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Abstract
In mathematical biology, there is a great deal of interest in producing continuum
models by scaling discrete agent-based models governed by local stochastic rules. We
discuss a particular example of this approach: a model for the proliferation of neural
crest cells that can help us understand the development of Hirschprung’s disease, a
potentially-fatal condition in which the enteric nervous system of a new-born child
does not extend all the way through the intestine and colon. Our starting point is
a discrete-state, continuous-time Markov chain model proposed by Hywood et al.
(2013a) for the location of the neural crest cells that make up the enteric nervous
system. Hywood et al. (2013a) scaled their model to derive an approximate second
order partial differential equation describing how the limiting expected number of
neural crest cells evolve in space and time. In contrast, we exploit the relationship
between the above-mentioned Markov chain model and the well-known Yule-Furry
process to derive the exact form of the scaled version of the process. Furthermore, we
provide expressions for other features of the domain agent occupancy process, such
as the variance of the marginal occupancy at a particular site, the distribution of the
number of agents that are yet to reach a given site and a stochastic description of the
process itself.
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1 Introduction

Cell motility and cell proliferation play an indispensable role in collective cell spread-
ing, which is essential to many key biological processes, medicine and pathological
mechanisms including foetal tissue growth, tumour growth and wound healing (see
e.g., Maini et al. 2004a; Deng et al. 2006; Cai et al. 2007; Friedl and Gilmour 2009),
cell mobility in orchestrating morphogenesis during embryonic development (Gilbert
2003; Keller 2005; Binder et al. 2008; Vulin et al. 2014), immune responses Madri
and Graesser (2000), tissue domain expansion (Crampin, Hackborn and Maini 2002),
cancer Weinberg and Hanahan (2000) and vascular disease Raines (2000).
Cell proliferation and cell division process lead to domain expansion. This can change
the cellular spatial distribution and consequently lead to mechanisms of transport for
proliferating cells. Understanding this mechanism in controlling collective cell migra-
tion can, potentially, enable us to prevent any abnormalities such as developmental
anomalies or cancer metastasis. Agent-based cellular models have widely been used to
model proliferative tissue growth (Binder and Landman 2009; Hywood et al. 2013b;
Ross et al. 2016). The methods that are typically used to develop these models are
based on using a master equation or by using the Fokker-Planck partial differential
equation approach, Pillay et al. (2017). Applications of using these developed math-
ematical models have extensively been used for bone and tumour growth (Czarnecki
et al. 2014;Monteagudo and Santos 2015), embryonic tissue growth by assuming time
evolution of the length of the tissue domainwas known (Binder et al. 2008; DeOliveira
and Binder 2019) and fungal and yeast colonies (Matsuura 2000; Tronnolone et al.
2017). Therefore, to improve our understanding of proliferation cell processes, math-
ematical models have been formulated for the behaviour of the cell population as a
whole, based on the behaviour of the individual cells within the population. For exam-
ple, in the model for the growth of the foetal gut proposed by Hywood et al. (2013a),
neural crest cells populate the gut during its growth and remain in the gut tissue to form
the neurons that construct the enteric nervous system (ENS). Failure of the neural crest
cells to invade the gut tissue completely can cause imperfect formation of the ENS,
and lead to the existence of Hirschsprung’s disease Newgreen and Young (2002).
According to Grosfeld (2008), the first report of this disease may have occurred back
in 1691. However, the disease is named after the Danish pediatrician Hirschsprung
(1981), who described it. This disease can result in serious colon complications, such
as enterocolitis and toxic megacolon, which can be life threatening, and it is vital that
it be diagnosed early so that medical care can be commenced in a timely manner.
In the literature, there are twomain approaches to explaining collective cell spreading:
(i) discrete models, and (ii) continuummodelsMurray (2012). The first class, discrete,
individual-basedmodels, usually involve discretizing time and/or space. Thesemodels
capture the stochasticity and nonuniformity observed in experiments Simpson et al.
(2007). The benefit of these models is that they can predict features based on informa-
tion Murray et al. (2011) and fluctuation Simpson et al. (2014) that can be measured
in experimental data Simpson et al. (2010).
In parallel to discretemodels, much attention has also been given to developing contin-
uummodels, illustrating the behaviour of populations of cells using reaction-diffusion
equations. Continuummodels can be used to clarify the relationships among themodel
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parameters so that they can be investigated numericallyMaini et al. (2004b). The inter-
play between pattern formation and domain growth, studied in Crampin, Gaffney and
Maini (2002), andWoolley et al. (2011),makes use of both deterministic and stochastic
aspects.
A multiscale conception of the complex processes driving cell migration can be
attained by linking these two modelling approaches together in an equivalent frame-
work; this gives intuition into the interplay between the individual level and population
level models that enable us to use either modelling scenario to study appropriate prop-
erties of the system. Hywood et al. (2013a) developed such a linkage by studying
a discrete, stochastic, domain growth model where discrete ‘domain agents’ repre-
senting the gut cells proliferate. This model is a one dimensional semi-infinite lattice
model for tissue growth with lattice spacing �. Let N (t) be the number of domain
agents at time t and L(t) ≡ �N (t) be the length of the gut at this time. It follows
that x = i� is the position of the i th lattice site. In this model a proliferation event
can occur, which results in the inclusion of an additional domain agent into the lat-
tice. Consequently, the number of agents rises by one with each proliferation. In this
process, if the domain agent at site i is selected to proliferate, it moves to site i + 1
and pushes all domain agents in sites i + 1, i + 2, . . . one place higher.
This process is depicted in Fig. 1 which demonstrates a realization of two proliferation
events with a subset of blue marked and green unmarked agents. Whenever a marked
or an unmarked agent is selected to proliferate, it moves one site to the right and
an unmarked domain agent is inserted into the lattice. If a marked domain agent is
selected to proliferate, then the addition of the unmarked domain agent will not only
extend the lattice but possibly also separate marked domain agents.
By letting the spacing � shrink to zero, Hywood et al. (2013a) derived a PDE (their
Eq. (14)) to describe how the continuous expected occupancy evolves in time. The
coefficient of the diffusion term in this PDE is a linear function of �, and hence it
should be taken to be zero as the lattice spacing shrinks. However, Hywood et al.
(2013a) observed a very good fit between simulations and the trajectories of this PDE,
when � is taken to be small and positive.
Our aim in thiswork is to analyse themodel ofHywood et al. (2013a) in a differentway,
by observing that the proliferation process of Hywood et al. (2013a) can be interpreted
as a superposition of Yule-Furry processes. We are able to derive expressions for the
expectation and variance of the occupancy at a given point, the distribution of the
number of agents yet to reach a given point and a stochastic description of the process
itself.

