
Multicellular life relies on the coordination of cellular 
activities, which depend on cell–cell interactions (CCIs) 
across an organism’s diverse cell types and tissues1–3. Thus, 
studies on cellular functions increasingly require con-
sideration of the community context of each cell4. CCIs 
leverage diverse molecules, including ions, metabolites, 
integrins, receptors, junction proteins, structural proteins, 
ligands and secreted proteins of the extracellular matrix. 
Some molecules support structural CCIs (for exam-
ple, cell adhesion molecules), whereas ligands such as 
hormones, growth factors, chemokines, cytokines and 
neurotransmitters mediate cell–cell communication (CCC) 
(Fig. 1a). The signalling events behind CCC are often 
mediated by interactions of various types of protein, 
encompassing ligand–receptor, receptor–receptor and 
extracellular matrix–receptor interactions. Receiver cells 
trigger downstream signalling through cognate recep-
tors, generally culminating in altered transcription fac-
tor activity and gene expression. These cells with altered 
expression further interact with their microenvironment. 
To understand the role of each cell within its local com-
munity, one must identify the protein messages passed 
between cells; measuring expressed messenger molecules 
and their associated pathways is fundamental to under-
standing the directionality, magnitude and biological 
relevance of CCC.

Direct measurement of proteins mediating CCC  
requires specialized biochemical assays and exten-
sive domain knowledge; moreover, these proteins  
cannot always be studied in the native microenviron-
ment. Tradi tional assays of the underlying protein–protein  
interactions (PPIs) include yeast two-hybrid screening, 

co-immunoprecipitation, proximity labelling proteo-
mics, fluorescence resonance energy transfer imaging 
and X-ray crystallography5,6. These techniques have 
identified many interactions between proteins that are 
secreted or displayed extracellularly to mediate inter-
cellular communication. Proteomics and transcripto-
mics can further reinforce such studies as evidence of 
expression supports the presence of PPIs. This approach 
has been applied to, for instance, the analysis of com-
munication between 144 human primary cell types, 
which provided insights into pairs of cells that are more 
likely to interact and the specific pathways they use to 
communicate7. While proteomic technologies are prefer-
able for these analyses owing to the direct measurement 
of protein abundances, RNA sequencing (RNA- seq) data 
sets are more numerous, easier to access and straight-
forward to analyse. They can also be generated from 
bulk samples8, microdissected specimens9 or single- cell 
suspensions10 and enable studies of CCC at different  
resolutions, whereas proteomics at single- cell reso lution 
is a technology still under development11. Single- cell 
RNA- seq has benefits over bulk analysis, chiefly in quan-
tifying expression in rare cell types and in identifying 
the cell type of origin of proteins mediating CCIs12,13. 
Results from transcriptomics must be cautiously con-
sidered and validated to avoid misleading hypotheses; 
however, the ubiquity and ease of analysis have enabled 
many recent studies to infer CCC from gene expression, 
generating testable hypotheses across diverse disci-
plines. In particular, the coordinated gene expression of  
ligands and receptors can be used to infer intercellular  
communication.
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Here, we start by providing an overview of the range 
of fields that RNA- based CCI analyses have been applied 
to, illustrating the types of insight that can be gleaned. 
We then discuss the computational strategies adopted 
in those studies, detailing the PPI databases and math-
ematical models commonly used to decipher CCC. 
Additionally, we introduce the computational tools that 

facilitate these analyses, describing their main features as 
well as their strengths and weaknesses. Finally, we review 
approaches to validate CCI- derived results and discuss 
remaining challenges and future directions in the field.

Insights from RNA- based CCI analyses
The study of intercellular interactions has greatly acceler-
ated as transcriptomics, in particular bulk and single- cell 
RNA- seq, has become commonplace. These approaches 
use transcriptional profiling to decipher CCCs at any 
stage of development and in any multicellular commu-
nity. Many studies focus on signals mediating cellular 
differentiation, interactions of cell types within tissues 
and organs, and immune responses (Fig. 1b; Table 1; 
see Supplementary Table 1 for more details). Here, we 
review these studies and illustrate the types of insights 
gained from analysing CCC.

Interactions drive cellular differentiation and organ 
development. Cellular differentiation depends on 
temporally and locally precise cell communication, so 
inspecting intercellular communication has increased 
our understanding of stem cell fates and revealed 
ligand–receptor interactions that initiate self- renewal 
and differentiation14–20. For example, a CCC network of 
haematopoietic cells built using ligand–receptor pairs 
showed that fate decisions are regulated through precise 
coordination of an antagonistic feedback circuit involv-
ing megakaryocyte- derived stimulatory factors and 
monocyte- derived inhibitory factors14. Another analy-
sis of CCC networks interrogating how differentiated 
cells influence haematopoietic stem cell fate revealed 
that ligand production is cell type specific, whereby 
some cells can produce signals with the same function, 
whereas receptors are less specific15. Given the promis-
cuity of receptors, physical compartmentalization of cells 
is key to limit ligand signalling and confer specificity to 
stem cell fates.

Tissue and organ development also depends on 
signals that progenitor cells send and receive21. The 
analysis of brain CCC showed crosstalk involved in 
neurogenesis and identified novel mediators16,22, such 
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Fig. 1 | Types and applications of cell–cell interactions 
and communication. a | ‘Autocrine signalling’ refers to 
intracellular communication whereby cells secrete ligands 
that are used to induce a cellular response through 
cognate receptors for those molecules expressed on the 
same cell. Paracrine cell–cell communication does not 
require cell–cell contact, rather depending on the diffusion 
of signalling molecules from one cell to another after 
secretion. Juxtacrine, that is, contact- dependent, cell– 
cell communication relies on gap junctions or other 
structures such as membrane nanotubes to pass signalling 
molecules directly between cells, without secretion into 
the extracellular space. Endocrine cell–cell communication 
represents intercellular communication whereby signalling 
molecules are secreted and travel long distances through 
extracellular fluids such as the blood plasma; typical 
mediators of this communication are hormones.  
b | Overview of the main applications of cell–cell 
interaction methods: cell development, tissue and organ 
homeostasis, and immune interactions in disease (for more 
details on each study type, see Supplementary Table 1).

Cell–cell interactions
(CCis). Physical interactions 
between two or more cells, 
which can be mediated by 
proteins, ligands, sugars or 
other biomolecules.
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Table 1 | Illustrative studies and their strategies for deciphering cell–cell interactions and communication

Sample or organ Key input Scoring CS value CCC score Validation Study focus Ref

Cell development

Haematopoietic 
cells (human)

Microarray; LRIs Expression 
thresholding

Binary No score Functional 
validation

Role of CCC between 
differentiated haematopoietic 
cells and HSCs in fate decisions

15

Brain (mouse 
embryonic cortex)

Microarray; LRIs Expression 
thresholding

Binary No score Functional 
validation

Role of microenvironment 
in self- renewal versus 
differentiation decision of 
neural precursor cells during 
neurogenesis

16

Liver and iPS cells 
(human)

scRNA- seq; LRIs Expression 
thresholding

Binary Normalized 
sum of CS

Functional 
validation

3D liver bud organoid from 
iPS cells to characterize CCC 
shaping hepatogenesis

24

Placenta (human) scRNA- seq; LRIs Expression 
thresholding

Binary No score Functional 
validation

CCI in the fetus–placenta 
interface before and after 
decidualization

29

Brain (mouse) Bulk RNA- seq; 
LRIs

Expression 
thresholding

Binary Sum of CS Colocalization Ligand–receptor pathways 
active during neural 
development; CCC  
between neural, vascular  
and microglial cells

22

iPS cells (mouse) scRNA- seq; LRIs Expression product Continuous Sum of CS Functional 
validation

CCC at the beginning of 
differentiation

19

Bone marrow 
(mouse)

scRNA- seq; LRIs RNA- Magnet Continuous No score Colocalization CCC and interactions between 
bone marrow cells

