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Abstract: This review presents a detailed analysis of the state of knowledge of studies 
done in Mexico related to the dinoflagellate Gymnodinium catenatum, a paralytic toxin 
producer. This species was first reported in the Gulf of California in 1939; since then most 
studies in Mexico have focused on local blooms and seasonal variations. G. catenatum is 
most abundant during March and April, usually associated with water temperatures 
between 18 and 25 ºC and an increase in nutrients. In vitro studies of G. catenatum strains 
from different bays along the Pacific coast of Mexico show that this species can grow in 
wide ranges of salinities, temperatures, and N:P ratios. Latitudinal differences are observed 
in the toxicity and toxin profile, but the presence of dcSTX, dcGTX2-3, C1, and C2 are 
usual components. A common characteristic of the toxin profile found in shellfish, when  
G. catenatum is present in the coastal environment, is the detection of dcGTX2-3, dcSTX, 
C1, and C2. Few bioassay studies have reported effects in mollusks and lethal effects in 
mice, and shrimp; however no adverse effects have been observed in the copepod Acartia 
clausi. Interestingly, genetic sequencing of D1-D2 LSU rDNA revealed that it differs only 
in one base pair, compared with strains from other regions.  
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1. Introduction  

This review covers the state of knowledge of scientific studies of Gymnodinium catenatum Graham 
from the Gulf of California and the Pacific coast of Mexico. Many of the relevant studies have only 
been published in journals with low international impact, however this species is one of the most 
studied harmful algal blooms (HAB) species in Mexico. G. catenatum is a cosmopolitan species, 
occurring in the North Pacific, South East Pacific, Atlantic, Mediterranean Sea, South Caribbean Sea, 
East Arabian Sea, China Sea, South East Indian Ocean, and the Tasmanian Sea. This species is an 
unarmored dinoflagellate that occurs as chains and cysts, produces saxitoxin analogs, and forms HAB. 
It is distributed in warm-temperate regions and is a potential threat to other species including  
human health.  

2. Distribution of Gymnodinium catenatum along the Western Coasts of Mexico and Associated 
Toxic Events  

Figure 1. A map of Mexico showing coastal areas where Gymnodinium catenatum has 
been registered. Dark circle: first report; (1) Punta Colnett; (2) Bahía de Los Ángeles;  
(3) Bahía Concepción; (4) Bahía de La Paz; (5) Bahía Magdalena-Almejas; (6) Puerto 
Libertad; (7) Bahía Kun Kaak; (8) Bahía Bacochibampo; (9) Laguna de Macapule; (10) 
Cruz de Elota; (11) Punta Piaxtla; (12) Bahía de Mazatlán; (13) Teacapan; (14–15) Bahía 
Banderas and Puerto Vallarta; (16) Bahía de Manzanillo; (17) Lázaro Cárdenas; (18) Bahía 
de Acapulco; (19) Laguna Corralero-Alotengo; (20) Puerto Escondido; (21) Salina Cruz.  
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In Mexico, G. catenatum has only been reported along the Pacific coast (Figure 1). Blooms of this 
species were first observed in 1939 in the northern central part of the Gulf of California [1,2].  
G. catenatum is the only unarmored dinoflagellate in this genus that produces paralytic shellfish toxins 
(PST) [3]. The production of PST was first demonstrated by Oshima et al. [4]. Probably the first record 
of paralytic shellfish poisoning (PSP) on the Mexican Pacific was in 1939 [5]. The first PSP linked to 
G. catenatum occurred from the coast of Sonora to Jalisco states in 1979, with a toxicity reaching up to 
7,500 µg STXeq 100 g–1 [6]. Three deaths and 19 shellfish poisonings of humans occurred during this 
event; the victims that were most seriously affected were between five and 14 years old [6,7]. Since 
1979, 10 cases of intoxication have occurred in this bay [8]. During the last few years, reports of HAB 
and presence of this species in several bays along the Pacific coast have increased (Table 1).  

Table 1. Reports of Gymnodinium catenatum along the Pacific coast of Mexico. 

Region Year Locality 
Abundance 

(cells L-1) 

Toxicity 

(µg STXeq per 100 g-1) 

and bivalve species 

Temperature 

(ºC) 
Ref 

G
ul

f o
f C

al
ifo

rn
ia

 

1939 N Gulf of California 1 × 106 nd 14.0–17.0 [1] 

1981 Puerto Libertad 190 × 103 nd nd [9] 

2003 Bahía Kun Kaak Nd nd 25.32 ± 0.99 [10] 

2006 Bahía de Los Ángeles Nd 
3–54 

Nodipecten subnodosus 
16.0–23.0 [11] 

1990 

Bahía Concepción 

1.8 × 102–3 × 103 nd nd [12] 

1999 5.7 × 105 
298 

Argopecten ventricosus 
18.0–25.0 [13] 

2000 500–4 × 104 
63 

A. ventricosus 
18.0–25.0 

[13,14] 

 

1997–1998 

 

Bahía de La Paz 

1.60 × 10–2.6 × 

102 

0.14–5.46 

Megapitaria squalida 
18.0–26.0 [15] 

2001 Nd 

2–67 

A. ventricosus 

PST in net 

phytoplankton samples 

22.0–26.0 [16,17] 

2003 1–1.20 × 103 nd 18.0–22.0 [16,18] 

2006 1.0–3.6 × 10 3 
3–4.5 M. squalida 

4–9 Dosinia ponderosa 
18.5–26.5 

[19,20] 

 

2007 6–2.39 × 106 

0.40–37.74 

M. squalida, M. 

aurantiaca, D. 

ponderosa. Modiolus 

capax, Pinna rugosa, P. 

multicostata 

20.0–21.9 

[21] 

 

 

2008 8–79 × 103 nd 20.0–24.0 [22] 

1995–1996 
Shrimp culture pond, 

Sinaloa 
? ? ? [23] 
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1997 

 

15 × 103 

 

40 

Crassostrea iridescens. 