2 The Proliferation Process

In this paper we work on the proliferation process introduced by Hywood et al.
(2013a). Let {X(t)}t≥0 = {(X1(t), X2(t), ..., XN (t)(t))}t≥0 be a random vector that
models the state of a proliferation process at time t , with N (t) the number of sites
at time t and Xi (t) = 1 if site i is occupied by a marked domain agent at time
t and equal to zero otherwise. Let Tk denote the time at which the k-th prolifera-
tion event occurs with T0 = 0 and τk+1 = Tk+1 − Tk the time between the kth
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Fig. 1 (Color online) A diagrammatic representation of a growing lattice made up of domain agents, some
of which are marked (blue [dark gray]). Initially there are eleven domain agents in total. The domain agents
occupying sites 4-8 are marked. The remaining are unmarked (colored green). The new unmarked domain
agent is added to the lattice, occupying site 8. The arrows show the movements of respective domain agents.
In the next step, the unmarked domain agent at site 3 is selected to proliferate. The new unmarked domain
agent is added to the lattice, occupying site 3

and k + 1st events. We assume that the random variable τk+1 is exponentially dis-
tributed with rate λN (Tk) = λ(N (0) + k), so that the expected value of τk+1 is
1/(λ(N (0)+ k)), and that the location of the k + 1st proliferation event has a discrete
uniform distribution on {1, . . . , N (0) + k}. If the proliferation event occurs at site j
then X(Tk+1) = (X1(Tk), . . . , X j−1(Tk), 0, X j (Tk), . . . , XN (Tk )(Tk)).

The above assumptions imply that the probability that a proliferation event occurs in
(t, t+τ ],when the state is X(t), isλN (t)τ+o(τ ) and the locationof such aproliferation
is to the left of site i with probability (i − 1)/N (T ). Noting that Xi (t + τ) = 0 if
a proliferation event occurs exactly at site i , it follows that the expected occupancy
E(Xi (t + τ)|X(t)) of site i at time t + τ satisfies the equation

E(Xi (t + τ)|X(t)) = (1 − λN (t)τ )Xi (t)

+λN (t)τ

[(
i − 1

N (t)

)
Xi−1(t) +

(
1 − i

N (t)

)
Xi (t)

]
+ o(τ ).

(1)

Taking expectations of both sides, we can derive an equation for Ci (t) ≡
E(Xi (t)|X(0)),

Ci (t + τ) = Ci (t) + λτ ((i − 1)Ci−1(t) − iCi (t)) + o(τ ). (2)
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We can model an initial condition where there is a contiguous segment of lattice sites
r + 1, . . . , s that are occupied by marked agents by taking Xi (0) = Ci (0) = I (r <

i ≤ s).
To derive a PDE, wemake the transformation of variables i → x

�
andCi (t) toC(x, t),

divide both sides of Eq. (2) by τ , and take limits � → 0 and τ → 0 so that

∂

∂t
C(x, t) = −λ

∂

∂x
(xC(x, t)) . (3)

If we want to take as an initial condition that C(x, 0) = 1 on some interval (a, b], and
zero otherwise, we need to let both r and s in the above model approach infinity in
such a way that lim�→0 r� = a and lim�→0 s� = b.
Equation (3) is valid for 0 ≤ x < L̃(t), with L̃(t) the length of the domain at time t
in the continuous model. With L(t) ≡ �N (t), observing that, for any t and τ in the
discrete model,

E[L(t + τ)|L(t)] = (1 − λN (t)τ ) L(t) + λN (t)τ (L(t) + �) + o(τ ),

it follows that E[L(t)|L(0)] satisfies the differential equation
dE[L(t)|L(0)]

dt
= λE[L(t)|L(0)], (4)

and so

E[L(t)|L(0)] = L(0)eλt . (5)

We see that the expected length of the domain in the discrete model grows exponen-
tially. Via the limiting procedure used above, this is also true of the length L̃(t) of the
deterministic domain of the PDE (3).
Hywood et al. (2013a) proposed that the expected occupancyC(x, t) is well-modelled
by the second-order partial differential equation.