53

Tissue interactions

Multiple lineages 
(human)

scRNA- seq; LRIs Expression 
thresholding

Binary Sum of CS None CCC between multiple cell 
lineages

7

Lungs (human) popRNA- seq; LRIs Expression 
thresholding

Binary Sum of CS Colocalization 
functional 
validation

Signals sent by mesenchymal 
cells in lungs that are key 
for self- renewal of epithelial 
progenitors after tissue injury

40

Heart (mouse) scRNA- seq; LRIs Expression 
thresholding

Binary Sum of CS Functional 
validation

Transcriptional profiles of 
non- myocyte cells in heart and 
their CCC

33

Lungs (mouse) scRNA- seq; LRIs Expression 
correlation 
(Spearman)

Continuous No score Expression; 
colocalization 
functional 
validation

CCC between and within 
immune and non- immune cells 
during development

41

Immune system 
and structural 
cells (mouse)

Low- input 
RNA- seq; LRIs

Differential 
combinations

Binary Odds ratios Functional 
validation

Role of structural cells in 
immune responses

58

Heart (mouse) scRNA- seq; LRIs Differential 
combinations

Binary Sum of CS Expression; 
colocalization 
functional 
validation

CCC of cardiomyocytes and 
non- cardiomyocytes in human 
heart in health and under 
failure

34

Placenta (human) scRNA- seq; LRIs CellPhoneDB Continuous No score Colocalization Key ligand–receptor pairs 
based on subunit architecture; 
CCC at maternal–fetal interface

30

Tumour microenvironment

Melanoma 
(human)

scRNA- seq; LRIs Expression 
thresholding

Binary Sum of CS None CCI network of isolated cells 70

HNSCC (human) scRNA- seq; LRIs Expression 
thresholding

Binary No score Colocalization CCC in patients with HNSCC 
generated by HPV or 
environmental carcinogens 
(HPV negative)

61

Five cancer types 
(mouse)

scRNA- seq; LRIs Expression product Continuous No score None CCC within a tumoural 
microenvironment

60

Nine cancer types 
(human)

Microarray; LRIs Expression 
correlation (Pearson)

Continuous No score None Correlation between autocrine 
signalling pathways and  
mRNA levels of ligands  
and receptors

69

NaTure revIeWS | GEnETICS

R e v i e w s

  volume 22 | February 2021 | 73



as apolipoprotein E (APOE), a protein associated with 
Alzheimer disease. CCC analysis also elucidated how 
erythroblasts interact with macrophages during hae-
matopoiesis in the fetal liver23 and was applied to liver 
organoid development to investigate how multilineage 
communication shapes the differentiation of hepatic 
cells24. Following similar principles, other studies have 
used CCC analyses to understand differentiation during 
epidermal regeneration25–27, development of the interfol-
licular epidermis28 and formation of the maternal–fetal 
interface in early pregnancy29,30.

Cell- type communication in tissue and organ home-
ostasis. Expression profiling of different cell types in 
adult tissues and organs has shown how intercellular 
communication contributes to organ function. To date, 
this approach has been applied to brain31,32, heart33,34, 
kidney35–37, liver38,39, lungs40–43, placenta29,30,44, retina45 
and visual cortex46. Remarkably, this approach revealed 
new roles of cells within a tissue41 and helped explain how 
ageing32,47, diseases34–36,48–51, infections52 and injuries31,40,43 
shape multicellular organization. Intercellular cross-
talk has been investigated in healthy and diseased 
liver50, kidneys during homeostasis and rejected kid-
ney transplants35,36, heart during failure and recovery 
conditions34, and healthy and asthmatic lungs51. RNA- 
based strategies for studying CCIs and CCC have helped 
elucidate, for instance, how cells communicate during 
ageing of the mouse brain. This revealed that CST3 and 
CXCL12 are mediators that differentiate intercellular 
interactions in young and old brains and may modulate 
ageing- related processes32. Thus, within- tissue CCC stud-
ies continue to deepen our understanding, for basic and 
therapeutic purposes, of how cellular communities work.

During the study of CCC, considering spatial context 
clarifies relationships between cells across tissues and 
organs. Several studies have incorporated imaging to  
spatially map cells and integrated transcriptomics  
to measure CCC. For example, researchers interro-
gated the communication and response of lung cells to 
tissue injury40,43; spatial information aided the identi-
fication of a new population of lung endothelial cells 
(Car4 high) and elucidated how these cells communi-
cate with neighbouring alveolar type 1 cells through 

VEGF signalling given both their proximity and their 
expression of the cognate genes43. Spatial maps have also 
helped investigate the communication of T cells dur-
ing their development in the human thymus13. As this 
process is spatially coordinated, knowing the cellular 
localizations was crucial to understand, for example, 
interactions between XCR1+ dendritic cells and T cells 
with high expression of XCL1, which are important 
to recruit dendritic cells into the medulla of the thy-
mus. Yet another study inferred the 3D organization of 
bone marrow — instead of using tissue imaging to map 
the cells — ultimately identifying signalling between 
immune and non- immune cells53. These examples show 
how cell localization can help elucidate interactions 
between spatially proximal regions.

Immune interactions in disease. The immune system 
receives signals from multiple tissues, but only spe-
cific signals allow it to coordinate healthy immune 
responses. For instance, CCL2- and CX3CL1- mediated 
communication coordinate the recruitment and posi-
tioning of immune cells, as determined from single- 
cell transcriptomes37,39. Specifically, these CCCs were 
associated with the recruitment of monocytes that later 
became liver- resident macrophages39 and the position-
ing of mononuclear phagocytes in kidney37, which are 
crucial processes to combat ascending uropathogenic 
Escherichia coli infection. CCC is also involved in the 
response to viral infections52,54–56. Studies of respiratory 
diseases investigated the crosstalk between lung and 
T cells in Sendai virus- infected mice55 or CCC associ-
ated with severe acute respiratory syndrome coronavi-
rus 2 (SARS- CoV-2) infection52,56, where interactions 
between immune and epithelial cells correlated with 
COVID-19 severity. CCC- based studies have also pro-
vided more general insights. For example, they helped 
build a social network of immune cells by identify-
ing communication pathways between immune cells57. 
Furthermore, they revealed the roles of structural cells 
in immune responses by elucidating how fibroblasts, 
endothelial cells and epithelial cells are primed for 
organ- specific immune gene activation through upreg-
ulation of ligands and receptors, including β2M, CD74, 
CXCL10, VCAM1 and TNFRSF1A58.

Sample or organ Key input Scoring CS value CCC score Validation Study focus Ref

Tumour microenvironment (cont.)

Lungs (human) scRNA- seq; LRIs Differential 
combination; 
expression 
thresholding

Binary No score Functional 
validation

Tumour–stroma CCC in 
lung cancer; introduced 
CCCExplorer

67

Ovary (human) Microarray; LRIs; 
downstream 
target genes

Differential 
combination; 
expression 
thresholding

Binary No score Expression; 
functional 
validation

CCC between stromal and 
ovarian cancer cells

68

Head and neck 
and immune 
system (human)

scRNA- seq; LRIs; 
downstream 
target genes

NicheNet Continuous No score None Prediction of ligand–target 
links between interacting cells; 
tested on HNSCC data set

54

CCC, cell–cell communication; CCI, cell–cell interaction; CS, communication score; HNSCC, head and neck squamous cell carcinoma; HPV, human papillomavirus; 
HSC, haematopoietic stem cell; iPS cell, induced pluripotent stem cell; LRI, ligand–receptor interaction; popRNA- seq, population RNA sequencing; RNA- seq; RNA 
sequencing; scRNA- seq, single- cell RNA sequencing. For additional studies and details, see Supplementary Table 1.

Receptors
Proteins that bind to other 
biomolecules to receive or 
amplify a signal. They are most 
commonly membrane- bound 
but can also be found in the 
cytoplasm.

Ligands
biomolecules that bind to 
receptors and change the 
activity, conformation or  
other biological properties  
of the receptor, triggering a 
signalling event.

Extracellular matrix
Three- dimensional organization 
of biomolecules located in the 
extracellular space. it provides 
structural and functional 
support to neighbouring cells.

