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Abstract: Hyperlipidemia is a serious epidemic disease caused by lipid metabolism disorder, which
is harmful to human health. MDG-1, a β-D-fructan polysaccharide extracted from Ophiopogon
japonicus, has been shown to improve abnormal blood lipid levels and alleviate diabetes. However,
the underlying mechanism on hyperlipidemia is largely unknown. In this study, male C57BL/6 mice
were randomly separated into three groups, respectively: low-fat diet (Con), high-fat diet (HFD), and
high-fat diet plus 5‰ MDG-1 (HFD + MDG-1). Body weight was measured and the serum lipid levels
were analyzed. Using gene microarray, various core pathways, together with levels of gene expression
within hepatocytes, were analyzed. RT-PCR was used to confirm the identity of the differentially
expressed genes. MDG-1 could prevent obesity in HFD-induced mice and improve abnormal serum
lipids. Besides, MDG-1 could regulate hyperlipidemia symptoms, specifically, and decrease fasting
blood glucose, improve glucose tolerance, and ameliorate insulin resistance. According to results
from gene microarray, most of the identified pathways were involved in the digestion and absorption
of fat, biosynthesis, and catabolism of fatty acids as well as the secretion and biological synthesis of
bile acids. Furthermore, MDG-1 may act upon peroxisome proliferator-activated receptors (PPAR) α
and γ, activating PPARα whilst inhibiting PPARγ, thus having a potent hypolipidemic effect.
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1. Introduction

Hyperlipidemia is a group of disorders characterized by an excess of lipids in the bloodstream.
Apart from genetic factors like familial hypercholesterolemia [1,2], hyperlipidemia is closely associated
with less healthy living habits and dietary preferences. Mounting evidence shows that hyperlipidemia
increases the risk of chronic metabolic disorders, such as obesity, cardiovascular disease, and
particularly type II diabetes, resulting in high mortality rates [3–6]. Moreover, hyperlipidemia is
a widely-accepted risk factor for elevated blood glucose levels and insulin resistance [7–9], implying
more attention should be given to the regulation of lipid metabolism in diabetic patients. As an
epidemic public problem, research on lipid-control therapies must be accelerated.

Lipid metabolism has emerged as an important modulator of hyperlipidemia and abnormal fat.
The lipid-activated transcription factors PPAR are members of the nuclear receptor superfamily that
have a well-defined role in regulating lipid homeostasis and metabolic diseases [10]. Peroxisome
proliferator-activated receptors (PPARs) comprised of three different isoforms, namely, PPARα, PPARβ,
and PPARγ, play a vital role in the biological processes of the metabolic syndrome, including
fat generation, lipid balance regulation, energy metabolism, insulin sensitivity, cell differentiation,
and immune response [11–14]. Accumulating studies demonstrate that these nuclear receptors (PPARα,
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PPARβ, and PPARγ), all have well-documented roles in lipid and glucose metabolism. Current reports
suggest that okra polysaccharides (OP) have therapeutic effects on metabolic diseases via the inhibition
of LXR and PPAR signaling [15], and Astragalus polysaccharides could regulate gene expression of
PPARα and its target genes to improve lipid metabolism [16]. Besides, polysaccharides from Rosae
Laevigatae Fructus could improve hyperlipidemia possibly through regulating PPAR-mediad lipid
metabolism [17]. These suggest that polysaccharides modulate hyperlipidemia through the regulation
of PPAR signaling.