∂

∂t
C(x, t) = −L ′(t)

L(t)

∂

∂x
(xC(x, t)) + L ′(t)�

2L(t)

∂2

∂x2
(xC(x, t)) . (6)

Because of the form (5), the first order term on the right hand side of (6) is the same as
that in (3). Hywood et al. (2013a) noted that the trajectories of Eq. (6) fitted simulated
results well. However it is clear that the second order term on the right hand side
should be zero, as � → 0. Indeed, the two limits lim�→0

τ→0
�2/τ and lim�→0

τ→0
�/τ

required to derive (6) cannot both be finite and non-zero. Thus, this equation has to be
regarded as an approximation. In Fig. 2, we compare Eq. (6) derived by Hywood et al.
(2013a) with simulation results averaged over 1000 of realizations for small values of
�. We can see that it does not fit well.

In Sect. 3, we shall present an alternative view of the proliferation process that
exploits the fact that individual particles move according to a Yule-Furry process. In
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Fig. 2 Expected occupancy averaged over 1000 realizations (blue) and Solutions to Eq. (6) (green curve)
with � = 0.1, � = 0.01 and � = 0.001 at times t = 1.0, 2.0, 3.0, 4.0, with initial particle mass on the
interval [12, 18] and λ = 0.69

the following Sect. 4, we shall scale this representation to derive the exact form of the
continuum limit of the model. We provide the proofs of the main results in Sect. 5.
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3 Yule-Furry Processes and Proliferation Processes

The pure birth process with a Markovian structure introduced by McKendrick (1914),
is considered as one of the simplest branching processes. In the case that the birth rate
is linear, it is called the pure linear birth, classical Yule or Yule-Furry process see, for
example, Yule (1925), Bharucha-Reid (1997), De La Fortelle (2006) and references
therein. The Yule-Furry process has been used to model stochastic population growth
with a preferential attachment process as a model of speciation in biology. It was
developed with the aim to model various stochastic dynamical systems processes
in different fields ranging from epidemics, demography and population biology to
server queuing modelling Elia and Taricco (1992), mathematical biology Baake and
Wakolbinger (2015) and branching processes Kendall (1966). For instance, Romero-
Arias et al. (2018) analysed a growth model of an avascular tumour that considers
the basic biological principles of proliferation and genetic mutations of the cell. They
modelled the cell mutations dynamics by using a Yule-Furry process and by assuming
that cell mutation depends only on the previous genetic state.
Mathematically, theYule orYule-Furry process is a pure-birth continuous-timeMarkov
chain on the state space {1, 2, . . .}with transition rates q(i, i+1) = λi for someλ > 0,
which is known as the splitting rate, see for example (Taylor 1975, Page 122). It is
well-known that if a Yule-Furry process starts in state j at time zero then its position
at time t has a negative binomial distribution with parameters j and e−λt , that is the
probability that it is in state k ≥ j at time t is

p jk(t) =
(
k − 1

k − j

)
e− jλt (1 − e−λt)k− j

, (7)

with p jk(t) = 0 if k < j .
A domain agent in the proliferation process of Hywood et al. (2013a) moves according
to a Yule-Furry process. Observing that the number of domain agentsUk(t) at a given
position k ≥ 1 at time t is necessarily 0 or 1, it easily follows that

E j [Uk(t)] = Pr(Y (t) = k|Y (0) = j)

=
⎧⎨
⎩

(
k − 1

k − j

)
e− jλt (1 − e−λt)k− j

if k ≥ j

0 if k < j .
(8)

Now we are interested in the expected total number of particles at position k at time
t , therefore, we consider s − r of these processes, Y ( j)(t), independently evolving on
the positive integers, with common splitting rate λ and with different starting points
j = r + 1, ..., s. Let the number of particles at position k at time t in the j th process
be denoted by U ( j)

k (t). Then the expected total number of particles at position k at
time t is given by

Ck(t) ≡
s∑

j=r+1

E[U ( j)
k (t)] =

min(k,s)∑
j=r+1

(
k − 1

k − j

)
e− jλt (1 − e−λt )k− j . (9)
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An important observation, made by Hywood et al. (2013a), is that this expected total
number of particles is given by (9) even if the processes Y ( j)(t) are dependent, and
that imposing a particular type of dependence results in the discrete space proliferation
model described in Sect. 1.
To see this, observe that the position Y (t) at time t of a particle evolving according to
a Yule-Furry Process with splitting rate λ and with Y (0) = j satisfies the stochastic
equation