Nauplii and adult 

mortality of L. 

vannamei 

nd [15,24] 

2001 18–528 × 103 

29 oyster 

Nauplii mortality of L. 

stylirostris. No toxins 

detected in nauplii 

nd 
[23] 

 

1979* 

Cruz de Elota, Punta 

Piaxtla, Bahía de 

Mazatlán, and 

Teacapan, Sinaloa 

240–6.6 × 106 

‹20–7640 

C. iridescens and 

Donax sp. extensive fish 

kill 

21.60 
[7,25,26] 

 

 

1981 

Bahía de Mazatlán 

35–544 × 103 nd 19.74–20.52 [9] 

1985 65 × 103 nd 22.04 [9,27] 

 1986 170–940 × 103 nd 20.64–22.34 

 

1988** 

 

1000 × 103  20.94  

1994–1995 1.2–2.2 × 105 nd 21.14–22.54 [28] 

1996 3856–5000 × 103 nd 21.0–32.9 [23] 

1997 3856–5000 × 103 
‹35 

Ostrea iridescens 
nd [29] 

2001 1.5–196 × 103 
39.40 

C. iridescens 

16.5–25.0 

 
[9,15] 

2003–2004 71 -115 × 103 63–1315 19.0–24.0 [30] 

2006 148 × 103 nd 21.2–22.7 [31] 

2005 Laguna de Macapule 38.8 × 103 nd nd [32] 

W. Coast 

of B. 

California 

Peninsula 

1996 
West Coast of Baja 

California 
1.2–4.2 × 102 nd 13.0–17.0 [33] 

2005–

2006? 

Bahía Magdalena-

Almejas 

Presence in net 

phytoplankton 

samples 

negative 

Anadara tuberculosa 

 

nd [34] 

C
en

tra
l M

ex
ic

an
 P

ac
ifi

c 

1979 
San Blas and Puerto 

Vallarta 
Nd 

‹20 

Crassosstrea 

cortesiensis 

nd 
[25,35] 

 

2005 Bahía de Matachén 1010 × 103 nd nd [36] 

1999 
Bahía de Manzanillo 

(Puerto Interior) 
2.5–3.8 × 106 

11–13 

C. iridescens 
nd [37,38] 

1989 Bahía de Manzanillo 

and Santiago 

5000 × 103 nd nd [39] 

 2002 832 × 103 nd nd 

2000 
Bahía de Manzanillo 

 
>3500 × 103 

235 

Oyster 
23.0–25.0 

[40,41] 

 

2007 

Bahía Banderas 

3.53 × 103–3.8 × 

106 

29–235.28 

C. iridescens 
nd [42,43] 

2001 450–2134 × 103 
11–13 

C. iridescens 
23.0 [37, 44] 
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1999  

Bahía de Acapulco 

 

 

0.01–78 × 106 
120–209 

O. iridescens 
nd [45,46] 

2005 6.29 × 103 25–217 nd [47] 

2006 10 × 106 112 nd 
[47–49] 

2007 3 × 103–13 × 106 1152 nd 

So
ut

h 
M

ex
ic

an
 P

ac
ifi

c 

1989 Salina Cruz to Chiapas Nd Presence of PSP nd [50] 

1998 
Puerto Escondido to 

Huatulco 
4–10 × 106 ‹80 nd 

[51,52] 

 

2001 
Laguna Corralero-

Alotengo, Oaxaca 
Nd 

24–1456 

Mussel 
nd [53] 

2006 
Gulf of Tehuantepec, 

Coasts of Salina Cruz 
13 × 103 nd nd [38] 

nd, not determined;* 19 people intoxicated with three human deaths;** 10 intoxicated people. 

In Mexico, studies of G. catenatum have focused mainly on local blooms. This species has a very 
marked seasonal pattern [15,16,54,55]. It is sometimes found from January through December, but 
observed most frequently during the months of March and April [3,30,54,55]. Blooms usually disperse 
in a few days or weeks [54], causing the sea to appear red, or alternatively may go unnoticed because 
higher cell aggregations often occur at depths of 10 to 20 m [56].  

3. Ecological Studies  

Nutrients play an important role in the relation of phytoplankton growth and distribution in aquatic 
ecosystems [57–59]. Eutrophication seems to be one of the principal reasons for the increase in 
frequency and the number of species causing HAB events as well as an increase in the duration of 
blooms [60,62–66]. Along the Pacific coast of Mexico, few studies have been done relating variations 
of nutrients with the presence or increase of HAB species. Most studies result from opportunistic 
observations; therefore, they lack physical and chemical data. In this section, we review the published 
information and, for the sake of clarity, the ecological studies are separated into four geographical 
regions: the Gulf of California, the west coast of the Baja California Peninsula, the central Mexican 
Pacific, and the southern Mexican Pacific (see Figure 1).  

3.1. Gulf of California  

The Gulf of California is a subtropical, semi-enclosed sea with exceptionally high primary 
productivity [67]. It supports important commercial fisheries, tourism, shrimp aquaculture, and has a 
high influence of nutrient inputs mainly coming from agriculture activities of the East coast [68]. 
Several bays are found in this area: Bahía de Los Ángeles, Bahía Concepción, Bahía de La Paz, Bahía 
Bacochibampo, and Bahía de Mazatlán. The biggest urban developments in this region are the cities of 
La Paz and Mazatlán. The hydrography and seasonal productivity in the Gulf of California is governed 
by winds, upwelling, and large-scale climatic events [65,69–73]. During the last few decades, the 
number of species and duration of HAB events in the Gulf of California has increased [12,54], with  
G. catenatum being one of the toxic species that frequently forms blooms.  
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Graham [1] found G. catenatum for the first time in samples collected in March 1939 in the 
northern part of the Gulf of California (~29° N), forming a visible bloom of ~1 × 106 cells L–1  
(Table 1). During the bloom, temperature and salinity ranged between 14–17 °C and 35.07–35.50 psu. 
More recently in this area, this species was reported in Puerto Libertad [9] and Bahía de Los Ángeles 
[11] (Table 1). In Bahía de Los Ángeles, paralytic shellfish toxins (PST) were detected in the scallop 
Nodipecten subnodosus (3–54 µg STXeq 100 g-1).  

In Bahía Concepción (Figure 1), G. catenatum is often present without forming blooms and is 
abundant when the water column is stratified with high concentrations of nutrients localized primarily 
at the sub-surface level (~20 m) [56,74]. In this bay, Gárate-Lizárraga et al. [16] reported a temperature 
range between 22 °C and 26 °C for G. catenatum (Table 1) and suggested that the temperature is an 
important factor in outbreaks of this species. They also concluded that the mesotrophic process, 
characterized by nitrogen limitation, partly explains the high concentration of neoSTX in G. 
catenatum. The highest PST concentration reported in bivalve mollusks in this bay is of 298 µg SXT 
eq 100 g–1 in May 1999 [13]. Bahía Concepción is one of the few bays where studies on cyst dynamics 
have been done. Yields of cysts of G. catenatum are low, but seem to be a constant inoculum that 
sustains its population for long periods [75]. Cysts of this species have a short maturation period and 
can germinate under a wide range of environmental conditions [76,77].  