Based on our previous studies, MDG-1 [18], a β-D-fructan polysaccharide with an average
molecular weight of 3400 Da, extracted from the root of Ophiopogon japonicus (Radix Ophiopogonis
japonici), a traditional Chinese medicine, has a beneficial effect on blood glucose levels and body
weight in diet-induced obese mice (DIO) [19,20] or the model of type 2 diabetes ob/ob mice [21].
MDG-1 could also improve serum lipid levels and regulate the synthesis, secretion, and reabsorption
of bile acids [19]. Thus, in our research, we aimed to test that MDG-1 may improve high-fat diet
(HFD)-induced obesity, dyslipidemia, and glucose resistance. Besides, in consideration of the gene chip
with high throughput that could determine the different functional status and core gene expressions
at the same time, we used the Affymetrix Mouse Gene 2.1 ST Array Strip (Thermo Fisher Scientific,
Waltham, MA, USA) gene chip to screen significantly different genes and discovered gene expression
profiles between the HFD group and the MDG-1 prevention group, thus exploring more deeply the
mechanism of MDG-1 on hyperlipidemia.

2. Results

2.1. MDG-1 Blocks Obesity in DIO Mice

Compared to the control (Con), the body weight of the HFD group increased dramatically
(Figure 1a). As illustrated in Figure 1a, in comparison with the HFD group, MDG-1 supplemented
with a high-fat diet (HFD + MDG-1) obviously lessened body weight after three weeks prevention
(this trend was observed throughout the whole experiment). The food intake of the MDG-1 group was
consistent with that of the HFD group (Figure 1b), implying that the reduction in weight was due to
the effects of MDG-1 and not decreased energy intake. Interestingly, MDG-1-treated mice showed a
significantly higher body temperature compared to the DIO mice (Figure 1c), indicating that MDG-1
may enhance energy expenditure.
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Figure 1. MDG-1 blocks obesity in diet-induced obese (DIO) mice. (a) Body weight gain; (b) food 
intake amount; (c) body temperature; (d) mass of subcutaneous fat. Data were presented as means ± 
SD (n = 8). * p < 0.05, ** p < 0.01 vs. high-fat diet (HFD) group. 

 
Figure 2. Images of white adipocytes and liver tissue. (a) Hematoxylin and eosin (H&E) staining of 
adipose tissue (×200); (b) electronic scanning microscopy of adipose tissue (×200); (c) H&E staining 
of liver tissue (×200). 
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To further confirm that the intervention of MDG-1 could prevent fat accumulation of obese
mice (the weight and size of subcutaneous fat was measured and analyzed). As expected, the mice
of the MDG-1 group apparently decreased subcutaneous fat weight compared to that of the HFD
group (Figure 1d). In addition, the Hematoxylin and Eosin (H&E) staining (Figure 2a) and Electronic
Scanning Microscopy Assays (Figure 2b) showed that the size of the adipocytes of the MDG-1-treated
mice was reduced. These results implied that MDG-1 could protect against high fat, diet-induced fat
accumulation. Besides, liver histology was detected by H&E staining (Figure 2c). In the H&E sections,
the mice fed the HF diet developed obvious steatosis and vacuolization compared to the Con group,
whereas MDG-1 treatment notably ameliorated macrovesicular steatosis of the liver compared to the
HFD group. Taken together, these results indicated that MDG-1 could increase energy expenditure and
reduce fat accumulation and hepatic steatosis, thus regulating body weight in the high-fat diet mice.

Int. J. Mol. Sci. 2017, 18, 1930  3 of 14 

 

 
Figure 1. MDG-1 blocks obesity in diet-induced obese (DIO) mice. (a) Body weight gain; (b) food 
intake amount; (c) body temperature; (d) mass of subcutaneous fat. Data were presented as means ± 
SD (n = 8). * p < 0.05, ** p < 0.01 vs. high-fat diet (HFD) group. 

 
Figure 2. Images of white adipocytes and liver tissue. (a) Hematoxylin and eosin (H&E) staining of 
adipose tissue (×200); (b) electronic scanning microscopy of adipose tissue (×200); (c) H&E staining 
of liver tissue (×200). 

  

Figure 2. Images of white adipocytes and liver tissue. (a) Hematoxylin and eosin (H&E) staining of
adipose tissue (×200); (b) electronic scanning microscopy of adipose tissue (×200); (c) H&E staining of
liver tissue (×200).

