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ABSTRACT.	 Metagenomic approach using next-generation DNA sequencing has facilitated the detection of many pathogenic viruses from 
fecal samples. However, in many cases, majority of the detected sequences originate from the host genome and bacterial flora in the gut. 
Here, to improve efficiency of the detection of double-stranded (ds) RNA viruses from samples, we evaluated the applicability of S1 
nuclease on deep sequencing. Treating total RNA with S1 nuclease resulted in 1.5–28.4- and 10.1–208.9-fold increases in sequence reads 
of group A rotavirus in fecal and viral culture samples, respectively. Moreover, increasing coverage of mapping to reference sequences 
allowed for sufficient genotyping using analytical software. These results suggest that library construction using S1 nuclease is useful for 
deep sequencing in the detection of dsRNA viruses.
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Non-Sanger-based next-generation sequencing (NGS) 
is a comprehensive technology for the characterization of 
nucleic acid sequences, without prior knowledge of genetic 
background [12, 14]. NGS has facilitated the discovery of 
many pathogenic viruses from a broad range of samples 
[7, 10]. However, numerous sequence reads originating 
from bacterial species and hosts are recovered when using 
conventional metagenomic approaches. Thus, to detect 
viral genome sequence reads from minor virus populations 
efficiently, it is important to exclude contaminating nucleic 
acids, including those of bacteria and hosts. S1 nuclease 
was first identified in Aspergillus oryzae as an endonucle-
ase specific for single-stranded (ss) polynucleotides [1, 2]. 
S1 nuclease hydrolyzes ssRNA, ssDNA and ss regions of 
double-stranded (ds) polynucleotide, but it does not degrade 
dsRNA [3, 13, 15]. S1 nuclease was used in the present 
study, because it is inexpensive and easily inactivated by 
ethylenediaminetetraacetic acid.

Group A rotaviruses (RVAs) are major etiological agents 
of acute gastroenteritis, particularly in neonatal animals; 

RVAs can cause economic losses to the livestock industry 
[4, 11]. RVAs possess a dsRNA genome composed of 11 ge-
nome segments [5]. Whole genome analyses of RVA based 
on their nucleotide sequences are important for comprehen-
sive understanding of the evolution of RVAs, which involves 
genetic re-assortment events and interspecies transmission 
[6, 8]. In a previous study, applying DNase I treatment to 
total RNA after RNA extraction markedly reduced the num-
ber of extra sequence reads in preliminary deep sequence 
analysis (data not shown). However, a considerable number 
of sequence reads from the RNA of bacterial species and 
hosts were detected in fecal and viral culture samples. In this 
study, to improve the efficiency of detection of dsRNA vi-
ruses from fecal and viral culture samples, we evaluated the 
applicability of S1 nuclease-treatment in deep sequencing.

Four fecal samples [2 from calves (calf no. 1: from 6 days 
old calf with diarrhea collected in 2013 in Japan and calf 
no. 2: from 26 days old calf with diarrhea collected in 2013 
in Japan) and 2 from piglets (pig no.1: from healthy piglet 
collected in 2014 in Japan and pig no. 2: from piglet with 
diarrhea in 2014 in Japan)] and 3 viral culture samples were 
evaluated using the rapid antigen detection kit, Dipstick 
“Eiken” Rota immunochromatographic assay (Eiken Chemi-
cal Co., Ltd., Tokyo, Japan), for the presence of RVA. The 
results revealed that the samples from calf nos. 1 and 2 were 
weakly positive and positive, respectively, for RVA, while 
those from pig nos. 1 and 2 were strongly positive for RVA. 
The fecal samples were diluted (1:9 [v/v]) in sterile phos-
phate-buffered saline, centrifuged at 8,000 × g for 10 min 
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at 4°C and stored at −80°C until further use. A bovine RVA 
(RVA/Cow-tc/JPN/Hori-No.14/1997/G6P[5]) and two swine 
RVA (RVA/Pig-tc/JPN/BU9/2014/G9P[23] and RVA/Pig-tc/
JPN/Miyamoto/1997/G4P[23]) were inoculated into MA-
104 cells. Supernatants were collected at post-inoculation 
day 5 and stored at −80°C, without centrifugation, until 
further use. Total RNA was extracted from all samples us-
ing TRIzol® LS Reagent (Life Technologies, Carlsbad, CA, 
U.S.A.), following which the RNA samples were treated 
with DNase I (0.5 U/µl; TaKaRa Bio Inc., Otsu, Japan). Each 
RNA sample was divided into 2 equal volumes, of which one 
was left untreated and the other was treated with S1 nuclease 
(27 U/µl; TaKaRa Bio Inc.) at 23°C for 15 min. After purifi-
cation by ethanol precipitation, both the non-treated and S1 
nuclease-treated samples were normalized to 50 ng/reaction 
using a Qubit® 2.0 Fluorometer (Invitrogen, Carlsbad, CA, 
U.S.A.). A cDNA library was constructed using the NEB-
Next® Ultra™ RNA Library Prep Kit to facilitate sequencing 
with Illumina version 2.0 (New England Biolabs, Ipswich, 
MA, U.S.A.), according to the manufacturer’s guidelines. 
Briefly, the RNA samples were fragmented and used to 
synthesize ds-cDNA, which was then purified using Agen-
court® AMPure® XP Beads (Beckman Coulter, Pasadena, 
CA, U.S.A.). To select fragments of approximately 200-bp 
in length after A-Tailing and adaptor ligation, 2 clean-up 
steps were performed using the beads. The library was then 
enriched by polymerase chain reaction (PCR), quantified 
using a Qubit® 2.0 Fluorometer (Invitrogen) and sequenced 
using a MiSeq bench-top sequencer (Illumina, San Diego, 
CA, U.S.A.) with 51 single-end reads. The sequence data 
were analyzed using the MiSeq Reporter program (Illumina) 
to generate the reads in FASTQ format. Trimmed reads were 
assembled into contigs by de novo assembly with default 
parameters (automatic word and bubble size), using the CLC 
Genomics Workbench 6.0 (CLC; CLC bio, Aarhus, Den-
mark). Using the assembled contigs as references, consensus 
sequences for all the RVA segments were obtained. These 
consensus sequences were in turn used as references by the 
read mapper tool in CLC. The RVA sequence reads from the 
non-treated and S1 nuclease-treated samples were compared 
using mapping results of the read mapper tool with default 
mapping parameters (mismatch cost, 2; insertion cost, 3; 
deletion cost, 3; length function, 0.5; and similarity function, 
0.8).