Y (t) = j + N (�(t)), (10)

where N (�(t)) is the number of points in an inhomogeneous Poisson process with
an intensity measure depending on the evolution of Y on the interval [0, t) given by

�(t) ≡ �[(0, t)] =
∫ t

0
λY (u)du. (11)

To simulate a Yule-Furry process according to this viewpoint, we could use the fact
that the integrand in (11) is piecewise constant and so, when Y (t) = k, we draw an
exponential random variable with parameter kλ and increase the state to k + 1 when
this time has elapsed.(Fig. 3)
Another way to simulate the process would be to generate independent homogeneous
Poisson processes {Ni }with rate λ at each integer point i andmove the particle at k one
place to the right at any instant when there is an event in one of the Poisson processes
Ni with i ≤ k. This is equivalent to thinking of the random intensity measure in (11)
as generated by the independent homogeneous Poisson processes {Ni }. Specifically,
by expressing the area represented by the integral in (11) as a sum of the areas of
horizontal rectangles, we see that

Fig. 3 Left-hand panel: the integral (11) evaluated with with respect to t . The jumps occur at exponential
intervals with increasing rate. Right-hand panel: the integral (11) evaluated with respect to Y . The jumps
are triggered by events in the Poisson processes N1, N3, N1 and N4 respectively
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�[(0, t)] =
Y (t)∑
i=1

λ(t − Si ), (12)

with Si = 0 for i ≤ j and Si = inf{u : Y (u) ≥ i} for i > j . These two viewpoints
are illustrated in Fig. 3 for a case where j = 2. In the left hand panel the jumps are
events in a Poisson process of increasing intensity. In the right hand panel, they are
events in the superposition of an increasing number of Poisson processes.

Now let’s return to the s − r processes Y ( j)(t) driving Eq. (9). In the spirit of (12),
we can think of each of these as being generated by a sequence {N ( j)

i } of Poisson
processes, the i th process corresponding to the integer point i . If these processes
are independent for different values of j , then Ck(t) is the asymmetric random walk
process of Hywood et al. (2013a).
However, if the processes are identical so that {N ( j)

i } = {Ni } for all j , then the model
is the proliferation process of Hywood et al. (2013a): points in the i th Poisson process
correspond to proliferation events at the i th site and move particles from all processes
Y ( j)(t) that are to the right of i simultaneously. In this way, the proliferation process
can be regarded as a coupled version of the asymmetric random walk. This leads us
to the following theorem.

Theorem 3.1 Let {X(t)}t≥0 = {(X1(t), X2(t), ..., XN (t)(t))}t≥0 be a random vector
that models the state of a proliferation process as defined in Sect. 2 at time t, with
N (t) the number of sites at time t and Xi (0) = I (r < i ≤ s). Then

(i) The expected number of points at site k in the proliferation process is given by
Ck(t) in (9).

(ii) The variance in the number of points at site k in the proliferation process is given
by Ck(t)(1 − Ck(t)).

(iii) For j = r , . . . , s − 1, let Z ( j)(t) = Y ( j+1)(t) − Y ( j)(t), with Y (0)(t) = r , so
that Z ( j)(t)measures the distance between the j th and ( j +1)st marked domain
agents at time t. Then the s − r random variables Z ( j)(t) are independent with
common probability mass function given by

fZ (t) ≡ Pr(Z ( j)(t) = k) = e−λt (1 − e−λt)k−1
. (13)

(iv) For k > r , let Mk(t) = ∑k
�=r+1 X�(t) be the number of marked domain agents

in positions r + 1, . . . , k at time t. Then

Pr(Mk(t) ≤ j − r)

=
⎧⎨
⎩
1 if k ≤ j(
k

j

)
e− jλt (1 − e−λt)k− j

2F1(k + 1, 1; k − j + 1; 1 − e−λt ) if k > j .

where 2F1(a, b; c; z) is the hypergeometric function (Abramowitz and Stegun 1965,
Definition 15.1.1).

Proof See the Appendix. ��
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4 Asymptotic Properties

With a view to establishing a continuum limit of the model in Sect. 3, we suppose that
there are N (0) = 	(b − a)/�
 particles initially situated at positions

�(	a/�
 + 1), · · · ,�	b/�


within the interval (a, b] with equal spacing �. The idea is that there is an initial
’particle mass’ �	(b − a)/�
 distributed evenly among these N (0) points. The point
at position �(	a/�
 + j) carries a mass �, which we can think of as a rectangle of
unit height over the interval [�(	a/�
 + j),�(	a/�
 + j + 1)].
The expected height of the rectangle at position y at time t ,

C�(y, t) =
	a/�
+N (0)∑
j=	a/�
+1

E[U ( j)
	y/�
(t)]