2.2. MDG-1 Attenuates Dyslipidaemia in DIO Mice

To further verify that MDG-1 could moderate many of the symptoms present in metabolic
syndromes, serum lipid levels were assayed. Figure 3a showed that MDG-1 displayed markedly
lower levels of total cholesterol (TC), total triglyceride (TG), and low density lipoprotein cholesterol
(LDL-c) than those of the HFD group, whereas the high density lipoprotein cholesterol (HDL-c) level
remained unchanged. Meanwhile, we determined TC and TG contents in the stool and liver. The
fecal TC and TG levels of the MDG-1 group were increased to a certain extent compared to the HFD
group. Moreover, TG and TC levels in the liver of the MDG-1 group were markedly ameliorated as
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compared to those in the HFD group, implying that MDG-1 could notably lower lipid accumulation in
the liver tissue (Figure 3b,c). These results showed that MDG-1 prevention had a positive effect on the
regulation of lipid metabolism.
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Figure 3. MDG-1 attenuates dyslipidaemia in DIO mice. (a) Serum total cholesterol (TC), triglyceride
(TG), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c); (b) TC
and TG contents in the mice liver; (c) TC and TG contents in the mice stool. Data were presented as
means ± SD (n = 8). * p < 0.05, ** p < 0.01 vs. the HFD group.

2.3. MDG-1 Improves Glucose Tolerance and Insulin Resistance in Obese Mice

Hyperlipidemia is closely related to diabetes. Considering that MDG-1 could adjust the
disturbances of lipid metabolism, we investigated whether MDG-1 could improve hyperglycemia in
HF mice. We determined fasting glucose at the end of the experiment. The blood glucose level of
the HFD group was considerably higher than that of Con group, whereas the blood glucose of the
HFD + MGD-1 group was depressed compared to HFD group. Meanwhile, the glucose tolerance test
showed that MDG-1 markedly lowered the blood glucose levels at 15 min and 30 min in HF-induced
mice (Figure 4b), which suggested that MDG-1 notably improved glucose tolerance.

To investigate whether long-term MDG-1 intervention could improve insulin resistance in obese
mice, an insulin tolerance test was conducted. With 0.75 U/kg insulin, we measured blood glucose
levels at 0, 15, 30, 60, 90, and 120 min intervals (Figure 4c). Experimental results showed that compared
with the HFD group, the blood glucose level of mice was significantly lowered with the MDG-1
supplement at 0 min and 30 min, and the blood glucose area under the curve of the MDG-1 group
decreased by 39.6% at 120 min (Figure 4d). The results showed that MDG-1 could increase the
sensitivity of insulin and ameliorate insulin resistance caused by hyperlipidemia.
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2.4. MDG-1 Effects the Expression of Lipid Genes in HFD-Fed Mice by Gene Chip Technology

To explore the underlying mechanism behind MDG-1’s intervention in lipid metabolism disorder,
we analyzed the gene microarray of the livers within the HFD group and the MDG-1 group using
the Affymetrix Mouse Gene 2.1 ST Array Strip (Thermo Fisher Scientific, Waltham, MA, USA).
This ultimately helped to explicate the mechanism of MDG-1 at the genetic and molecular level.
We found that after 12 weeks of prevention trials, the MDG-1 intervention group was clustered
together, and was relatively distant from the HFD group but close to the normal group based on the
results of 3D-PCA, suggesting a trend towards recovery when using MDG-1 against HFD-induced
obesity in experimental mice (Figure 5a).

Based on the analysis of 3D-PCA, we obtained the different genes clustering diagram (Figure 5b)
to depict the variation of genes between liver samples taken from the MDG-1 group and the HFD
group. Figure 5b revealed that the 27 genes found in the samples were expressed differentially in the
MDG-1 group compared to the HFD group. Among them, 15 genes were significantly up-regulated
and 11 genes were significantly down-regulated through the intervention of MDG-1. Interestingly,
MDG-1 played a major role in regulating the expression of a myriad of genes affiliating the PPARs
family. Specifically, MDG-1 increased the expression of LXRα, LXRβ, CYP7B1, ApoE, and SREBP-1c
and inhibited the expression of PPAR, FAS, ACC, CD36, and AP2.