Cell–cell communication
(CCC). Subset of cell–cell 
interactions involving 
biochemical signals that  
are sent between or within  
cells and generate an 
intracellular effect.

Protein–protein interactions
(PPis). Physical interaction 
between two proteins, often 
involved in structural systems, 
signal transduction or 
metabolic processes.

Network
a set of nodes with defined 
pairwise attributes. For 
example, a protein–protein 
interaction network would 
consist of proteins as nodes 
with attributes linking nodes 
that are known to interact  
with each other.

Table 1 (cont.) | Illustrative studies and their strategies for deciphering cell–cell interactions and communication
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Tumours and their surrounding microenvironments 
are complex communities of cells that modify local 
immune cell functions. Studying CCC within these 
communities can reveal how cells communicate in 
these ecosystems54,59–64 and help guide the development 
of effective cancer immunotherapies just as the inhibit-
ion of CCC through PD1 and PDL1 has revolutionized 
the field65,66. CCC analyses have also elucidated cross-
talk between tumour and stroma67,68 and communicat-
ion pathways used by tumours69–71. Several studies have 
developed statistical models to connect inferred CCC 
mechanisms to cancer phenotypes. One case observed 
clear correlations between the activity of specific ligand–
receptor interactions and the degree of regulatory T cell 
infiltration and tumour growth60. In another study, 
active ligand–receptor pairs were associated with inva-
siveness and proliferation of malignant cells under a par-
tial epithelial–mesenchymal transition programme in 
patients with head and neck squamous cell carcinoma59. 
Moreover, the expression levels of key mediators of 
CCC were used as inputs for training a decision tree to 
predict prognosis for patients with glioma71; this model 
classified patients into high- risk and low- risk groups, 
defined on the basis of the difference in patient survival 
time. Thus, studying CCC within the tumour microen-
vironment provides opportunities to identify druggable 
pathways and develop new cancer therapeutics68.

Deciphering CCC
The aforementioned studies provide a glimpse of  
the insights attainable when studying CCC. While the 
methods and tools that these studies used have in com-
mon that they infer CCC from gene expression (Fig. 2a), 
a diverse range of strategies can be applied (Fig. 2b; 

Table 1). For simplicity, we refer to them as methods 
for studying CCC, but these strategies can decipher 
any type of gene product- based CCIs, including pro-
teins that participate in structural interactions between 
cells. Furthermore, although we focus on mammalian 
CCIs, the approaches apply to any prokaryotic or eukar-
yotic cells with a characterized interactome (for exam-
ple, Drosophila melanogaster72,73 and Caenorhabditis 
elegans74,75).

Building from PPIs. Inferring CCC from transcriptom-
ics relies on gene co- expression, whereby one gene in 
a given pair comes from one interacting cell and the 
other gene comes from the second interacting cell. 
Several studies focused on intercellular signalling using  
co- expression of all genes or specific cell markers31,76, the 
similarity between expression profiles77 or the properties 
of regulatory networks78. However, most studies rely on 
literature- curated lists of interacting proteins, which 
facilitates the biological interpretation of results (Fig. 2a). 
Although several studies have used interactions between 
any class of cell- surface protein and secreted protein32,53, 
the predominant class of interactions used for studying 
CCC are known ligands and their cognate receptors.

By focusing on ligands and receptors, an early study 
investigated autocrine signalling loops in cancer69. The 
authors analysed the correlation between ligand expres-
sion and cognate receptor expression. They first created a 

literature- curated list of ligand–receptor pairs (Database 
of Ligand- Receptor Partners), which was subsequently 
integrated with microarray- based expression data to 
analyse autocrine signalling in cancer cells. At the time, 
the Database of Ligand- Receptor Partners consisted 
of 451 interactions in humans; since then, many other 
databases have catalogued substantially more interact-
ing ligand–receptor pairs, enabling more comprehensive 
testing of communication processes between cells.

Many studies have enumerated known ligand–recep-
tor pairs using different approaches (box 1). To facili-
tate further use and comparison, we collated publicly 
available lists into a single ligand–receptor pair repos-
itory. One extensively used database7 contains ~2,400 
human ligand–receptor pairs, obtained from multiple 
databases and literature curation. Similar approaches 
allowed researchers to increase the number of known 
ligand–receptor pairs and to build databases for other 
organisms (Supplementary Table 1). However, integrat-
ing multiple sources of data is challenging and requires 
reconciliation of the different ways ligand–receptor  
pair confidence was assessed or how orthologues 
were determined. Furthermore, few predicted PPIs in 
databases have been validated, raising the concern of 
false positives.

While early efforts increased the number of reported 
ligand–receptor pairs, many lacked information about 
protein complexes involving multiple subunits. This sce-
nario greatly increases false- positive CCC predictions79. 
Some proteins, such as transforming growth factor- β 
receptors80 and cytokine receptors81, require multisub-
unit assembly for function. A lack of expression of any 
subunit blocks ligand–receptor interactions and the 
resulting communication82. Thus, more recent compu-
tational tools such as CellPhoneDB30,83, CellChat79 and 
ICELLNET84 include multimeric proteins and interac-
tions between complexes of both ligands and receptors. 
Accounting for subunit co- expression better represents 
functional ligand–receptor interactions. For example, 
CellChat79 includes ~2,000 ligand–receptor interactions, 
~48% of which represent interactions of heterodimers, a 
substantial increase from the ~900 ligand–receptor pairs 
in CellPhoneDB.

Additional efforts have incorporated information 
beyond ligand–receptor pairs to reveal other aspects of 
CCC, such as the interchange of metabolites or activa-
tion of intracellular signalling. For example, metabolite 
secretion data have been included in communication 
studies by considering the expression of the producing 
enzymes85. In this regard, the production of specific 
metabolites can be inferred from transcriptomic data86,87; 
however, metabolite concentrations cannot be directly 
predicted, so concentration- dependent interactions 
cannot be assessed. Among other efforts, information 
about downstream signalling gene products and gene 
regulatory networks can be included25,54 by weighing  
the potential of using a communication pathway given the 
intracellular effect on a receiver cell. For this, genes in a 
downstream pathway to each receptor are obtained from  
signalling and regulatory networks; then their expres-
sion provides additional inputs for scoring the respec-
tive ligand–receptor pairs. However, more extensive 

Communication pathways
Molecular components  
used for an intercellular 
communication event,  
usually corresponding  
to a ligand–receptor pair.

Interactome
Network of biomolecule 
interactions within and 
between cells.

False positives
in classification, a false  
positive occurs when a negative 
example is assigned a positive 
label. For the purpose of  
this Review, this means a 
non- interacting ligand–receptor 
pair is labelled as interacting.

NaTure revIeWS | GEnETICS

R e v i e w s

  volume 22 | February 2021 | 75

https://github.com/LewisLabUCSD/Ligand-Receptor-Pairs
https://github.com/LewisLabUCSD/Ligand-Receptor-Pairs


2  Data preprocessing and generation of
    expression matrix

1  Collection of samples or cells for
    transcriptomic analysis

a

b

3  Interacting proteins or
    ligand–receptor pairs

Samples or cells

Expression value

G
en

es

4  Filtering by interacting proteins or
     ligand–receptor pairs

5  Cell–cell interactions and communication analysis

6  Interpretation and visualization of results

Samples or cells

Expression
valueG

en
es

Samples or cells

Communication
scores

Aggregation
of scores
(optional)

g(Cell 1, Cell 2)

Scoring function
f(L, R)

G
en

es

Cell 1 Cell 2

Ligands
(cell 1)

Receptors
(cell 2)

1

0

.

.

.

.

.

.

Fold change between ligand
and receptor samples

–l
og

 P
R

ec
ep

to
r

ex
pr

es
si

on

Ligand expression

Expression
correlation

Differential
combinations

Expression
product

Expression
thresholding

Recommended data Communication score

Binary

Continuous

Continuous

Binary

Bulk, single cell

Single cell

Bulk, single cell

Bulk, single cell

Ligand expression Receptor expression

L × R

Ligand expression Receptor expression

(L > x) and (R > x)

Cell 3

Cell 2

Cell 1

Cell 4

Sample
or cell

www.nature.com/nrg

R e v i e w s

76 | February 2021 | volume 22 



information on ligand–receptor pairs is required to 
include downstream genes. A limitation of this informa-
tion is that rules of gene regulation are not considered, 
leading to potential false positives and false negatives.