=
min{	b/�
,	y/�
}∑

j=	a/�
+1

(	y/�
 − 1

	y/�
 − j

)
exp(− jλt)(1 − exp(−λt))	y/�
− j ,

(14)

where with respect to (9), we have used the correspondence k = 	y/�
, r = 	a/�

and s = 	b/�
. Note that C�(y, t) is a piecewise constant function, with jumps at
points of the form k�. Furthermore, k, r and s increase at the same rate as � goes to
zero, in particular, r/k → a/y and s/k → b/y.
For t = 4 and an initial probability mass on the interval [12, 18], the blue lines in the
left-hand panel of Fig. 4 depict C�(y, t) as a function of y for values of � = 1/n
with n varying from 1 to 10. Decreasing � corresponds to increasing the height of the
curves and decreasing the tail mass. The right-hand panel of Fig. 4 shows C�(y, t)
as a function of n = 1/� for t = 4 and y = 228 (approximately where the peaks
occur in the left hand panel of Fig. 5) for values of n up to 100. The blue lines in Fig.
5 provide another illustration of y plotted against C�(y, 4) with 107 marked agents

Fig. 4 Left-hand panel: values of C�(y, t) at t = 4 with initial particle mass on the interval [12, 18].
Right-hand panel: C1/n(228, 4) plotted against n, (λ = 0.69)
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Fig. 5 Left-hand panel: Evaluation ofC�(y, t) at t = 4.0 with initial particle mass on the interval [12, 118]
(λ = 0.69). Right-hand panel: C�(y, t) plotted against different values of λ

initially located at sites 12 up to 118, and � = 1/n with n ranging from 1 to 5. We
observe that, as � decreases, the curves become flatter with decreased tail mass.

4.1 The limiting profile C(y, t)

Figures 4 and the left hand panel of 5 suggest that, taken as a function of y for a fixed
value of t ,C�(y, t) approaches a limit as� → 0.We investigate this behaviour in this
section, commencing with an intuitive characterisation using the normal approxima-
tion to the binomial distribution. Equation (14) for the expected number of particles
at position y at time t when the spacing is � has the form

C�(y, t) = e−λt Pr(	a/�
 ≤ S�(y, t) ≤ min{	b/�
 − 1, 	y/�
 − 1}), (15)

where S�(y, t) is a random variable with a binomial distribution with parame-
ters 	y/�
 − 1 and e−λt . The mean and variance of S�(y, t) are, respectively,
e−λt (	y/�
 − 1) and e−λt (1 − e−λt )(	y/�
 − 1).
Employing the normal approximation to approximate C�(y, t) when � is small, we
get

C�(y, t) � Capprox (y, t)

= e−λt Pr

(
a/y − e−λt√
e−λt (1 − e−λt )

√	y/�
 − 1 ≤ Z ≤ min(b/y, 1) − e−λt√
e−λt (1 − e−λt )

√	y/�
 − 1

)
,

(16)

where Z is a standard normal random variable. The performance of this approximation
is illustrated in red in the left hand panel of Fig. 4 and in the left-hand panel of Fig.
5. In our numerical studies, without loss of generality, we assume the value of λ to be
0.69. We plotted C�(y, t) for different values of λ in the right hand panel of Fig. 5.
In Fig. 6 we compare the normal approximation result in Eq. 16 with Eq. 6, derived
by Hywood et al. (2013a). We see that Eq. 16 fits well with the simulation results
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averaged over 1000 of realizations and for� = 0.1,� = 0.01 and� = 0.001. Figure
7 illustrates how expression (16) varies with time.

The expression

a/y − e−λt√
e−λt (1 − e−λt )

√	y/�
 − 1,

appearing in (16) is equal to zero if a/y = e−λt and approaches −∞ or ∞ as � → 0
depending on whether a/y−e−λt is negative or positive, that is according as y > aeλt

or y < aeλt . Similarly,

min(b/y, 1) − e−λt√
e−λt (1 − e−λt )

√	y/�
 − 1,

is equal to zero if b/y = e−λt and, as� → 0, approaches∞ if y ≤ b or b < y < beλt ,
and −∞ otherwise. So

Pr

(
a/y − e−λt√
e−λt (1 − e−λt )

√	y/�
 − 1 ≤ Z ≤ min{b/y, 1} − e−λt√
e−λt (1 − e−λt )

√	y/�
 − 1

)
,

approaches 1/2 if y = aeλt or beλt , 1 if aeλt < y < beλt and 0 otherwise. Thus we
would expect the limiting profile for C�(y, t) to be

C(y, t) := lim
�→0

C�(y, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if 0 < y < aeλt

1
2e

−λt if y = aeλt

e−λt if aeλt < y < beλt

1
2e

−λt if y = beλt

0 if y > beλt .

(17)

Remark 4.1 Note that C(y, t), given by (17)

• has the correct mass b − a for all t , and
• is a weak solution of the first-order partial differential Eq. (3).

It remains to establish the form (17) rigorously as � → 0. This is given in the
following theorem.