Furthermore, pathway analysis was performed on the basis of differential expression genes to
obtain targeting signal pathways which the genes participated in. Figure 5c exhibited that differentiated
signaling pathways mainly contained short-chain fatty acids (SCFAs) metabolism, steroid hormone
biosynthesis, and the peroxisome proliferator activated receptor (PPAR) signaling pathway. Next,
according to the selected pathways, the pathway-act-network was built via gene microarray to discover
core pathways and the regulation of various signaling (Figure 5d). Most of the core pathways were
involved in the digestion and absorption of fat, biosynthesis, the catabolism of fatty acid, the secretion
and biological synthesis of bile acids, the PPAR signal pathway, amino acid pathways, and short-chain
fatty acids metabolism, all of which were closely correlated with lipid metabolism. We inferred that
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MDG-1 supplementation in HF mice reversed the symptoms of dislipidemia through the alteration of
interactions between multiple pathways, as described above.Int. J. Mol. Sci. 2017, 18, 1930  6 of 14 
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2.5. MDG-1 Regulates Gene Expression of PPARs, LXR, and the Target Genes

Based on results of gene microarray, quantitative real-time PCR (qPCR) analysis was used to
confirm the differentially expressed genes (PPARα, PPARβ, PPARγ, LXRα, LXRβ, CYP7B1, CYP8B1,
ApoE, SREBP-1c, FAS, ACC, CD36, and AP2) in vitro. Compared with the HFD group, we found that the
mRNA expression levels of PPARα were significantly increased, whereas the gene expression levels of
PPARγ were suppressed observably with MDG-1 intervention (Figure 6a), implying that MDG-1 could
improve hyperlipidemia through regulating PPARs signaling. This was largely within our expectations.
Besides, MDG-1 could regulate the target genes of PPARα and PPARγ. Figure 6a showed that within
the liver, the mRNA expression levels of LXRα, CYP7A1, and CD36 were significantly increased, while
FAS and SREBP-1c mRNA expression levels were noticeably suppressed in HFD + MDG-1-treated
mice. Moreover, we measured the mRNA levels of PPARα, PPARγ, and their target genes in adipose
tissues (Figure 6b). Consistently, we found that MDG-1 could enhance the mRNA levels of PPARα

and LXRα, whist reducing the expression of PPARγ and SREBP-1c in white fat. Our data suggested
that MDG-1 was a PPARα agonist and a PPARγ antagonist; it could moderate the PPARs pathway,
therefore ameliorating hyperlipidemia in HFD-fed mice.
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3. Discussion

The recent decades demonstrated excessive caloric intake and sedentary living habits, leading
to increasing energy imbalances and ultimately resulting in obesity as well as hyperlipidemia (as
public health problems, obesity, and hyperlipidemia are the main incentives of metabolic disorders
(MetS) such as diabetes and hypertension with relatively high mortality [6,22,23]). Here, our test shows
that MDG-1 has a protective effect on abdominal obesity and the disturbance of lipid metabolism.
Moreover, based on hepatic gene microarray and quantitative real-time PCR (qPCR), we could reveal
the mechanism of MDG-1 on the prevention of hyperlipidemia in HF diet-fed mice.

In the study, MDG-1 could markedly block the body weight gain in HF diet-induced C57BL/6
mice even when the food intake was not suppressed. This suggested that the body weight reduction
by MDG-1 was not due to the lower caloric intake. It is also observed that the body temperature
was significantly increased in the MDG-1-treated group as compared to the HFD-group; this result is
consistent with our previous findings [24]. Furthermore, MDG-1 treatment resulted in a significant
decrease in fat weight as well as adipocyte size. Excessive growth of adipose tissue results in obesity,
which includes hyperplastic and hypertrophic [25]. MDG-1 could improve serum lipid levels and
markedly lower lipid accumulation and steatosis in the liver tissue in HF diet-fed mice. Hyperlipidemia
is a major pathogenic factor for diabetes, because obesity and high lipid levels stimulate excess glucose
accumulation. Other than the above-mentioned effects, MDG-1 is also effective at lowering fasting
blood glucose and improving glucose tolerance, as well as at ameliorating insulin resistance in HF
diet-induced mice. Hence, MDG-1 could be a helpful option to prevent hyperlipidemia.