Adding information can be laborious, requiring care-
ful curation of mediator molecules and development of 
algorithms that incorporate these data. Furthermore, 
inference methods based on PPI databases are sensitive 
to the quality of the underlying databases. Nevertheless, 
PPIs, especially ligand–receptor pairs, have been central 
to decipher CCC in all strategies.

Which communication pathways are cells using? To  
elucidate which biological processes are used by inter-
acting cells to communicate, a score is usually estimated 
for each pair of interacting proteins (box 1) using the 
expression of their cognate genes as input to a scoring 
function (Fig. 2a). Importantly, the main assumption  
of these methods is that (1) gene expression reflects 
protein abundance and (2) protein abundance is suffi-
cient to infer the PPI strength, ignoring essential factors 
for their binding, such as post- translational modifications 
or multisubunit complex assembly. Here, we focus on 
ligand–receptor pairs as PPIs (Fig. 2a, step 3); however, 
these strategies can be extended to any intercellular PPIs.

Communication scores can be binary or continu-
ous (Fig. 2b), each providing different insights into the 
signalling pathways that cells use. Binary scores are sim-
pler, whereas continuous scores enable more precise 
quantification of intercellular signalling. For both types 
of communication scores, we identified two core scoring 
functions in the literature. The ‘expression thresholding’ 
and ‘differential combinations’ methods are defined 
for the binary category, whereas the ‘expression prod-
uct’ and ‘expression correlation’ approaches quantify 
continuous scores.

In binary scoring, expression thresholding is widely 
used because of its easy implementation and interpreta-
tion (Table 1). By thresholding expression values of both 
interacting partners in each ligand–receptor pair, we 
can measure all communication processes used between 
cells. If both genes are expressed above a threshold, the 
ligand–receptor pair is considered ‘active’; otherwise 

it is ‘inactive’ (assigning ones and zeros, respectively; 
Fig. 3). Different thresholds can be used for the ligand 
and receptor44,67. By contrast, the differential combina-
tions method uses any approach to quantify differen-
tial gene expression88,89 to identify ‘active’ interacting 
partners. Thus, this strategy measures communication 
pathways in a sample- or cell type- specific manner. 
Regarding input data sets, both binary functions are 
suitable for either bulk or single- cell data (Fig. 2b); how-
ever, bulk- derived samples may miss certain interact-
ing ligand–receptor pairs, as averaging gene expression 
across all cells can mask signals from low- abundance 
cells. These binary methods both assume that higher 
expression is needed for interaction and require the 
choosing of a gene expression threshold (either signifi-
cance or gene expression magnitude), which can lead to 
false positives and/or false negatives7. General thresholds 
may fail as (1) some proteins have different bioactivities 
in a concentration- dependent manner90 and (2) mRNA–
protein level correlations vary across genes82. Hence, 
gene- specific thresholds should be developed, as a gen-
eral threshold may not properly represent the presence 
and activity of proteins.

Modelling interactions as non- binary processes pro-
vides biologically relevant information91 and helps infer 
active communication pathways. The expression product 
method computes a continuous value by multiplying the 
expression of both interacting proteins, and it has suc-
cessfully found differences in ligand–receptor pair use 
between cells55,60. For example, communication pathways 
that were previously described to enhance the expan-
sion of regulatory T cells were also identified to have 
communication scores linearly correlated with the infil-
tration of those cells in human metastatic melanoma60, 
which would not have been possible with binary scores. 
However, this approach may become problematic if 
interacting proteins have vastly different transcript lev-
els wherein one protein dominates the interaction signal. 
Additional data preprocessing, such as cell- type normal-
ization of gene expression using housekeeping genes60 
or accounting for correlation between transcripts and 
proteins7, may mitigate this effect. Although this method 
can be applied to bulk data, microdissected or single- cell 
data sets are preferred as they capture the full hetero-
geneity of expression across cells19,48,49,55,60,62, resulting in 
clearer differences in expression92.

The second continuous scoring function is the 
expression correlation method. This score is the corre-
lation between expression values of the interacting pro-
teins across many samples. Thus, the score represents 
the general behaviour of each ligand–receptor pair in the  
evaluated groups rather than the individual importance 
for each pair of samples or cells. Whereas the previ-
ous methods can use any gene expression data type, 
the expression correlation method requires data sets  
containing many measurements of two populations 
to compute correlation for each ligand–receptor pair. 
A potential obstacle for this method is the sparsity of 
single- cell data sets, which can increase or decrease 
correlation coefficients in undesirable ways93,94, leading 
to correlation values that measure sparsity, rather than 
biology. In addition, the formation of subgroups of data 

False negatives
a false negative occurs when a 
positive example is assigned  
a negative label. For the 
purpose of this Review, this 
means a true interacting 
ligand–receptor pair is  
labelled as not interacting.

Post- translational 
modifications
Covalent modification of amino 
acid residues on a protein, 
commonly altering function, 
structure or localization. 
Phosphorylation, acetylation 
and glycosylation are among 
the most common.

Signalling pathways
The network of biomolecules 
that serve to transmit signals 
and induce cellular responses. 
Post- translational modification 
of proteins is the most 
common way signals are 
propagated.

Fig. 2 | Analysis workflow for inferring cell–cell interactions and communication 
from gene expression. a | Samples or cells are analysed by transcriptomics to measure 
the expression of genes (step 1). Then the data generated are preprocessed to build a 
gene expression matrix, which contains the transcript levels of each gene across different 
samples or cells (step 2). A list of interacting proteins that are involved in intercellular 
communication is generated or obtained from other sources (step 3), often including 
interactions between secreted and membrane- bound proteins (commonly ligands and 
receptors, respectively). Only the genes associated with the interacting proteins are held 
in the gene expression matrix (step 4). Their expression levels are used as inputs to compute 
a communication score for each ligand–receptor pair using a scoring function (function 
f(L, R), where L and R are the expression values of the ligand and the receptor, respectively). 
These communication scores may be aggregated to compute an overall state of 
interaction between the respective samples or cells using an aggregation function 
(function g(Cell 1, Cell 2), where Cell 1 and Cell 2 are all communication scores of those 
cells or corresponding samples) (step 5). Finally, communication and aggregated scores 
can be represented by, for instance, Circos plots and network visualizations to facilitate 
the interpretation of the results (step 6). b | Main scoring functions of communication 
pathways based on the expression of their components. Recommended data to use with 
these functions and the type of their resulting communication score are indicated.
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points (representing pairs of cells) due to low expression 
variance of the ligand or the receptor in an interaction 
is known to bias correlation and can make this score 
inappropriate95.

In addition to these core scoring functions, more 
advanced approaches can generate interaction scores, 
such as RNA- Magnet53, a method using fuzzy logic to 
identify candidate ligands and receptors active in cell 
communication. As mRNAs encoding surface recep-
tors frequently show low abundance, this strategy better 
accounts for the variance in receptor expression. Other 
advanced approaches have been wrapped into tools (see 
the section entitled A growing toolbox to facilitate CCC 
analysis). Each strategy can decipher CCC but relies on 
different assumptions that may influence the results. 
Therefore, knowing the limitations and following best 

practices in data set preprocessing93,96,97 are crucial to 
minimize false discoveries.

Distinguishing which pair of cells are more likely to 
interact. Measurement of individual communication 
scores facilitates the study of CCC, exposing the roles 
of specific signalling mechanisms; however, it does not 
reveal the entire interaction state between cells. Thus, it 
may be desirable to use an aggregate score to define the 
interactions between pairs of cells84.

From the few studies that aggregated communica-
tion scores into an overall score (Fig. 2a, step 5), the 
most common approach quantifies the number of 
active ligand–receptor pairs between cells (that is, the 
sum of binary communication scores). This score sug-
gests which cells interact more strongly and enables 

Fuzzy logic
extension of standard boolean 
logic to define truth values of 
variables, encompassing real 
values between 0 and 1 both 
inclusive, instead of binary 
values.