In Bahía Bacochibampo (Figure 1), red tide events were monitored from 1970 through to 1994, with 
G. catenatum being one of the responsible species; however, no toxic events were reported [55]  
(Table 1). This bay is characterized by a high primary productivity associated with seasonal upwelling. 
In Bahía Kun Kaak (Figure 1), G. catenatum was reported during a multispecies bloom (April-May, 
2003) that included a raphidophyte and other dinoflagellate species [10] and occurred under the 
influence of intensified upwelling and northwest winds. The raphidophyte dominated the bloom, which 
occurred at a mean temperature of 25.32 ± 0.99 °C, a salinity of 40.30 ± 1.03 psu, with phosphates and 
nitrates ranging from 0.54 to 3.0 mg L–1 and 0.1 to 0.2 mg L–1, respectively. In Bahía de La Paz (Figure 
1), G. catenatum, has been registered several times since 1997 (Table 1), with cells densities varying 
from 1.6 × 102 to 6.0 × 106 cell L-1 within a temperature range from 18 to 26.5 ºC. In some events 
toxins have been detected in phytoplankton net samples and scallops, but toxin concentrations in 
scallops have never been above the maximum level for human consumption (0.14–67 µg SXT eq  
100 g-1) [15]. In this bay, G. catenatum has also coincided with other bloom forming species. In June 
2003, low cell densities (800–1,200 cells L-1) of this species were recorded during a bloom of 
Chaetoceros debilis Ehrenberg [18]. In February-March 2007, G. catenatum co-ocurred with N. 
scintillans [21], and during the bloom PST were found in several species of bivalve mollusks  
(Table 1). In June 2008, coinciding with a local upwelling event, Gárate-Lizárraga et al. [22] reported 
G. catenatum as one of the dominant species during a multispecies bloom of M. rubra, Katodinium 
glaucum (Lebour) Loeblich III, and Gyrodinium instriatum Freudenthal et Lee. 

In June 2003, the presence of G. catenatum was associated with upwelling waters with high 
concentrations of nitrate, ammonium, and phosphate (4.5 µM, 7.4 µM, and 1.4 µM, respectively). 
However, these nutrient concentrations did not generate high G. catenatum densities, probably due to 
the dominance of the diatom. In June-July of 2006, another HAB event was recorded in Bahía de La 
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Paz [19,20], under relatively low nutrient conditions. The average concentrations of nitrates, 
ammonium, and phosphates were low (1.0, 0.9, and 0.8 µM, respectively) [20].  

Along the coastal lagoons of Sinaloa (eastern shore of the Gulf of California), G. catenatum is a 
common bloom forming species [78,79]. The first HAB reported in Mexico of this species was in 
Bahía de Mazatlán (Figure 1) from February to April of 1979. The bloom was very intense and 
extensive, with average cell densities of 1.2 × 106 cells L-1 and high levels of PST in bivalves  
(Table 1). Since this event, this area has been one of the most extensively monitored in our country. 
Between 1981 and 2006, many blooms of G. catenatum have been reported, however toxin analyses 
have not always been reported. From 2003 to 2007, PST in mollusks were between 63 and 1315 µg 
SXTeq 100 g-1 [30]. Analysis of the HAB of G. catenatum occurring in this area demonstrate that these 
events occurred mainly in late winter and early spring [79], during upwelling events 
[6,12,25,28,32,78,80–84], and within a temperature range of 16.5 to 32.9 ºC [9,15,23]. The effect of 
the El Niño or La Niña event for this species is not clear since Alonso-Rodríguez and Ochoa [80] did 
not find any bloom of G. catenatum during La Niña 2000 in Bahía de Mazatlán, however in Bahía de 
Bacochibampo, blooms of G. catenatum were found to increase during a La Niña events [55].  

In Bahía de Mazatlán, G. catenatum has also been reported with other bloom forming species 
[28,82]. Alonso-Rodríguez [28] related a multispecies bloom (February 1995 to August 1996) with 
wind mixing processes, which contributed to the resuspension of cysts and nutrient increases, however, 
there was no clear relationship to eutrophication. In February 1996, an abrupt decrease of 
2.5 °C in the mean surface temperature (from 24.5 °C to 22 °C) followed by a rapid rise in temperature 
to 24.0 °C, over a three day time period, coincided with a bloom of G. catenatum [83], suggesting that 
the temperature change favored the growth of this species. Recently, in Laguna de Macapule, a coastal 
lagoon in Sinaloa, G. catenatum was reported with an abundance of 38.8 × 103 cell L-1 [32]. Clearly, 
Bahía de Mazatlán is one of the zones in Mexico with the highest number of studies on the presence of 
red tide events caused by G. catenatum. Palynological records show that G. catenatum cysts have been 
present in the Gulf of California since ~1483 [81], with higher abundances from 1888 to 1920. Cyst 
abundances seem to increase during La Niña conditions and decrease during warmer El Niño events, 
abundances were also inversely related with sea surface temperature (SST), decreasing steadily from 
1972 to 1994 as the SST increased in this area. 

3.2. West Coast of Baja California Peninsula  

The western coast of the Baja California Peninsula is influenced by the California and North-
equatorial Currents [83], and El Niño events [86,90]. It has a low human influence that is mainly 
linked to local fisheries of sardines and mollusks [88]. Bahía Magdalena, found in this area  
(Figure 1), is a highly eutrophic ecosystem influenced by intense currents, mixing processes, and 
upwelling [89]. Red tides have been reported during coastal upwelling [90]. In this bay, G. catenatum 
has been recorded once in net phytoplankton samples [34] (Table 1). This species has also been found 
in low concentrations (1200 to 4200 cells L-1) near Punta Colnett, during summer when regional 
upwelling is dominant [33].  

3.3. Central Mexican Pacific  
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This area is an important tourist zone, and recently aquaculture activities—mainly shrimp farms—
have been developed. The principal bays in this area are Bahía Banderas and Bahía de Manzanillo. In 
Bahía de Manzanillo the main merchant ship commerce is found [91]. Eutrophication linked to tuna 
factories [38] and continental nutrient discharges have been observed [92].  