According to the results of gene microarray and pathway analysis, MDG-1 could regulate some
signaling pathways which are closely linked to obesity and lipid metabolism including the digestion
and absorption of fat, the biosynthesis and catabolism of fatty acid, and the secretion and biological
synthesis of bile acids. Besides, MDG-1 intervention could alter the metabolism of SCFAs and amino



Int. J. Mol. Sci. 2017, 18, 1930 8 of 14

acids. In our previous study, MDG-1 treatment could up-regulate the levels of SCFAs (especially
butanedioic acid) and slightly alter the contents of amino acids based on the GC-TOF/MS analysis of
fecal samples [24]. Moreover, researches indicated that SCFAs [26,27] and some amino acids [28,29]
have been proven to impact de novo synthesis of lipids and glucose. Taken together, the core signaling
pathways which MDG-1 influenced might interact together, thus exerting beneficial effects on obesity
and abnormal lipids in HF mice.

More significantly, based on results from the gene chip and qPCR, we found MDG-1 had a large
regulatory effect on PPARs expression. Specifically, MDG-1 intervention was found to activate the
expression of PPARα, inhibit the expression of PPARγ, and regulate the expression levels of their
target genes. PPARα mainly influences fatty acid metabolism and its activation lowers lipid levels,
whereas PPARγ is mostly involved in the regulation of the adipogenesis, energy balance, and lipid
biosynthesis [11]. Accumulating evidence has confirmed that promoting the expression of PPARα

and its target genes is one of the mechanisms to improve glucose and lipid metabolism disorders
in mice induced by high fat meals [30,31]. Cyp4a10 and Cyp4a14 are target genes for PPARα, which
promote the oxidation of fatty acids [32]. In our study, we found that the expression levels of PPARα

and Cyp4a10, Cyp4a14, and aP2 in the liver tissue of HFD + MDG-1 mice were significantly higher
than those in HF group. We thus inferred that MDG-1 may reduce the serum TG content and regulate
the oxidation of fatty acids by stimulating the expression of PPARα and its target genes. In addition,
Gu et al. [33] found that inhibiting PPARγ could prevent HFD-induced hyperlipidemia. HFD caused
an overexpression of PPARγ in liver tissue with steatosis; thus, the deletion of PPARγ could protect
against HFD-induced obesity and IR in mice [34–36]. In our research, MDG-1 could decrease the
expression of PPARγ that is involved in glucose and lipid metabolism, implying MDG-1 may be a
potential regulator of PPARγ.

There are 3 core ways that the body carefully regulates to maintain the levels of cholesterol:
through synthesis, catabolism, and excretion. A permanent high-cholesterol diet keeps the synthesis of
cholesterol at a stagnant level, but it also strongly activates the catabolism and excretion of cholesterol
to achieve a homeostatic balance [37]. LXRα is a major hepatic regulator of cholesterol absorption,
transport, efflux, and excretion, and mediates cholesterol homeostasis of the body. LXRα is also a PPARα

and PPARγ target gene [38–40]. Besides, the catabolism of cholesterol involves its breakdown into bile
acids and 7α-hydroxylase (CYP7A1), and is the rate-limiting step in this biochemical pathway [41].
In the research, when the intake of cholesterol in the body increases, MDG-1 could significantly increase
the activity of LXRα and then increase the transcriptional activity of CYP7A1, thereby accelerating the
transformation of cholesterol to bile acids and reducing the body cholesterol levels [42]. The results
were generally consistent with our previous study that MDG-1 could regulate the synthesis, secretion,
and reabsorption of bile acids.