Box 1 | Computational strategies for building lists of interacting proteins

To reduce the dependency on laborious experiments, lists of interacting proteins can be compiled computationally using 
the resources mentioned in the table below. These strategies include a heuristic search of gene products as candidates  
for interaction and manual curation of interacting protein pairs by using available databases or previously curated lists  
of interacting partners from the literature.

Several high- quality lists of ligand–receptor pairs exist for model organisms7,14–16,22,29,30,32,33,38,53–55,67,84. However, studying 
cell–cell communication in organisms with fewer protein–protein interaction (PPI) data requires additional effort, 
especially in imputing ligand–receptor pairs through heuristic approaches and subsequent manual curation to increase the 
confidence in the list. For instance, some studies use orthologues of human ligand–receptor pair proteins from databases 
as indicated in the table below to adapt those pairs to the organism of interest, thus delineating core pathways of 
communication16,33,60. When reference PPI networks or orthologue data are not available, other heuristic procedures to 
impute protein interactions could be used. a preliminary selection of candidate genes can be done according to their 
functional annotations. Some genes may lack annotation, so their potential interactions can be imputed with strategies 
such as protein co- evolution162, modelling of protein structures163 and other in silico techniques for inferring PPIs5. 
additionally, machine learning164,165 and data mining166 can also be used, facilitating the search of candidate  
ligand–receptor pairs.

bPS, british Pharmacological Society; IuPHar, International union of basic and Clinical Pharmacology; KeGG, Kyoto encyclopedia of 
Genes and Genomes.

Resource URL Ref.

Functional annotations

Gene Ontology http://geneontology.org/ 167

UniProt https://www.uniprot.org/ 168

KEGG https://www.genome.jp/kegg/ 169

Orthologues

OrthoDB https://www.orthodb.org/ 170

gProfiler https://biit.cs.ut.ee/gprofiler/orth 171

Databases of protein–protein interactions

The Human Protein Atlas https://www.proteinatlas.org/ 172

STRING https://string-db.org/ 173

BioGRID https://thebiogrid.org/ 174

PICKLE http://www.pickle.gr 175

APID http://apid.dep.usal.es 176

IntAct https://www.ebi.ac.uk/intact 177

Pathway Commons http://www.pathwaycommons.org/ 178

Ligand–receptor interactions

IUPHAR/BPS Guide to Pharmacology https://www.guidetopharmacology.org/ 179

Resources for cell–cell interactions from 
the Bader laboratory

http://baderlab.org/CellCellInteractions 32

Compendium of ligand–receptor pairs in 
the literature

https://github.com/LewisLabUCSD/
Ligand-Receptor-Pairs

https://doi.org/10.1038/
s41576-020-00292-x
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the building of CCC networks to perform graph- based 
analyses. However, different cell pairs could have 
similar counts but completely different circuits of 
communication7, causing inaccuracies. Newer methods 
attempted to deal with those inaccuracies by weighting 
CCIs and CCC on the basis of additional data. Hence, 
these approaches enable the comparison of interac-
tions weighted by their importance, among those that 
are considered active. One approach computes a prob-
ability of intracellular communication using a given 
ligand–receptor pair between a sender and a receiver 
cell and then aggregates this into a global CCC score25. 
Another study proposed a statistical model to evaluate 
expression variation of individual genes given a cell’s 
CCIs in its neighbourhood98. This method yields coef-
ficients interpretable as an overall CCI score. Here, 
there is no aggregation of communication scores as the 
coefficient is computed from the covariance of different 
factors, such as the distance between cells, the cellu-
lar composition of the neighbourhood and transcrip-
tomes including all genes instead of only ligands and 
receptors. Although these approximations seem more 
biologically relevant than just counting the expressed 
ligand–receptor pairs, they require more detailed infor-
mation that might not be available in all experimental 
settings.

Alternative strategies to quantify CCC include 
Euclidian- like or Jaccard- like distance metrics that 
represent the number of active ligand–receptor pairs 
in relation to all ligand–receptors in interacting cells. 
Furthermore, spatial transcriptomics technologies99–104 
may help train machine learning models to predict 
a physical distance- dependent potential of CCIs105. 
Expression of ligands and receptors can serve as inputs 
and distances between cells as outputs.

Although there are many approaches, it remains 
unclear which metric best captures the underlying 
biology. Moreover, any strategy relying on gene expres-
sion will remain limited to signals captured in the 
ligand–receptor list, which may miss ways that cells 
can communicate. Thus, there remains a need for strat-
egies that determine an aggregate CCC potential and 
functional–spatial relationships of cells.

A growing toolbox to facilitate CCC analysis. In addi-
tion to the core scoring functions (Fig. 2b), many tools 
use advanced statistical methods to identify intercellular 
communication (Table 2). Existing computational tools 
can be grouped into one of four categories on the basis 
of the mathematical models used for identifying ligand–
receptor interactions, classified here as (1) differential 
combination- based, (2) network- based, (3) expression 
permutation- based and (4) array- based tools.

In differential combination- based tools, signifi-
cantly differentially expressed genes between cell clus-
ters in single- cell RNA- seq data are identified, and 
these lists are analysed for ligand–receptor pairs. Two 
such tools, iTALK106 and CellTalker61, use slightly dif-
ferent downstream analysis methods to curate the final 
list of significantly interacting ligand–receptor pairs. 
Similarly, PyMINEr107 annotates interacting cell types 
but labels interactions as ‘activating’ or ‘inhibitory’ 

according to public interaction databases. Another tool, 
CCCExplorer67, uses differential gene expression and 
PPI database- guided network analysis of downstream 
targets and transcription factors to determine activated 
or deactivated signalling events between two groups of 
samples or cells. These methods are powerful for dis-
cerning ligand–receptor interactions in the background 
of the rest of the data set but are blind to interactions that 
are common between all groups.

Network methods are used by several tools and 
exploit properties of connections between genes. For 
example, CCCExplorer uses them to identify concerted 
movements in the expression levels of genes involved 
in ligand–receptor signalling67. The tools SoptSC25 and 
NicheNet54 use known interactions between ligands, 
receptors and downstream targets to build a network 
of ligand–receptor relationships. The former com-
putes a probability, while the latter uses a personalized 
PageRank algorithm, in both cases to evaluate the effect of 
ligand–receptor co- expression on downstream signal-
ling genes in the receiver cell and, thus, obtain a contin-
uous score for ranking ligands and receptors based on 
this effect. Most recently, a method called ‘SpaOTsc’108 
formulates intercellular communication as an optimal 
transport problem109 using RNA- seq and spatial infor-
mation. All these tools use not only the expression 
levels of ligands and receptors to compute interaction 
scores but also expression levels of downstream signal-
ling targets, which is intended to be a strength of these 
techniques. However, they do not account for the rules 
of gene regulation, so a limitation of these methods is  
that they are blind to signalling crosstalk, where the sig-
nals triggered by one receptor could interfere with the 
signals triggered by another receptor. Pitfall scenarios 
could be when an intracellular pathway is highly scored 
because of the expression of its downstream genes, but 
its activity may be strongly diminished because of inac-
tivation due to another activated pathway that regulates 
it with post- translational modifications rather than 
expression control, as may happen in some cytokine 
signalling pathways110, leading to false positives or false 
negatives not seen with other strategies.

Expression permutation- based tools are the most 
widely used among those listed in this Review. These 
methods compute a communication score for each 
ligand–receptor pair and evaluate its significance either 
through cluster label permutation, non- parametric 
tests to assess differences with the null model, or 
through empirical methods. To increase confidence, 
CellPhoneDB30,83, CellChat79 and ICELLNET84 address 
one of the limitations common to most CCC methods: 
not considering multisubunit protein complexes. Lists 
with multimeric proteins are used to assess whether all 
subunits are simultaneously expressed to identify likely 
functional ligand–receptor interactions. CellChat also 
allows multisubunit complexes and incorporates posi-
tive and negative effectors into its Hill function- inspired 
framework. Also, other important features are present 
in different tools in this category: Giotto111 includes  
spatial expression information, accounting for the poten-
tial of cells to interact given their physical proximity,  
whereas ICELLNET is the only tool that returns a global 

Permutation
Random reassignment of 
sample labels, frequently  
used to compute null models  
in biological systems.