In Puerto Vallarta, G. catenatum was reported for the first time in 1979 (Table 1), during the same 
event that extended from La Cruz de Elota, Sinaloa to Jalisco [6]. In the winter and spring of 1999, a 
bloom of G. catenatum lasted approximately three months covering a large part of Bahía de 
Manzanillo [40,41] (Table 1); high oxygen values (18 mg L-1) and low nitrate concentrations were 
recorded (0.05 µg-at L-1). Seasonal marine currents in the area seemed to have dispersed the biomass, 
which avoided its accumulation at the bottom, which would create anoxic conditions that may limit the 
length of the bloom [93].  

During 2000 and 2001, HAB of G. catenatum were documented in Puerto Vallarta and Bahía de 
Banderas (Figure 1) [35–37]. During spring 2007, G. catenatum abundances between 450 to  
2,134,000 cells L-1; however toxin levels found in the oyster species Crassostrea iridescens Hanley 
were below the maximum limit for human consumption (Table 1) [37]. In 2007, toxin concentration in 
mollusks was high (235 µg STXeq 100 g-1) [42]. In a recently monitored area (Lázaro Cárdenas, 
Michoacán), a G. catenatum bloom was reported for the first time in November 2005, with a cell 
density of 560,000 cells L-1 [94]. 

Several hypotheses have been proposed for this area to explain the presence of these blooms: 
eutrophication linked to tuna factories [38], continental nutrient discharges [89], and transportation of 
cysts by ballast water [38]. Further detailed studies need to be carried out to confirm these hypothesis.  

3.4. Southern Mexican Pacific  

In this area important tourist influence is observed with the concomitant impact in nutrient inputs. 
Also river drainage is an important source of nutrients [95,96]. The principal bays are Bahía de 
Acapulco, Laguna Corralero-Alotengo, and Bahías de Huatulco.  

Bahía de Acapulco (Figure 1) is a shallow bay (average depth, 20 m) with high anthropogenic 
impact and land drainage [95,96]. In March-April 1999, a red tide of G. catenatum was registered for 
the first time in Bahía de Acapulco (Figure 1), with cell densities between 7.6 × 103–37.6 × 103 cells L-1, 
despite these relatively low cell densities, toxin concentrations in mollusks were above the maximum 
limit for human consumption [45,46] (Table 1). This species appeared again in November 2005  
(6.29 × 103 cells L-1), January 2006 (10 × 106 cells L-1), and December 2007 (1942 × 103 cells L-1) 
[47,97]. These G. catenatum abundances are the highest reported for the Mexican Pacific. Toxicity 
values in mollusks during these events varied between 25 and 1152 µg STXeq 100 g-1 (Table 1) [48].  

Further south, in the coasts of Oaxaca, blooms of G. catenatum have occurred since 1989 [50] 
(Table 1). Cell abundances have varied from 13 × 103 to 10 × 106 cells L-1 [38,51,52]. Paralytic toxins 
were above the maximum limit for human consumption in 2001, however toxicity was also related to 
the presence of Pyrodinium bahamense [53,98], another PSP toxin producer.  

4. Grazing Studies  



Mar. Drugs 2010, 8             
 

 

1943 

There are few records on the effect of grazing activity on G. catenatum under natural conditions. 
Alonso-Rodríguez et al. [99] observed G. catenatum cells in Noctiluca scintillans vacuoles during a 
HAB of G. catenatum. Predation activity of G. catenatum by N. scintillans may be facilitated by the 
high swimming velocity of N. scintillans.  

Grazing of N. scintillans on cells of G. catenatum (chains of 4–16 cells per Noctiluca) has also been 
observed in Bahía de Los Angeles, Bahía Concepción, and Bahía de La Paz [47]. In vitro studies have 
confirmed an important grazing activity of N. scintillans towards G. catenatum [100]. The copepod 
Acartia clausi Giesbrecht also had a high grazing rate on G. catenatum, with no visible short time 
harmful effects on the copepod [101]. These data suggest that N. scintillans grazing can be an 
important factor in controlling G. catenatum blooms. 

5. Toxicity Studies  

5.1. PST in Phytoplankton Samples Related to the Presence of G. catenatum  

Table 2. Paralytic toxin profile in phytoplankton samples from different embayments of the 
Gulf of California. 

Toxin 

Bahía de 

Mazatlán 

Bahía Concepción Bahía de La Paz 

 

2001  

Apr  

2001 

May 

2002 2002 2007 

18 Jan 30 Jan 14 Feb 6 Mar 17 Apr 2 May 21 May 8 Jul 15 Mar 12 Mar 20 Aug 7 Mar 

STX  64.3 - - - - 1.0 - 3.2 - 34.6 - 1.4 0–31 

neoSXT - - - - - - - - 7.8 - - - - 0–25 

GTX2 - - - - - - - - 9.0 -  - -   - 0–5.4 

GTX3 - - - - - - - - 2.6 -  -  -  - 0–3.6 

dcSTX  17.4          9.0 62.9 8.3 - 

dcGTX2 22.6 2.0 78.2 47.3 88.6 73.9 66.8 70.2 1.6 72.8 37.0 37.1 52.5 - 

dcGTX3 27.4 3.6 21.8 25.8 11.4 26.1 18.5 29.8 0.4 27.2 12.0 -  18.5 0–1.1 

B 1  4.4 - - - - 0.8 - - -  7.4  -  5.7 0–5.4 

B 2 - 1.0         - - - - 

C 1   - 16.0 - - 9.4 - 62.6 -  - -  10.5 0–37.0 

C 2 50.0 7.4 - 10.9 - - 2.5 - 12.8 - - -   3.2 53.8–68.9 

 

1.5 ng 

STXeq 

cell-1 

 

           

 

nd = no data. References [15–17,21]. 