The results of the comparison of total RVA sequence 
read counts and percentage of RVA sequence reads (RVA 

sequence reads/total reads) between the non-treated and S1 
nuclease-treated samples are listed in Table 1. The number of 
RVA sequence reads in all the genome segments was higher 
in the S1 nuclease-treated samples than in the non-treated 
samples. The percentage of RVA sequence reads was also 
higher in the S1 nuclease-treated samples than in the non-
treated samples, particularly in the viral culture samples. 
Moreover, S1-treatment did not show any strong bias in 
relative numbers homologous to viral segments (Table 2).

Furthermore, RVA genotyping was performed by mapping 
the reads of the samples to the RVA reference sequences by 
using CLC[9]. Figure 1 illustrates the mapping results of the 
bovine fecal (calf no. 1) and swine fecal (pig no. 1) samples, 
which represent the VP4 bovine (P[1], P[5], P[11] and P[14]; 
A) and VP7 swine genotypes (G2, G4, G5 and G9; B), re-
spectively. Mapping sequence reads from the non-treated 
and S1 nuclease-treated samples to the reference sequences 
of representative strains revealed that the coverage of se-
quence reads of the S1 nuclease treated-samples against the 
reference sequences (calf no.1: 98.1%, swine no.1: 97.7%) 
was higher than that of the non-treated samples (calf no.1: 
37.0%, swine no.1: 39.1%).

In the present study, treating total RNA with S1 nuclease 
prior to NGS reduced the number of extra sequence reads 
and increased the number of reads of RVA obtained for the 
bovine fecal, swine fecal and viral culture samples. Fur-
thermore, the increased number of sequence reads of RVA 
facilitated genotyping with mapping to reference sequences 
on the genome analysis software. These results suggest that 
S1 nuclease-treatment during preparation of viral RNA for 
NGS is more useful than DNase I treatment alone, for the 
detection of RVA and dsRNA viruses. S1 nuclease-treatment 
facilitates the detection of not only viruses belonging to the 
Reoviridae and Picobirnaviridae families, but also non-
identified novel viruses.
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Table 1.	 Comparison of RVA sequence read counts and percentages of RVA sequence reads between non-treated and S1nuclease treated samples

Fecal samples Viral culture samples

calf No.1 calf No.2 pig No.1 pig No.2 bovine RVA 
(G6P[5])

swine RVA 
(G9P[23])

swine RVA 
(G4P[23])

RVA sequence read 
counts

non-treated 2,190 24,737 30,768 366,339 1,901 975 34,499
S1 nuclease treated 62,260 140,402 401,860 539,964 398,850 181,870 347,478

percentage of RVA 
sequence reads (%) a)

non-treated 0.9 9.4 5.4 75.0 0.5 0.2 7.9
S1 nuclease treated 21.1 47.3 98.3 98.6 93.0 33.1 99.4

a) percentage of RVA sequence reads (%): RVA sequence reads/total reads.
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Fig. 1.	 Mapping of RVA sequence reads of non-treated and S1 treated samples of calf No.1 and swine No.1 
against bovine reference sequences of (A) VP4 and (B) swine reference of VP7. Positional sequence coverage 
and sequencing depth of VP4 (P[1], P[5], P[11] and P[14]) and VP7 (G2, G4, G5, G9 and G11) of calf No.1 
and swine No.1, based on reference assembly to P[1]: NCDV Lincoln (AB119636), P[5]: WC3 (AY05071), 
P[11]: B223 (D13394), P[14]: RVA/Cow-wt/JPN/Tottori-SG/2013/G15P[14] (AB853893), G2: RVA/Vac-
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