Differentially expressed 
genes
genes identified as more highly 
(or lowly) expressed in one 
condition versus the other after 
comparison of their expression 
values between two conditions.

PageRank algorithm
algorithm that takes as input  
a network and quantifies the 
importance of each node on 
the basis of centrality and 
connectedness to other  
central nodes.

Null model
Statistical model under which 
there is no interaction or 
difference between the  
groups being tested.

Multisubunit protein 
complexes
Quaternary structures  
of proteins involving the 
non- covalent interaction  
of two or more proteins to 
generate a functional unit.
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CCC score aggregated from all ligand–receptor interac-
tions using percentile normalization and the expression 
product core function. SingleCellSignalR112 uses a regu-
larized expression product to compute ligand–receptor 
interaction scores and is the only tool reviewed that 
provides explicit cut- off values for this score to achieve 
appropriate false discovery rates based on empirical 
results.

Tensor- based tools are the most mathematically 
sophisticated group of tools. Although network com-
putations can be formulated as matrix operations, 
scTensor113 explicitly models ligand–receptor interac-
tions using a tensor. A tensor of rank three is generated 
from the data, wherein two dimensions are for ligand 
and receptor expression by each cell type or cluster 
within the single- cell RNA- seq data set, respectively, 
and the third dimension represents all ligand–receptor 
interactions. Then non- negative Tucker decomposition is 
performed to decompose this tensor114, resulting in three 
matrices with coefficients representing the relationship 
between interacting cells and their respective ligands and 
receptors. Thus, this tool captures communication path-
ways in a context where all pairs of cells are simultane-
ously considered and extracts the relationships between 
different CCIs and further produces lower error rates 
than are obtained with independent hypothesis tests. 
However, interpreting the scores from a tensor decom-
position may not be as straightforward as interpreting 
the scores from other groups of tools.

The tools described also include powerful visualiza-
tion features that facilitate the interpretation of results. 
Several of the more common visualization methods are 
outlined in Fig. 4 and display data by directly plotting 
ligand–receptor co- expression patterns and communica-
tion scores (Fig. 4a–c) and provide higher- level intuition 
concerning overall CCI levels and the directionality of 
these effects between cell types (Fig. 4d–f). Thus, several 
tools not only quantify CCIs and CCC but also facilitate 
their analysis and interpretation.

Assessing predicted CCC mechanisms
CCC inference should be considered a data- driven 
process for generating hypotheses, which can lead to 
different results depending on the strategy adopted 
(Fig. 3). Thus, validating inferred mechanisms is crucial 
to confirm associations with phenotypes and behaviours 
of cell communities. In this section, we discuss current 
approaches used for this purpose, emphasizing both 
computational methods to minimize false discoveries 
and experiments used to validate results, and illustrate 
hallmark studies that successfully implemented this 
important step.

Computational minimization of false discoveries. Robust 
inferences are essential to minimize false positives and 
false negatives and help reduce the number of validations 
to perform, which is especially useful when experiments 
are expensive. From the total pool of inferred ligand–
receptor interactions between cells, statistical model-
ling can assess whether they may result from the null 
hypothesis and help discard artefactual or non- specific 
CCC inferences.

Permutation- based analyses can help discard 
results arising from random noise by prioritizing cell 
type- enriched ligand–receptor pairs. The cluster labels, 
representing the cell type, are permuted for each single 
cell, and the mean gene expression within each per-
muted cluster is computed, followed by a recalculation 
of the communication scores. With all communication 
scores generated for each ligand–receptor pair in a given 
pair of clusters, a null distribution is built and a P value 
of the measured communication score can be computed. 
A full list of tools that use this method is included in the 
discussion of permutation- based tools (see the section 
entitled A growing toolbox to facilitate CCC analysis and 
Table 2). As a representative example, the CellPhoneDB 
tool was applied on single- cell RNA- seq of human 
first- trimester placentae to understand the regulation 
of the immune response and how it prevents harmful 
maternal responses30.

Subsampling analysis has been applied to evaluate the 
robustness of the CCC results. Random subsamples of 
the original data set are used to rerun the CCC analy-
sis. Using the subsampled results, one can compute 
true- positive and false- positive rates with respect to the  
original data set results79 and quantify how variable  
the inferences are, given subtle changes in the composit-
ion of cell clusters. CellChat is one tool that has applied 
this method to compare its performance with that of 
other tools and measure robustness when identifying 
the role of a specific population of mouse myeloid 
cells, termed ‘MYL- A’, in wound healing through 
transforming growth factor- β signalling79.

Enrichment analyses have also helped reduce false 
discoveries. A recent study applied this strategy to study 
the role of structural cells (that is, fibroblasts, endothelial 
cells and epithelial cells) in priming immune responses 
and how they interact with immune cells58. It identified 
ligand–receptor pairs that were enriched between inter-
acting cell types using a Fisher’s exact test over all pos-
sible pairs of differentially expressed genes. Supported 
by other experiments, these interactions revealed the 

Fig. 3 | Toy examples of using core functions to compute communication scores.  
Two primary inputs are used for quantifying communication scores: a preprocessed gene 
expression matrix (part a) and a list of interacting proteins to supervise the analysis  
(for example, ligand–receptor pairs) (part b). Then a communication score (CS) can be 
computed for every ligand–receptor pair in a given pair of cells. Here, we show how  
to perform these calculations for four core functions (parts c–f). These are applied to 
elucidate paracrine (parts c,d) and autocrine (parts e,f) communication. To assess cell–
cell communication, a CS can be computed for each ligand–receptor pair by accounting 
for the presence of both partners if their expression is greater than a given threshold, 
which for demonstrative purposes was set arbitrarily to a value of 3.3 (part c), or by 
multiplying their expression values (part d). Similarly, the CS for each ligand–receptor 
pair can be the correlation score obtained from their expression across all cell types for 
autocrine communication (part e). To reveal non- autocrine interactions, the correlation 
can be computed across pairs of different cells. Particular signatures of each cell type can 
be extracted through analysing differentially expressed ligands and receptors. Using the 
cell type- specific differentially expressed genes, we can assign a binary CS and study  
the ligand–receptors used for autocrine communication (part f). In this example, autocrine 
communication is evaluated for cell type A by using its differentially expressed genes 
with respect to cell type B (cell type A- specific genes are located in the coloured 
quadrant). Analogously to the correlation score, for non- autocrine communication  
we would need to consider differentially expressed genes in each of the cell types or 
samples. For a given pair of cells, we can say that a communication pathway is active 
when the ligand is differentially expressed in one cell and its cognate receptor is 
differentially expressed in the other. FC, fold change.

◀

Tensor
Higher N- dimensional 
generalizations of matrices and 
vectors. Vectors are tensors of 
rank 1, matrices are tensors  
of rank 2.

