→xk

= b
It helps to elucidate the impact of each predictor on

the outcome in question. Examining the second differ‐
ence in the two marginal effects across a subgroup could
be an appropriate way to evaluate an effect modification
on the original scale (Fig. 7). As an example, we will
share our sample R code for evaluating a marginal effect
and second difference (https://github.com/AkiShiroshita/
Supplement-interaction/tree/main).

Another strategy is calculating relative excess risk due
to interaction (RERI). It indicates additive interaction
while the regression coefficient of generalized linear
model without simple/multiple linear regression indi‐
cates multiplicative interaction. While We do not provide
an in-depth elucidation herein, but we recommend
instructive guide authored by Tyler J. VanderWeele and
colleagues [5].

5 .  EXAMPLE :  SYSTEMATIC  REVIEW  ON
G*E  INTERACTION  STUDIES

In the field of genetics, the environmental effect can differ
based on the presence of individual genotype, which is
called a genome-environment interaction (G*E interac‐
tion or GEI) [6]. To date, a lot of studies have evaluated
and proposed GEI and it is one of the hot topics [7, 8].

Fig. 6 Fitted plot of logistic regression without/with an interaction term
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The outcome of interest is often a binary or categorical
outcome. We comprehensively reviewed how regression
models are used in analysis of GEI including Genome-
Wide Association Study (GWAS).

The methodologies are expounded upon in the supple‐
mentary file with comprehensive detail. Articles were
selected via MEDLINE through Ovid. Inclusion criteria
encompassed full-text observational studies evaluating
gene-environment interactions (GEI) utilizing regression
models, irrespective of outcome types (e.g., primary, sec‐
ondary, or exploratory outcomes) up until August 15,
2022. We limited our search to English language articles.
Review articles and case reports were excluded. Follow‐
ing title and abstract screening, we randomly sampled 50
articles, after which one of the authors (HS, ST, MY, or
ED) conducted full-text reviews. Another author (AS,
NY, NS, or YK) corroborated the findings and deter‐
mined the final inclusion of articles. When researchers in
the original study employed generalized linear regression
other than simple/multiple linear regression on at least
one categorical outcome and interpreted the significant
result of the coefficient of interaction terms as the pres‐
ence of GEI, we deemed it as an “inappropriate interpre‐
tation”. Conversely, when they utilized simple/multiple
linear regressions and interpreted the significant result of
the coefficient of interaction terms as the presence of
GEI, we considered it as an “appropriate interpretation”.
Furthermore, when they employed generalized linear
regression other than simple/multiple linear regression
and assessed the presence of GEI based on alternative
metrics, such as visual inspection of forest plots and
marginal effects, we likewise judged it as an “appropriate

interpretation”. In instances where we could not evaluate
their interpretation of interactions within the main text,
supplements, or cited protocols, we deemed it as an
“unclear description”. One of the authors (HS, ST, MY, or
ED) appraised the appropriateness, and the other two
authors (NY, NS, or YK, and AS) confirmed it. In cases of
conflict, resolution was achieved through discussion.

As a result, our Ovid search selected 2,071 studies, and
after the title and abstract screening, 560 studies
remained. Among them, we randomly selected 50 studies
and performed a full-text review. Finally, 19 studies were
included in our analysis. Table 2 summarizes the study
characteristics. We discerned an inappropriate interpre‐
tation of an interaction term among 10/19 (53%) of the
included studies, which constitutes a remarkable propor‐
tion of articles. Among them, 8/10 (80%) used logistic
regression. In certain investigations, multiple linear
regression incorporating an interaction term was
employed to assess binary outcomes (i.e., log-linear
model or linear probability model) [9–11]. Nonetheless,
we were concerned that these models might not fit the
data well. They yield predicted probabilities beyond the
zero-to-one range, and the difference between the esti‐
mate and true value would be substantial when the
majority of probabilities are proximate to either zero or
one. Our systematic review highlights the current situa‐
tion where many researchers misinterpret an interaction
term in generalized linear regression.

6 .  CONCLUSION

Dr. X got aware that in the context of generalized linear

Fig. 7 Marginal effects and second difference (blue: subgroup A and red: subgroup B)
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regression beyond simple/multiple linear regression, a
significant coefficient does not necessarily indicate the
presence of interaction, as it may do in linear models. He
decided to use marginal effects of gene Z based on the
presence/absence of smoking, and evaluated the second
difference (i.e., difference of two marginal effects). He
could find a significant interaction on the probability
scale and his lab boss praised his effort. Finally, his paper

was published in an outstanding journal in his field. We
share his descriptions on marginal effects. In the method
section, “We calculated the marginal effects of gene Z in
smokers and non-smokers”, and test the second differ‐
ence, or whether two marginal effects are equal or not”. In
the results section, “the association of gene Z was
stronger for smokers than non-smokers (second differ‐
ence = 0.082; p-value = 0.03).”.

Table 2 Study characteristics

Study name Sample size Type of
outcome Software Model Multiplicity

adjustment

At least one
significant

result

Inappropriate
interpretation of

an interaction
term

Abdulkadir 2021 [9] 678 Categorical R Linear regression Benjamin-Hochberg
method Yes Appropriate

Li 2019 [12] 1,140 Categorical R Logistic regression Permutation tests Yes Inappropriate

Yang 2015 [13] 1,336 Categorical SPSS Logistic regression Not Yes Inappropriate

Wu 2011 [14] 399 Categorical SPSS Logistic regression Not Yes Inappropriate

Angstadt 2014 [15] Over 1,800 Categorical SAS Logistic regression Benjamin-Hochberg
method Yes Inappropriate

White 2012 [16]p. 5 139 Continuous Statistica Generalized linear
model

Bonferroni
correction Yes Appropriate

Elam 2018 [10] 479 Categorical Mplus Structural equation
modeling Not Yes Appropriate

Tang 2020 [17] 20,155 Categorical QUANTO
software Logistic regression Bonferroni

correction Yes Inappropriate

Rask-Anderson 2017
[18] 362,496 Continuous R Linear regression False discovery rate Yes Appropriate

Aklillu 2018 [19] 163 Categorical Arlequin Non-linear
regression Not Yes Inappropriate

Schweren 2016 [20] 316 Continuous Not described Linear mixed effects
model Not Yes Appropriate

Meer 2016 [21] 539 Continuous R Linear mixed effects
model

False-discovery rate
and family-wise
error correction

Yes Appropriate

Mullins 2016 [11] 2,769 Categorical R Linear regression and
logistic regression

Bonferroni
correction Yes Appropriate

Bolhuis 2019 [22] 2,512 Continuous R Linear regression False-discovery rate Yes Appropriate

Sund 2021 [23] 41,198 Categorical STATA Mixed-effects logistic
regression Not Yes Inappropriate

Lehto 2020 [24] 243,797 Categorical STATA Logistic regression
model

Bonferroni
correction No Inappropriate

Sarginson 2014 [25] 1,222 Categorical R Poisson regression
model False-discovery rate Yes Inappropriate

Schmidt 2006 [26] 810 Categorical SAS Logistic regression
model Not Yes Inappropriate

Tin 2015 [27] 11,663 Continuous Metal and R Linear regression P-value < 5*10-8 Yes Appropriate
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