Toxin analyses from phytoplankton net samples is a method to confirm that a toxic organism is 
found in the plankton community, and can help us understand the toxin profile of a toxic species in the 
environment. The toxin profile in net phytoplankton samples for Bahía Concepción, Bahía de La Paz, 
and Bahía de Mazatlán has been variable, however STX, neoSXT, GTX2-3, dcGTX2-3, B1, C1, and 
C2 have been found [15,16,21] (Table 2). Decarbamoyl (dcGTX2 and dcGTX3) and N-sulfocarbamoyl 
(C1 and C2) are usually the toxins with a high molar contribution [15,21]. Average toxin content 
reported in field phytoplankton samples from Bahía Concepción varied from 3.8 to 639.1 ng PSP filter-1, 
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and in Bahía de La Paz from 4.32 to 90.54 ng PSP filter-1. Differences in the toxin profile have been 
observed between sampling stations in net phytoplankton samples, despite being collected during the 
same event; these differences could be explained by the different development stages of the red tide 
[21]. More data are needed from field samples in order to explain these differences.  

5.2. Toxin Content and Toxin Profile of G. catenatum Strains  

Very limited data exists on the toxin content of natural populations of G. catenatum. Gárate-
Lizárraga et al. [102] and Band-Schmidt et al. [103,104], found that the toxin content of the G. 
catenatum strains of the Gulf of California was higher (average values of 25.7–101 pg STXeq cell-1) 
than the toxin content of natural populations (1.01 pg STXeq cell-1). This could be related to strain 
growth conditions, because, in culture, the nutrient concentrations are much higher than in the 
environment. However, more data on toxin content per cell under natural conditions needs to be 
obtained to confirm these differences.  

Differences found in the toxin profile of G. catenatum strains in vitro can be explained partly by the 
culture medium used. For instance, when using modified f/2 media, Bahía Concepción strains produce 
dcSTX, dcGTX2-3, C1, and C2 (Table 3). Other toxins, such as neoSTX, GTX2-3, B1, and B2 are 
only present in some strains and in low molar percentage (below 3 mol%) [17]. In contrast, when using 
GSe media, the number of saxitoxin analogs is higher (STX, neoSTX, dcSTX,  
dcGTX2-3, B1-2, C1, C2, C3, and C4); and the contribution of neoSTX is higher (from 6–46%) [104]. 
Neosaxitoxin has not been reported for strains from G. catenatum of other regions.  

Table 3. Average toxin profile (% mol) of Gymnodinium catenatum strains isolated from 
the Gulf of California under different growth conditions. 

Strain 

Origin 

Media 
STX neoSTX GTX2 GTX3 dcSTX dcGTX2 dcGTX3 B 1 B 2 C 3 C 1 C 2 C 4 

BACO GSe 0–0.6 6.6–12.1 nd nd 2.1–2.8  3.3–4.7 0.9–1.4 0.7–0.9 3.7–7.6 1.6–2.9  50.9–55.9 18.6–22.8 0.1–0.6  

BAPAZ 0–0.8  25.7–35.2 6.3–24.2  1.6–2.9 0.5–0.9 0.4–0.8  4.1–12.9 1.6–7.1  19.7–33.1  7.0–15.2  0–2.7  

BAMAZ 0.1–0.6 29.2–46.3 1.1–3.4  2.2–3.8  0.7–1.4  0.2–0.4 7.5–15.3 2.3–4.3  23.7–31.7 8.6–13.5 0.5–1.7 

BACO f/2 nd 0–5.1 0–0.3 0–0.1 19.4–43.2 19.3–43.1 6.5–11.7 0–0.2 0–1.5 nd 12.8–39.9 4.6–38.7 nd 

BACO, Bahía Concepción; BAPAZ, Bahía de La Paz; BAMAZ, Bahía de Mazatlán. nd, not detected. References [17,104]. 

Differences in the toxin profile have also been observed with strain origin [102,104]: Bahía 
Concepción strains had the highest content of C1; BAPAZ and BAMAZ strains had a higher 
percentage of neoSTX. Differences in the toxin composition with culture age were observed only in 
BAMAZ and BAPAZ strains. These differences with culture age seem to be related to chain length, 
since cultures with a higher percentage of long chains had more neoSTX, while those with a higher 
proportion of short chains had a lower concentration of neoSTX. Differences in toxicity per cell were 
also observed: BAPAZ and BAMAZ strains were the most toxic (101 pg STXeq cell-1), whereas strains 
from BACO were the least toxic (13 pg STXeq cell-1).  

The most abundant toxins in phytoplankton samples (dcSTX, dcGTX2-3, C1, and C2) do not vary 
in concentration in response to changes in culture media, strain origin, and N:P ratios. For example, 
when cultivating a strain from BACO with N:P ratios ranging from 1:6 to 32:1, no observable 
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differences were found in the toxin profile across the different treatments [105]. However, the 
production of neoSTX often varies with the strain origin and with different culture media (Table 3). 
Additionally, the culture age seems to play a role in a differential production of saxitoxin analogs of G. 
catenatum [104,105]: after the tenth day of growth with different N:P ratios, an increase in the 
percentage of carbamoyl and decarbamoyl toxins occurred (18–26% and 11–16%, respectively) as 
compared with the toxin composition during the first eight days of culture, with a carbamoyl 
production from 9 to 14% and decarbamoyl production below 5% [105].   

It seems that strains from the Gulf of California are characterized by the presence of neoSTX, and 
they seem to have evolved particular physiological responses to their environment that are reflected in 
their toxin profiles, suggesting different populations. Also, the variation in the toxin profiles of G. 
catenatum isolated from different zones of the Mexican Pacific (Bahía Concepción, Bahía de 
Mazatlán, and Bahía de La Paz), could be related to the differences in the source and concentration of 
nutrients of each embayment [102].  

5.3. Presence of PST in Mollusks Linked to HAB of G. catenatum  

The analyses of the toxin content in different clams and scallops of several embayments from the 
Gulf of California has been done during the presence of G. catenatum (Table 1). Toxicity was variable: 
the highest toxicity values in mollusks were found in Bahía de Mazatlán (up to 7,500 µg STXeq  
100 g-1) [6] (Table 1).  

The toxin profile of mollusks feeding naturally with wild populations of G. catenatum has also been 
determined in several species [15,21,30,37,103] (Table 4). The toxin profile varied within each zone 
and with mollusk species. In general, mollusks usually contained a high molar percentage of C1 and C2 
toxins (see Table 4), similar to cultured G. catenatum strains, and phytoplankton net samples. 
Decarbamoyl toxins (dcSTX, dcGTX2-3) were also found in high molar percentages in  
mollusk samples.  