Tucker decomposition
Decomposing of a tensor of 
rank N as a product of a set  
of N matrices and one core 
tensor. Used to summarize 
data, similarly to principal 
component analysis.
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Table 2 | Existing tools for measuring cell–cell communication

Tool Method overview Output Visualization Available in URL Refs

Differential combinations

CellTalker Uses differentially expressed 
ligands and receptors in 
each cluster to identify 
unique interactions 
between clusters

Upregulated and 
downregulated 
interactions between 
all clusters

Circos plot of differential 
interactions between 
clusters

R https://github.com/
arc85/celltalker

61

iTALK Enumerates differentially 
expressed ligand and 
receptor values to identify 
LRIs between different 
clusters

Upregulated and 
downregulated 
interactions between 
all clusters

CCI networks, Circos 
plots and boxplots

R https://github.com/
Coolgenome/iTALK

106

PyMINEr Uses differentially expressed 
ligand and receptor pairs to 
identify altered signalling 
pathways. Detects both 
activation and inhibition

Upregulated and 
downregulated 
interactions between 
all clusters

Network visualization 
and Circos plots

Python and 
standalone 
application

https://www.
sciencescott.com/
pyminer

107

Expression permutation

CellChat Modelling of LRI is 
generalized from the 
Hill equation, including 
expression of both 
agonists and antagonists. 
Significance is computed by 
permutation

Likelihood of CCC 
between all clusters 
for all interactions

Alluvial and Circos 
plots of communication 
pathways, dot plots of 
interactions between 
clusters

R and Web 
interface

https://github.com/
sqjin/CellChat

79

CellPhoneDB Randomly permutes cluster 
labels to generate a null 
distribution of LRI scores 
using protein complex 
subunit architecture 
to identify significant 
interactions

Upregulated and 
downregulated 
interactions between 
all clusters

Heatmap of significant 
interaction counts, dot 
plot of LRIs and cluster 
combinations

Python and 
Web interface

https://github.
com/Teichlab/
cellphonedb

30,83

Giotto Randomly permutes cluster 
labels to generate a null 
distribution of LRI scores 
using spatial information 
to identify significant 
interactions

Upregulated and 
downregulated 
interactions between 
all clusters

Heatmap of significant 
interaction counts, dot 
plot of LRIs and cluster 
combinations

R https://github.com/
RubD/Giotto

111

ICELLNET Sums the product of all LRI 
scores between two clusters 
to compute an overall CCI 
score

Intergroup 
communication 
scores, P values for 
these scores and LRI 
scores

Stacked bar plot of LRIs, 
network visualization of 
interacting groups and 
pathway- level analysis

R https://github.
com/soumelis- lab/
ICELLNET

84

SingleCellSignalR Uses a regularized ligand–
receptor expression product 
to measure extent of CCC

Interaction scores for 
each LRI between all 
clusters in the dataset

Circos plot, tables and 
graph visualizations of 
interactions between 
clusters

R https://github.com/
SCA- IRCM

112

Graph or network

CCCExplorer A graph of all signalling 
pathways is built, then 
a Fisher- like statistic is 
computed using ligand, 
receptor and downstream 
TF expression to identify 
significant interactions

Graph visualizations of 
all interactions

Interactive directed 
graphs

Standalone 
application

https://github.com/
methodistsmab/
CCCExplorer

67

NicheNet A network of ligand–
receptor pathway 
interactions is used to 
measure the predictive 
power of the ligand for 
its downstream pathway 
targets as an interaction 
score, based on a 
personalized PageRank 
algorithm

Ligand interaction 
scores and expressing 
cell types for provided 
target pathway

Circos plot of 
interactions between 
cells or clusters

R https://github.com/
saeyslab/nichenetr

54
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crucial role of structural cells in priming immune 
response in an organ- specific fashion58.

Data generated with other technologies, such as pro-
teomics, have shaped CCC methods and their potential 
performance. Specifically, they have helped tune the 
parameters of methods before making predictions on 
the gene expression data set of interest, addressing issues 
originating from imperfect mRNA–protein correlations. 
For example, Browaeys et al.54 used several gene and pro-
tein expression data sets to optimize NicheNet. Similarly, 
another study112 used gene and protein expression data 
sets to evaluate false- positive rates and tune the para-
meters of CCC measurement methods. Thus, integrating 
other types of data is also important to benchmark and 
optimize tools.

As discussed here, computational strategies can help 
reduce false discoveries and facilitate the selection of imp-
ortant results for further research or experimental vali-
dation. Although we highlighted cases for which these 
methods helped drive new hypotheses, many other strategies 
can be used, such as Wilcoxon’s test60, random generation  
of data sets68, cross- validation105 and Welch’s test48.

Experimental validation. Many studies use experimental 
methods to validate CCC mechanisms inferred compu-
tationally (Table 1; Supplementary Table 1). These cover 
three levels of experimental tests: (1) confirmation of 
the expression of proteins thought to be involved in 
CCC (for example, through proteomics, enzyme- linked 
immunosorbent assay, western blot or immunohisto-
chemistry); (2) visualization of interactions between 
gene products expressed in neighbouring cells (for 
example, through microscopy coupled with immunos-
taining, single- molecule fluorescence in situ hybridi-
zation or measurement of co- occurrence through flow 
cytometry); and (3) assessment of the functional role of 
CCC mediators by performing in vivo or in vitro exper-
iments using activators or inhibitors of the interacting 
molecules or genetic manipulation of cells to observe 
effects consistent with the predicted communication.

Although providing only tangential information, 
rather than validation, studies can confirm the presence 
of proteins to test the potential of signals contributing 
to CCC events. Immunohistochemistry or western 
blots have measured the cell type- specific presence of 
involved signalling complex members. A recent analysis 
of human liver development used immunohistochem-
istry to verify VCAM1 production in macrophages and 
ITGA4 production in erythroid cells of the human fetal 
liver to suggest a possible interaction between these two 
cell types and their relevance to lineage differentiation23. 
However, these approaches only support and do not 
validate a predicted interaction.

Immunohistochemistry and other tagging tech-
niques, such as single- molecule fluorescence in situ 
hybridization, are frequently used to gain further 
information about cellular localization for predicted 
CCIs. This set- up verifies the spatial colocalization of 
CCC mediators and therefore supports the potential 
occurrence of a CCC event. For example, in addi-
tion to immunostaining to confirm protein expres-
sion, statistically significant co- occurrence of IL-33  
and its receptor was validated on adjacent AT-2 cells and  
basophils, respectively41, whereas another study 
used imaging flow cytometry to show interaction 
between macrophages and liver progenitor cells23. In 
addition, immunofluorescence was used to colocal-
ize the expression of four ligand–receptor interac-
tions (APOE–LRP1, APOE–LDLR, VTN–KDR and 
LAMA4–ITGB1) to adjacent cells in mouse brain on 
embryonic day 14.5 (ReF.22), supporting the relevance of 
these interactions to the developing brain. Thus, these 
approaches confirm spatial colocalization of predicted 
interactions.

Functional assessment is the most informative val-
idation technique. This approach evaluates whether 
the phenotypes observed in the interacting cells  
are the result of specific CCC events. For example, the 
interaction between VEGFA and KDR (also known as 
VEGFR2) in liver bud development was confirmed by 

Tool Method overview Output Visualization Available in URL Refs

Graph or network (cont.)

SoptSC Integrates downstream 
signalling measurements 
into an LRI scoring function

Upregulated and 
downregulated 
interactions between 
all clusters

Circos plot of 
interactions between 
cells

MATLAB 
and R

https://github.com/
WangShuxiong/
SoptSC

https://github.com/
mkarikom/RSoptSC

25

SpaOTsc An optimal transport 
model is used to infer CCC 
from ligand, receptor and 
downstream component 
expression

Likelihood of CCC 
between all clusters 
for all LRIs

Not implemented Python https://github.com/
zcang/SpaOTsc

108

Tensor based

scTensor Tucker decomposition on 
a tensor of order three to 
identify key LRIs present in 
certain cell types

HTML file with 
summaries 
of clustering, 
decomposition 
and interaction 
components

Many options for 
interaction, expression 
and pattern visualization

R https://github.com/
rikenbit/scTensor

113

CCC, cell–cell communication; CCI, cell–cell interaction; LRI, ligand–receptor interaction; TF, transcription factor.

Table 2 (cont.) | Existing tools for measuring cell–cell communication
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dosing KDR inhibitors in vitro into micro- liver buds, 
significantly reducing hepatoblast abundance and 
impairing differentiation24. Elsewhere, 33 candidate 
ligands affecting haematopoietic differentiation were 
dosed in vitro in haematopoietic stem cells, and 27 sig-
nificantly affected the differentiation rate and trajectory 
of these cells15. Similarly, organ structural cells thought 
to contribute to the immune response were exposed to 
candidate cytokines, which induced expression changes 
similar to those seen upon lymphocytic choriomenin-
gitis virus infection, as determined with a mouse model 
of lymphocytic choriomeningitis virus infection as a 
reference58.