Theorem 4.1 With the spacing set at �, let C�(y, t) = E[X	y/�
(t)] be the expected
number of particles at site 	y/�
 at time t.
(i) For all positive y and t, lim�→0 C�(y, t) is given by (17).
(ii) For all positive y and t, lim�→0 V [X	y/�
(t)] = C(y, t)(1 − C(y, t)) where

C(y, t) is defined in (17).
(iii) For w ∈ (a, b] and all positive t , let Z�(w, t) = �Z 	w/�
(t) be the separation

at time t of the agents that start at �	w/�
 and �(	w/�
 + 1). Then, for all
u > 0, lim�→0 Pr(Z�(w, t) > u) = 0.
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Fig. 6 Expected occupancy averaged over 1000 realizations (blue), Solutions to Eq. (6) (green curve) and
Occupation density (normal approximation (red)) with � = 0.1, � = 0.01 and � = 0.001 at times
t = 1.0, 2.0, 3.0, 4.0, with initial particle mass on the interval [12, 18] and λ = 0.69
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Fig. 7 Occupation density
(normal approximation with
� = 0.001 at times
t = 1.0, 2.0, 3.0, 4.0, and 5.0,
with initial particle mass on the
interval [12, 18] (λ = 0.69)

Proof See the Appendix. ��
We started this section by observing that we can think of our initial condition as

spreading a mass of �	(b − a)/�
 over N (0) = 	(b − a)/�
 points, so that each
point carries a mass of�. In the limit as� → 0 the mass at each point goes to zero but
the number of points approaches infinity in such a way that the total mass approaches
b − a.
For y ∈ (a,∞), this motivates us to define M�(y, t) = �M	y/�
(t) in the model
where the spacing is set to � and Mk(t) is defined in part (iv) of Theorem 3.1. The
limiting distribution of M�(y, t) is given in the following theorem.

Theorem 4.2 (i) For positive t , y ∈ (a,∞) and z ∈ (a, b),

lim
�→0

Pr(M�(y, t) ≤ z − a) =
{
1 if z ≥ ye−λt

0 if z < ye−λt .
(18)

(ii) For positive t , y ∈ (aeλt , beλt ] and z ∈ (−∞,∞),

lim
�→0

Pr

(
M�(y, t) − �(

⌊
ye−λt/�

⌋ − 	a/�
)
�

√
(e−λt − e−2λt )	y/�
 ≤ z

)
= �(z), (19)

where �(z) = ∫ z
−∞ e−u2/2/

√
2πdu is the standard normal distribution function.

Proof See the Appendix. ��
Remark 4.2 If y < aeλt , then Theorem 4.2(i) implies that lim�→0 Pr(M�(y, t) ≤ z−
a) = 1 for all z ∈ (a, b]. In particular, this implies that lim�→0 Pr(M�(y, t) ≤ 0) = 1,
which tells us that M�(y, t) weakly converges to a point mass at zero. On the other
hand, if y > beλt then lim�→0 Pr(M�(y, t) ≤ z − a) = 0 for all z ∈ (a, b) and
M�(y, t) weakly converges to a point mass at b − a. Otherwise, M�(y, t) weakly
converges to a point mass at z = ye−λt − a.

This agrees with the observation of Theorem 4.1 that the limiting expected number
of agents C(y, t) has the form of a square wave of height e−λt over the interval
y ∈ (aeλt , beλt ).
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Conclusion

In this paper we have analysed the cellular proliferation process model of Hywood
et al. (2013a) by taking advantage of its relationship to the superposition of a set
of coupled Yule-Furry processes, each with the same splitting rate. In Sect. 2, we
presented the model of Hywood et al. (2013a) together with the argument of Hywood
et al. (2013a) to derive an approximating second order PDE for the expected occupancy
of the process at position y at time t .

In Sect. 3, we analysed the discrete model with positive �, and used the model’s
representation as a set of coupled Yule-Furry processes to derive an exact expression
for the expected occupancy Ck(t) at site k at time t . We also derived expressions for
the variance of the occupancy and the distribution of the number of sites between
adjacent domain agents. Finally, we showed that at time t , domain agents occupy
positions that are distributed as a geometric renewal process. In Sect. 4, we considered
limiting versions as � → 0 of the process that we analysed in Sect. 3. Theorem 4.1
contains expressions for the limiting expected occpuancy at position y at time t and its
variance, while Theorem 4.2 presents Weak Law of Large Numbers and Central Limit
Theorem results for the total mass of domain agents occupying positions to the left of y
at time t .
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5 Appendix

Proof of Theorm 3.1 (i) The first assertion follows from the argument outlined in
Sect. 3: the expected number of particles at site k is the same in the proliferation
process as it is in the asymmetric random walk process, which is given by (9).

(ii) The number of points at site k in the proliferation process is a Bernoulli random
variable with a probabilityCk(t) of being equal to one. It follows that its variance
is equal to Ck(t)(1 − Ck(t)).

(iii) Using our view of the Yule-Furry process as being generated by a sequence of
independent homogeneous Poisson processes {Ni } with rate λ at each integer
point i , we see that the distance Z ( j) between two marked domain agents also
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grows as a Yule-Furry process, but one that starts off with Z ( j)(0) = 1. Equation
(13) then follows from Eq. (7).

(iv) If k ≤ j , then the proliferation process started with less than or equal to j − r
agents in positions r +1, . . . , k and, since agents never move to lower numbered
positions, Pr(Mk(t) ≤ j − r) = 1 for all t .