An annual variation of toxicity and toxin profile in marine bivalves has been performed in Bahía de 
Los Ángeles, Bahía Concepción, Bahía de La Paz, and Bahía de Mazatlán [11,13,15,17,30,34]. 
Toxicity levels were correlated to the presence and abundance of G. catenatum cells in the water 
column, showing a clear seasonal pattern with higher toxin content in mollusks in May-June [13,17]. 
Toxin profiles of PST varied monthly, probably according to the cell abundance and metabolism of the 
mollusk. In most cases, N-sulfocarbamoyl toxins were the most abundant toxins, contributing usually 
more than 60% of the total toxin content. These high molar percentage contributions of the  
N-sulfocarbamoyl toxins may explain the low toxicity found in the shellfish (Table 2). Most shellfish 
contain a mixture of several PST, depending on the species of algae, geographic area, and shellfish 
species involved. For instance, toxic shellfish that grow in cold or temperate waters usually contain 
sulfated C toxins, GTX2-3, and STX [106]. When bivalves have recently ingested toxin-containing 
dinoflagellates, they typically contain high proportions of C1–C2 [4,13,15,107]. Experimental studies 
of toxicity in the scallop species M. squalida fed with G. catenatum also presented a high percentage of 
N-sulfocarbamoyl toxins, supporting the hypothesis that toxicity in scallops from the Gulf of California 
are linked to this dinoflagellate [108].  
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Table 4. Toxin profile (mol%) in different mollusk species related to the presence of 
Gymnodinium catenatum. 

 Bahía Concepción Bahía de Mazatlán Bahía de La Paz 
Toxin Argopecten ventricosus 

May 99, 00, 01 
Crassostrea iridescens 

April, 01 
Megapitaria squalida 

Dec, 01–Aug, 02 
STX 0–0.92 - 0–38.69 
neoSXT 0–9.00 5.71 - 
GTX2 0–31.17 - 0–41.19 
GTX3 0–4.79 0.89 0–16.02 
dcSTX 0–41.62 18.54 0–62.90 
dcGTX2 0–40.67 2.52 0–52.45 
dcGTX3 0–59.33 3.21 0–39.77 
B 1 0–42.34 9.80 0–7.40 
B 2 0–1.94 1.91 - 
C 1 0–54.61 37.89 0–52.54 
C 2 0–47.72 19.50 0–35.07 
C3 0–3.32 - - 
C4 0–3.98 - - 

References [15,17]. 

The presence of PST (GTX-2 and C1) has also been found in the liver of puffer fish Sphoeroides 
annulatus Jenyns from Bahía de La Paz and the mucus of Arothron meleagris Laceepéde from Punta 
Pericos. The analyses of the feeding behavior of these organisms, and the existence of PST 
dinoflagellates (e.g. G. catenatum) in the zone suggest the transfer of these toxins via mollusks [109].  

6. Toxic Effects of G. catenatum on Terrestrial and Marine Organisms or Toxic Effects of G. 
catenatum on Other Organisms 

6.1. Laboratory Studies  

Experimental work utilizing G. catenatum has focused on diverse physiological aspects of 
mammals, crustaceans, and bivalves (Table 5). Necropsy in mice (Swiss CD1 and BALB/c) with an 
acute saxitoxin exposure show a pronounced ischemic zone in the liver border. A degeneration of 
Purkinje cells in the cerebellum was also observed in histological observations of mice exposed to 
toxic extracts of G. catenatum [110]. Effects on grazing rates, egg production, and hatching success 
when the copepod Acartia clausi was fed with the dinoflagellate [101], showed no apparent harmful 
effects. However, egg production and hatching success increased with a higher consumption of  
G. catenatum. In the same experiment, the toxin profile of the copepod was analyzed, finding neoSXT, 
dcSTX, dcGTX2-3, B1-2, and C2 with a toxicity value of 12.7 pg STXeq copepod-1 [16]. In 
conclusion, A. clausi not only accumulates PST but can also transform them. In natural populations, 
the effect on white shrimp larvae (Litopenaeus vannamei Boone) was lethal at concentrations of 50,000 
cells L-1 [99] (Table 1). Juvenile and adult shrimps injected with varying quantities of PST showed a 
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time-to-death below seven minutes [111]. Chronic assays in shrimp also demonstrated significant 
differences in survival rates, percentage of feed, and weight gain [112]. Gastric glands and muscle of 
shrimp retained PST for a longer period and histological damages were observed in the heart, gastric 
gland, and brain tissue. These effects may explain the relationship of shrimp nauplii and postlarvae 
mortality in farms during a bloom of G. catenatum [23]. 10–20% mortality was observed in adults and 
metanauplii in Artemia exposed to G. catenatum. Behavioral symptoms such as erratic swimming, 
spasm, and convulsions were observed in Artemia when exposed to G. catenatum cells. Mortality of 
Artemia exposed to G. catenatum has been observed previously [113], and it has been demonstrated 
that Artemia can transfer PST via the marine food chain (Alexandrium tamarense to Artemia salina to 
Neomysis awatschensis to Lateolabrax japonicus) [114].  

Table 5. Toxin profile of Gymnodinium catenatum strains and their effect on different organisms. 

Organism tested Strain Culture conditions Total toxicity 

(pgSTXeq cell-1 

or µg eq. STX) 

Toxin 

profile 

Effects Ref. 

M
am

m
al

s 

Mouse 

model, Mus 

musculus 

(BALB/c 

and 

CD1mice) 

GCCV-6 f/2+Se, 33o/oo,  

25 ± 1 ºC, 12:12 L:O, 

150 µEm2 s-1, 

Fernbach flasks 

0.2, 0.3 µg 

eq.STX 

STX, 

dcSTX 

GTX-2,3 

dcGTX-

2,3 

C1–2 

Clinical signs: dyspnea, paralysis, 

convulsions, jump, respiratory failure, 

and death. 

In necropsy a pronounced isquemic 

zone only in liver border was detected. 

Histopathological changes: cerebellar 

injury (Purkinje cell degeneration). 

[110] 

C
ru

st
ac

ea
ns

 Acartia 

clausi 

GCCV-14 f/2 + Se 10-8M, 33–

34o/oo, 20 ºC, 12:12 

L:O, 150 µEm2 s-1, 2 

L flasks 

60 dcSTX, 

dcGTX-2, 

3,C1–2 

No adverse effects. [101] 

 Litopenaeu

s vannamei 

GCCV-6 

f/2, 33o/oo, 26 ± 1 ºC, 

12:12 L:O, 150 µEm2 

s-1, Fernbach flasks 

nd STX, 

dcSTX, 

neoSTX, 

GTX-

1,2,3,4  

Paralysis of antennae and pereiopods, 

disequilibrium, atypical swimming. 