Challenges and future directions
As the methods measuring CCIs improve and the asso-
ciated results are experimentally validated, new research 
opportunities will arise that may improve the reliabil-
ity of inferred CCIs. Furthermore, novel insights will 
emerge through the study of interactions between cells 
from different species and the engineering of phenotypes 
by manipulating communication events.

Multi- omics integration. Although mRNA and pro-
tein levels are qualitatively correlated, transcriptomics 
may not represent a fully accurate view of intercellular 
communication, as transcript and protein abundances 
can be uncoupled by post- transcriptional and post- 
translational processes82,115,116. For example, the inferred 
presence of ligand–receptor pairs from transcriptomics 
may not coincide with their actual presence in proteomic 
data7,82. Borrowing information from other omics tech-
nologies can improve confidence in results16,117, espe-
cially for emerging technologies such as Nativeomics118, 
which detects intact ligand–receptor assemblies using 
mass spectrometry, and INs- seq119, which couples single- 
cell RNA- seq with intracellular protein measurements 
to simultaneously profile transcription factors, signal-
ling activity and metabolism. Moreover, emerging tech-
nologies such as single- cell proteomics11 will become 
important inputs for CCC methods and complement 
single- cell RNA- seq to improve CCI predictions.

Omics integration can extend beyond gene expres-
sion. Mammalian cells are covered by a thick glycoca-
lyx, and most hormones and receptors are glycoproteins. 
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Hence, glycomic data can add contextual information 
to CCI analyses. Glycosylation has an impact on pro-
tein interactions, especially in ligand–receptor binding 
as many ligands are glycosylated120, and glycosylation 
can change receptor affinity121–123. This phenomenon 
may rewire CCIs and affect, for example, development 
or T cell activation124. Moreover, glycans are involved 
in interspecies crosstalk, contributing to the specific-
ity of communication125–127. Therefore, integration of 
additional omics technologies, such as proteomics and 
glycomics, will help identify additional CCIs that are 
missed with use of RNA- based methods.

Adding a spatial dimension. Ligand mRNA expression 
and ligand abundance are not the only factors required for 
communication: the ligand must also be localized in the 
correct cellular compartment, which RNA- based methods 
are blind to, and interacting cells are usually close to each 
other, which routine single- cell RNA- seq experiments 
cannot measure. To improve reliability of computed CCIs, 
it is crucial to account for spatial positions of mediators 
and interacting cells. Single- cell analyses have considered 
cell location in mouse bone marrow53,128, demonstrating 
that cell proximity is key to the study of intercellular 
communication. The study of spatial proximity in inter-
acting cells is an emerging approach129. One technology 
for profiling these physical interactions, PIC- seq, uses 
cell sorting to acquire and transcriptionally profile phys-
ically interacting cells (PICs) through massively parallel 
single- cell RNA- seq130. The study authors presented an 
algorithm for deconvolving the data to capture signals 
from intercellular physical interactions. One advantage 
of this method is that it captures more details in the cross-
talk of PICs than single- cell RNA- seq. Although this tech-
nology is promising, it is currently limited to studying 
PICs from only two populations of cells. Nevertheless, 
similarly to other PIC- based methods128,131,132, PIC- seq 
can be readily integrated into the pipelines described 
here and leverage the analysis of CCIs by including the 
intrinsic spatial information that PICs encode. As more 
approaches emerge for spatial- based transcriptomics99–104 
and proteomics133,134, future studies and algorithms should 
include this information. Accounting for the physical 
distance between cells will lead to the generation of new 
scoring functions that may better capture the poten-
tial of cells to communicate and interact53,98,108,111,135. As 
an example, ligand- specific diffusion constants can be 
considered to reflect how effectively gene products can 
mediate long- distance communication136,137.

Adding a temporal dimension. Time is another impor-
tant factor for studying CCC. It can help elucidate how 
communication evolves and detect important changes in 
dynamic processes, such as cellular differentiation and the 
immune response. One can use samples taken at different 
time points or infer pseudotimes from the RNA- seq data 
set as happens when one is studying cellular differenti-
ation through lineage tracing138,139. Then CCC analyses 
on each (pseudo) time point can identify active ligand–
receptor pairs and test the overall interaction potential 
between cells25. However, time- dependent behaviours 
might be uncoupled from mRNA levels, hindering the 

detection of changes through transcriptomics- based 
CCC predictions. mRNA expression can be temporarily 
disconnected from the activity of the products owing to 
long half- lives or storage of the products140. It can also 
take longer to reach the appropriate abundance of a 
ligand or a receptor than the production of the cognate 
mRNA82. For example, endothelial cells store cell adhe-
sion molecules, such as P- selectins, in granules, which 
are quickly mobilized to the cell surface to start the 
recruitment of immune cells, instead of expressing those 
proteins de novo141. Thus, time- dependent analyses can 
improve CCC discoveries, but other data types should be 
integrated to distinguish whether phenotypes stem from 
CCC or other dynamics of gene expression.

Shedding light on interspecies interactions. 
Comprehensive lists of ligand–receptor pairs or inter-
acting surface- secreted proteins are crucial for algo-
rithms that study intraspecies CCIs. However, study of 
interspecies interactions — for example, humans and 
pathogens142–145 — requires lists of molecular interac-
tions between species. An opportunity awaits to define 
interspecies PPI lists with omics methods. Considering 
the avalanche of data generated in the microbiome 
field146–149 and recent approaches for modelling micro-
bial communities150, lists of interacting proteins or cross- 
species ligand–receptor pairs to enable CCI analyses 
would evidently yield novel discoveries. For example, a 
study mapped the interaction between inclusion mem-
brane proteins secreted by Chlamydia trachomatis and 
cognate human proteins145, providing insights into the 
host machinery this pathogen uses to establish the intra-
cellular niche needed for infection. Thus, even small- 
scale lists of interacting partners between the host and 
a single microorganism, instead of the whole microbi-
ota, will open great opportunities to use CCC methods 
to understand infections and diseases on the basis of 
host–pathogen interactions151,152. Although this endeav-
our will require validation of putative interactions, as 
done for human–virus protein interactions153–156, results 
from such studies will have a considerable impact on 
biomedicine and microbiome fields.

Predicting and manipulating phenotypes. Models for 
predicting phenotypes were previously trained with the 
active communication pathways underlying intercellular 
interactions71. As more models are developed and their 
predictive power is increased, they will enable the identi-
fication of drug targets and manipulation of phenotypes 
through cell engineering. Particularly, removing or 
adding communication pathways with genome editing 
and cell engineering technologies157 will modify cellular 
phenotypes to control how pairs of cells interact. This 
approach will have a great impact on many fields, such as 
developmental biology158, wherein CCIs are fundamental 
for cell differentiation into specific lineages. Biomedicine 
and biotherapeutics will benefit further from controlling 
CCIs, particularly in modifying disease courses, as is cur-
rently done with immune checkpoint inhibitors159,160. As 
a proof of concept, a tool that induces gene activation 
when specific cells interact or are directly in contact was 
recently built by combining a synthetic Notch receptor 
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and the CRISPR–Cas9 system161. This biological device 
enabled customization of cell behaviours as observed 
through the expression of reporter genes. As reporters 
may be replaced by activators or inhibitors of other com-
munication pathways, this tool holds great potential for 
therapeutic uses. Thus, manipulation of interaction path-
ways to control CCIs is feasible, with predictive models 
helping to decide which modifications to perform.

Conclusions
Incredible advances are now emerging to infer CCIs 
and CCC from gene expression. The diverse strate-
gies applied have elucidated fundamental roles of cells 

within their communities and how they shape cellular 
functions, with great potential for future applications, 
especially in biomedicine and biotherapeutics. Each 
approach for inferring CCIs and CCC has its own 
assumptions and limitations to consider; when one 
is using such strategies, it is important to be aware of 
these strengths and weaknesses and to choose appro-
priate parameters for analyses. Methodological and 
technological challenges remain, but many opportuni-
ties exist to increase our understanding of intercellular 
interactions.
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