For k > j , the event that there are less than j − r marked agents in positions
r + 1, . . . , k at time t is the same as the event that the agent starting in position
j has moved to one of the positions � > k at time t . From this observation, it
follows that Pr(Mk(t) ≤ j − r) = Pr(Mk(t) < j − r +1) = Pr(Y ( j+1)(t) > k).
Substituting Eq. (7) we see that, for j = r + 1, . . . , s,

Pr(Mk(t) ≤ j − r)

=
∞∑

�=k+1

(
� − 1

� − j − 1

)
e−( j+1)λt (1 − e−λt)�− j−1

= e−( j+1)λt
∞∑

�=0

(
� + k

� + k − j

) (
1 − e−λt)�+k− j

= e−( j+1)λt
(
1 − e−λt

)k− j

j !
∞∑

�=0

(� + k)! �!
(� + k − j)!

(
1 − e−λt

)�

�!

=
(
k

j

)
e−( j+1)λt (1 − e−λt)k− j

2F1(k + 1, 1; k − j + 1; 1 − e−λt ),

(20)

by (Abramowitz and Stegun 1965, Definition 15.1.1).
��

Proof of Theorem 4.1 For sequences (ai ) and (bi ), we shall write ai ∼ bi if
lim supi→∞ |ai/bi | = 1.
Our proof involves the Kullback-Liebler divergence (or relative entropy)

H(ε, θ) = ε log
( ε

θ

)
+ (1 − ε) log

(
1 − ε

1 − θ

)
, (21)

between the Bernoulli distribution with success probability ε and the Bernoulli distri-
bution with success probability θ .
Suppose Sk has a binomial B(k, θ) distribution. Then, by Theorem 2 of Arratia and
Gordon (1989), if θ < ε < 1,

Pr(Sk ≥ kε) ∼ 1

(1 − r)
√
2πε(1 − ε)k

e−kH(ε,θ), (22)
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where

r = r(ε, θ) =
(

θ

1 − θ

) / (
ε

1 − ε

)
= θ(1 − ε)

ε(1 − θ)
. (23)

We can deal with the complementary case where 0 < ε < θ by noting that k − Sk
has a binomial B(k, 1 − θ) distribution. Clearly H(1 − ε, 1 − θ) = H(ε, θ), and
r(1 − ε, 1 − θ) = 1/r(ε, θ) (< 1), and so

Pr(Sk ≤ kε) = Pr(k − Sk ≥ i(1 − ε)) ∼ 1

(1 − 1/r)
√
2πε(1 − ε)k

e−kH(ε,θ).

(24)

Finally, when ε = θ , the Central Limit Theorem tells us that

lim
k→∞ Pr(Sk ≥ kθ) = 1/2. (25)

We proceed to the proof of the theorem.

(i) Referring to (15), let ��(y, t) = eλtC�(y, t).
There are twomain cases to consider. First, when y < b,��(y, t) = Pr(S�(y) >

	a/�
). With reference to Eqs. (21) and (23), we take θ = e−λt and ε = a/y so
that, in the obvious notation,

r(a, y, t) = e−λt (y − a)

a(1 − e−λt )
, (26)

and

H(a, y, t) = (a/y) log

(
a

ye−λt

)
+ ((y − a)/y) log

(
y − a

y(1 − e−λt )

)
. (27)

Then, from Eq. (22), if e−λt < a/y < 1,

��(y, t)

∼ a(1 − e−λt )
√
y�

(a − ye−λt )
√
2πa(y − a)

exp

[
−(a/�) log

(
a

ye−λt

)
− ((y − a)/�) log

(
y − a

y(1 − e−λt )

)]
,

which approaches 0 as � → 0. Alternatively, from (24), if a/y < e−λt , then

��(y, t)

∼ 1 − (y − a)e−λt√y�

(ye−λt − a)
√
2πa(y − a)
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exp

[
−(a/�) log

(
a

ye−λt

)
− ((y − a)/�) log

(
y − a

y(1 − e−λt )

)]
,

which approaches 1 as � → 0. We deduce that, if aeλt < y < b, then
��(y, t) → 1. On the other hand, if y < min(aeλt , b) then ��(y, t) → 0
and if y = aeλt < b, then ��(y, t) → 1/2.
Now consider the case where y ≥ b and so

��(y, t) = Pr(	a/�
 + 1 ≤ S�(y) ≤ 	b/�
). (28)

If e−λt ≥ b/y > a/y, (28) gives us

��(y, t)

∼ (y − b)e−λt√y�

(ye−λt − b)
√
2πb(y − b)

exp

[
−(b/�) log

(
b

ye−λt

)
− ((y − b)/�) log

(
y − b

y(1 − e−λt )

)]

− (y − a)e−λt√y�

(ye−λt − a)
√
2πa(y − a)

exp

[
−(a/�) log

(
a

ye−λt

)
− ((y − a)/�) log

(
y − a

y(1 − e−λt )

)]
,

implying that, for all such y, ��(y, t) → 0.
If e−λt < a/y < b/y,

��(y, t)

∼ a(1 − e−λt )
√
y�

(a − ye−λt )
√
2πa(y − a)

exp

[
−(a/�) log

(
a

ye−λt

)
− ((y − a)/�) log

(
y − a

y(1 − e−λt )