Slow and irregular movements of gills, 

pleopods, and maxillipeds. Heart and 

brain severely damaged; juvenile 

shrimp more susceptible than adult 

animals. 

In chronic exposure: gastric glands 

and muscle retained paralytic toxins 

for a longer period, histological 

damages were observed in the heart, 

gastric gland, and brain tissue.  

[111,112] 

 

Artemia 

salina 

(adults and 

metanauplii

) 

GSe, 33o/oo,  

23 ± 1 ºC, 12:12 L:O, 

150 µEm2 s-1, 

Fernbach flasks 

nd STX, 

dcSTX 

GTX-2,3, 

dcGTX-

2,3 C1–2 

20% and 10% mortality in adults and 

metanauplii, respectively. Clinical 

signs: Adults: erratic swimming 

(circles), spasms, convulsions, and 

death. Metanauplii: erratic swimming 

and death. 

this study 
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Table 5. Cont. 

M
ol

lu
sk

s 

Nodipecten 

subnodosus 

 GSe medium, 32o/oo, 

21 ºC, 16:8 L:O, 70 

W, 20 L flasks 

2–5 GTX At high food concentrations, juvenile 

showed production of pseudofeces, 

partial shell valve closure, and 

reduction in feeding. An increase of 

antioxidant and hydrolytic enzymes 

mainly in gills and the digestive 

gland. Melanization in gills, mantle, 

and labial palps. 

[115,116] 

Megapitaria 

squalida 

GCCV-7 f/2 + Se 10-8M,  

33–34o/oo, 22 ºC, 

12:12 L:O, 150 µEm2 

s-1, 10 L flasks 

26–28 STX, 

dcSTX, 

neoSTX, 

dcGTX-3, 

4, C1–2 

No adverse effects. [108] 

BACO, Bahía Concepción; BAPAZ, Bahía de La Paz; BAMAZ, Bahía de Mazatlán. nd, not detected. References [17,101]. 

STX and neoSTX accumulated in the bivalves, M. squalida and Nodipecten subnodosus Sowerby, 
when exposed to G. catenatum cultures [108,115]. Differences in the toxin profile of the G. catenatum 
strains used in these studies were observed; the strain used by Estrada et al. [115] was rich in 
gonyautoxins, while the toxin profile of the strain used by Pérez-Cruz [108] was composed of STX, 
neoSTX, dcSTX, dcGTX2-3, C1, and C2, which is similar to those reported previously [17]. These 
differences could be due to culture conditions of the dinoflagellate, culture age, strain differences or 
extraction methods used. In both mollusks, the presence of highly toxic analogs suggests a 
biotransformation process [117] in a short time from N-sulfocarbamoyl to carbamoyl toxins. The 
depuration rate was moderate, between 0.19 and 0.23 day in the clam [108] and 0.4 day in the scallop 
[115], the toxin content after the thirteenth day in clams was only 4–5% of that found at the time of 
initiation. Short-term effects (24 h) on the immunological system of the clam N. subnodosus, when fed 
with G. catenatum, were also studied by Estrada et al. [118,119]. Several enzymes involved in 
antioxidant, lipid peroxidation, and hydrolytic activity were considered. Important changes were noted 
in the exposed scallops with an increase of antioxidant and hydrolytic enzymes mainly in the gills and 
the digestive gland. A melanization in gills, mantle, and labial palps was also reported. Lipid 
peroxidation has also been observed in Dosinia ponderosa and Crassostrea gigas exposed to G. 
catenatum cells [120]. Different responses to toxin exposure can be expected, since life history 
exposure to toxins plays an important role [116].  

6.2. Aquaculture Activities  

Blooms of G. catenatum, among other toxic species along the coast of Sinaloa (Gulf of California), 
caused the death of nauplii and adult shrimps in shrimp farms [23,24,121]. These authors assumed that 
the toxicity was caused by G. catenatum in the water introduced to the ponds by the pumping system. 
The mortality occurred with the events of HAB of G. catenatum from February to March 2001, 
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concluding that the contamination, climatic conditions, and inadequate management in fertilization, 
feeding rate, and food composition can provoke delay in the growth of the shrimp and decrease their 
production through massive mortality. Sierra-Beltrán et al. [122] speculated that in the central part of 
the Gulf of California, the urban aquatic residues and the eutrophication generated by the shrimp 
farmers could be responsible for the proliferation of G. catenatum and other species. García-Hernández 
et al. [10] concluded that the residues of the shrimp farms and shrimp larvae producing laboratories are 
deposited without treatment to Bahía Kun Kaak, which is known to be a highly productive ecosystem. 
This natural condition, and the water input with high content of nitrogen and phosphorus compounds, 
probably contributes to the formation of red tides. Other regions of the coasts of Sonora (Gulf of 
California) have also had high nitrogen contributions, related to fertilization process, which are added 
to coastal waters by runoff (36.8 × 106–201 × 106 moles of N) [64]. These findings suggest that this 
loss by irrigation can support phytoplankton blooms in the Gulf of California. It is probable that the 
eutrophication processes in this ecosystem are seasonal events [123] and are influenced by upwelling 
events, agriculture, and aquaculture contributions. Dumping and wastewater treatment regulations are 
recommended to obtain a good water quality, and equilibrium in the phytoplanktonic communities. 
These results show the importance of establishing continuous monitoring of the water quality that 
flows into and out of shrimp culture systems.  

7. Growth Variations of G. catenatum Strains of the Gulf of California  

Growth rates of different G. catenatum strains vary from 0.08 to 0.82 day-1 (Table 6), with the 
highest exponential growth rates obtained in GSe media with values above 0.70 day-1. Maximum cell 
densities vary between 1,090 and 3,940 cells mL-1 and are usually obtained between 14 and 18 days  
of growth.  

Table 6. Growth rate and maximum cell density of Gymnodinium catenatum strains of the 
Gulf of California in different growth conditions.  

Strain 

Code 
Source 

Growth Rate 

(div day-1) 

Maximum 

Cell Density 

(Cells mL-1) 

Media 
Temperature 

(ºc) 

Salinity 

(psu) 

Light 

Intensity 

(µmol m2 s-1) 

Light/Dark 

Cycle 
Ref. 