)]

− b(1 − e−λt )
√
y�

(b − ye−λt )
√
2πb(y − b)

exp

[
−(b/�) log

(
b

ye−λt

)
− ((y − b)/�) log

(
y − b

y(1 − e−λt )

)]
,

implying that ��(y, t) → 0 in this case as well.
If a/y < e−λt < b/y

��(y, t)

∼ 1 − b(1 − e−λt )
√
y�

(b − ye−λt )
√
2πb(y − b)

exp

[
−(b/�) log

(
b

ye−λt

)
− ((y − b)/�) log

(
y − b

y(1 − e−λt )

)]
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− (y − a)e−λt√y�

(ye−λt − a)
√
2πa(y − a)

exp

[
−(a/�) log

(
a

ye−λt

)
− ((y − a)/�) log

(
y − a

y(1 − e−λt )

)]
,

and, in this case, ��(y, t) → 1.
Finally, if e−λt = a/y or e−λt = b/y, then ��(y, t) → 1/2 because the
inequality on one side of (28) is satisfied in the limit with probability 1/2. This
proves (i).

(ii) For any finite value of �, the number of particles at location y, that is X	y/�
,
is a Bernoulli random variable: there is either a particle at site 	y/�
 or there
isn’t. Since the mean of this Bernoulli random variable is C�(y, t), its variance
must be Var�(y, t) = C�(y, t)(1 − C�(y, t)). This proves (ii).

(iii) For w ∈ (a, b],

lim
�→0

Pr(Z�(w, t) > u) = lim
�→0

Pr(Z 	w/�
(t) > u/�)

= lim
�→0

∞∑
�=	u/�
+1

e−λt (1 − e−λt)�−1

= lim
�→0

(
1 − e−λt)	u/�


= 0,

where the second equation follows from (13).

��
Proof of Theorem 4.2 (i) If y ≤ z, it follows from part (iv) of Theorem 3.1 that

Pr (M�(y, t) ≤ �(	z/�
 − 	a/�
)) = 1,

for all � and so lim�→0 Pr (M�(y, t) ≤ z − a) = 1.
For y > z, (20) gives us

Pr (M�(y, t) ≤ �(	z/�
 − 	a/�
))

=
∞∑

�=	y/�
+1

(
� − 1

� − 	z/�
 − 1

)
e−(	z/�
+1)λt (1 − e−λt)�−	z/�
−1

. (29)

The summand on the right hand side of (29) is Pr(R(	z/�
 + 1, t) =
�) where R(n, t) is a negative binomial random variable with parameters
n and e−λt . The right hand side of (29) itself can thus be interpreted as
Pr (R(	z/�
 + 1, t) ≥ 	y/�
 + 1).
The random variable R(n, t) has the same distribution as the sum

∑n
i=1 T

(i)(t)
where T (i)(t) are independent geometric random variables with common param-
eter e−λt . The mean of T (i)(t) is eλt and its variance is e2λt − eλt .
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We can apply the Weak Law of Large Numbers to conclude that the distribution
of R(	z/�
 + 1, t)/(	z/�
 + 1) approaches a point mass at eλt as � → 0. For
z ∈ (a,min(y, b)], we conclude that

lim
�→0

Pr (M�(y, t) ≤ �(	z/�
 − 	a/�
))
= lim

�→0
Pr (R(	z/�
 + 1, t) ≥ 	y/�
 + 1)

= lim
�→0

Pr

(
R(	z/�
 + 1, t)

	z/�
 + 1
≥ 	y/�
 + 1

	z/�
 + 1

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if
y

z
≤ eλt

0 if
y

z
> eλt ,

and the result is proved.
(ii) Let

ϒ�(y, t) = M�(y, t) − �(
⌊
ye−λt/�

⌋ − 	a/�
)
�

√
(e−λt − e−2λt )	y/�
 .

Then, by (20),

lim
�→0

Pr(ϒ�(y, t) ≤ z)

= lim
�→0

Pr

(
M�(y, t) ≤ �

(
(
⌊
ye−λt/�

⌋ − 	a/�
)

+z
√

(e−λt − e−2λt )	y/�

))

= lim
�→0

Pr(R(n(�)) > 	y/�
), (30)

where n(�) =
⌊⌊

ye−λt/�
⌋ + z

√
(e−λt − e−2λt )	y/�


⌋
. The limiting probabil-

ity (30) is the same as

lim
�→0

Pr

(
R(n(�)) − n(�)eλt√
n(�)(e2λt − eλt )

>
	y/�
 − n(�)eλt√
n(�)(e2λt − eλt )

)

= lim
�→0

Pr

(
R(n(�)) − n(�)eλt√
n(�)(e2λt − eλt )

>
−z

√
(eλt − 1)	y/�
√

(eλt − 1)	y/�
 + z(e2λt − eλt )
√

(e−λt − e−2λt )	y/�


⎞
⎠

= �(z), (31)
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by the Central Limit Theorem and because the expression on the right hand side
approaches −z as � → 0.

��
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