GCCQ-1 

BACO 

0.74 ± 0.07 1619 ± 252 

GSe 20 ± 1 35 150 12,12 [104] 

GCCV-2 0.70 ± 0.07 1090 ± 270 

GCCV-4 0.82 ± 0.09 3393 ± 836 

GCPV-1 BAPAZ 

 

0.74 ± 0.06 1631 ± 152 

GCPV-2 0.77 ± 0.05 1421 ± 290 

GCMV-1 BAMAZ 

 

0.81 ± 0.02 2063 ± 226 

GCMV-2 0.82 ± 0.03 1865 ± 516 

GCCV-10 BACO 

0.14–0.21 nd 
f/2 + Se 10-8 M 

 

15–29 30 230 10,14 

[103] 

0.24 nd 

20 

 

26–30 150 10,14 

0.28–0.31 nd 28–38 150 12,12 

0.15–0.19 1559–1970  f/2 + Se 10-6, 

10-7, 10-8 M 

35 150 12,12 
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Growth rate varies significantly with temperature. In a strain from Bahía Concepción, the highest 
growth rates (0.18–0.21 day-1) are obtained between 21 and 30 ºC. A high salinity range (15–40 ups) is 
also observed in Bahía Concepción strains, with the highest growth rates (0.30 day-1) occurring at 
salinities from 28–38 ups with seawater from Bahía Concepción. The optimal temperature and salinity 
ranges coincide with the temperatures and salinities at which G. catenatum has been reported in 
different regions of the Mexican Pacific, with the exception of the Northern Gulf of California where 
G. catenatum has been reported at lower temperatures (see ecological studies).  

8. LSUrDNA Sequences 

PCR amplifications of Bahía Concepción strains of the D1-D2 fragment of the nuclear large subunit 
rDNA gene resulted in a single product of approximately 889 base pairs [124]. Strains from Bahía 
Concepción present a constant characteristic at position ≈453, a single nucleotide polymorphism was 
observed, presenting cytosine instead of guanine. This single base polymorphism could indicate a 
mutation or genetic isolation from other G. catenatum populations. This possible genetic isolation or 
population differentiation could be explained by the hydrographic conditions mentioned previously for  
Bahía Concepción.  

9. Conclusions  

In summary, G. catenatum produces PST, is distributed along the Mexican Pacific coast, and has 
been related to the presence of PST in mollusks. Scarce reports exist on the physical and chemical 
conditions in this coastal ecosystem associated with blooms of G. catenatum. Nevertheless, from the 
available information, we can conclude that this species tolerates wide temperature and salinity ranges, 
and N:P ratios which probably has allowed its distribution along the Mexican Pacific. Its toxicity has 
been related to nutrient availability. Its capacity to produce PST and its environmental and human 
health costs has directed more attention towards the study of this species, increasing the number of 
published records in recent years as well as records in different regions of the country. However, many 
of these publications remain as thesis and/or have been published in Spanish journals, thus limiting 
their access for international colleagues. A high percentage of these blooms have been associated with 
an increase in the nutrient contribution, mainly by nitrogen compounds from upwelling events or 
transitional periods in the water column, and with low SST. In many occasions, G. catenatum has been 
found with other bloom forming species. Future investigations need to focus on the evaluation of the 
eutrophication process with systematic monitoring that can allow the quantification of the alterations in 
the organic matter balance, inorganic nutrients, and the interaction of different species associated with 
the presence of G. catenatum. In addition, more attention needs to be directed to understand the effect 
of grazers and their possible role on the development or regulation of HAB of this species.  

The toxin profile found in net phytoplankton samples, shellfish, and G. catenatum strains of the 
Gulf of California is variable, however a common characteristic is that dcGTX2-3, dcSTX, C1, and C2 
are always present. Unfortunately, many programs monitoring HAB events of G. catenatum in our 
country do not have the possibility to determine toxin content in mollusks, and so far, no studies have 
been done on the benzoate and deoxy decarbamoyl type toxins.  
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In some regions, data on the toxin analyses of phytoplankton net samples have proved to be useful 
in the monitoring activities of HAB of G. catenatum, as an early detection method for planktonic toxin 
producing organisms. More data on the toxin content per cell of field samples of G. catenatum needs to 
be obtained. However, latitudinal differences have been observed in the toxicity and toxin profile in 
cultured strains from different embayments of the Gulf of California. So far strains from Bahía de 
Mazatlán have a higher toxicity and a higher content of carbamoyl toxins than northern strains of the 
Gulf of California. Interestingly, field samples of G. catenatum show a less complex toxin profile than 
cultured strains. Further work needs to be done to understand the relationship between environmental 
factors and toxin variability.  

Laboratory studies show that Mexican G. catenatum strains produce effects in most of the 
organisms tested. Diverse histological and immunological effects were evident in shrimp, mollusks, 
and mice. However, in a short term study no adverse effects were observed in the copepod A. clausi, 
when fed with this dinoflagellate. It has been stated that the copepod and Noctiluca could play a key 
role in controlling the occurrences of red tides of this species. Clearly, more research must be done to 
evaluate the role of G. catenatum in the ecosystem and aquaculture activities of the Mexican coasts.  

The genetic sequence of the D1-D2 LSU rDNA differs from sequences of the same region in strains 
examined from Europe, Asia or Australia. This suggests that this species in the Gulf of California is 
not an introduced species, and could be used as a genetic marker for this population. At the moment, 
the design of DNA probes for the detection of G. catenatum in water samples is being carried out. This 
is supported with palinological studies that have demonstrated the presence of G. catenatum in this 
region since ~1483 [25].  

Despite the toxicity of G. catenatum and its wide distribution within most regions of the Mexican 
Pacific, there has been low monitoring effort, and probably many events have gone unnoticed. The 
increase in the reports of this species during the last decades is probably due to the increased interest in 
HAB events of this species, and the number of colleagues researching HAB. In spite of being one of 
the most studied toxic dinoflagellate species in Mexico, there are still many research areas that have 
not been addressed, such as a finer monitoring design, definitions and quantification of  
physical-biological cell interactions, interactions between species, cyst studies (transportation, 
distribution), diverse toxic effects on a wider number of taxa, and toxin metabolism.  
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