It was also observed that under the intervention of MDG-1, the expression of SREBP-1c
was markedly decreased as compared to the HFD group. The sterol regulatory element-binding
proteins (SREBPs) regulate lipid homeostasis and are present in three isoforms: SREBP-1a, SREBP-1c,
and SREBP-2, with the second form being the predominant one [43]. Researches show that the
transcriptional activity and levels of SREBP-1c are strongly associated with hepatic TG accumulation,
insulin resistance, and metabolic dysfunction [44–46]. This study found that MDG-1 could significantly
improve insulin resistance; we suspect that this improvement could be accounted for through the
down-regulation of SREBP expression. At the same time, LXRα was activated, which reminds us that
MDG-1 not only reduced the cholesterol content of the body but also decreased the generation of fat.

In conclusion, MDG-1 regulates partial core pathways closely related to lipid metabolism.
Furthermore, MDG-1 interacts with peroxisome proliferator-activated receptors (PPAR) α and γ

directly, activating PPARα whilst inhibiting PPARγ, thus promoting the metabolism of cholesterol.
Besides, MDG-1 could up-regulate the expression of LXRα and CYP7A1 affiliating to PPARs, and
inhibit the levels of SREBP-1c, thereby promoting cholesterol uptake and excretion. Hence, MDG-1,
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as a regulator of PPARα and PPARγ, possesses significant importance in a myriad of biochemical
processes such as the regulation of blood lipid metabolism and hyperlipidemia.

4. Materials and Methods

4.1. Chemical and Diet

Chemical MDG-1 was extracted from the radix of O. japonicas and purified according to our
previously reported method [18]. High-fat diets (60% of calories derived from fat) and low-fat diets
(10% of calories derived from fat) were purchased from Research Diets Inc. (D12492, D12450B, New
Brunswick, NJ, USA).

4.2. Animals and Treatment

Eight-week-old C57BL/6J male mice (the animal experiment was approved by the Animal Ethical
Experimentation Committee of Shanghai University of Traditional Chinese Medicine and an ethic
approval number SZY201511001 was got in November 2015.) were purchased from the Beijing Vital
River Laboratory Animal Technology Co., Ltd. (Beijing, China) and kept under a constant controlled
temperature (22 ± 3 ◦C) and on a 12 h light/dark cycle, with free access to water and food during
the experiment. The mice were randomly divided into three groups on the basis of body weight for
preventive treatment: Con (low-fat diet, n = 8); HFD (high-fat diet, n = 8); and HFD + MDG-1 (5‰
MDG-1 was mixed into the high-fat diet, n = 8). The whole experiment lasted for 12 weeks. During the
whole experiment, food intake and body weight were recorded and calculated three times a week. The
animals’ protocol was carried out according to the guidelines of the Animal Ethical Experimentation
Committee of Shanghai University of Traditional Chinese Medicine, and all procedures were in
compliance with the National Institutes of Health Guide for Care and Use of Laboratory Animals
(Publication No. 85-23, revised 1985).

4.3. Serum Chemistry Analysis

After a 12 h fast, the mice were given each an intraperitoneal injection of 20% urethane solution
and blood samples were taken. The serum samples were collected and isolated from the blood samples
after standing for 2 h at 4 ◦C and centrifuging at 3000 rpm for 10 min at 4 ◦C. Using a Hitachi 7020
Automatic Analyzer (Hitachi Ltd., Tokyo, Japan), serum triglyceride (TG), total cholesterol (TC), HDL
cholesterol (HDL-c), and LDL cholesterol (LDL-c) were determined by using 100 µL of blood serum.

4.4. Liver and Fecal Lipid Contents Analysis

The liver tissues were weighed and homogenized in a 0.5 mL tissue lysis buffer (20 mM Tris-HCl
pH 7.5, 150 mM NaCl, 1% Triton) and extracted with an equal volume of chloroform. The chloroform
layers were dried and dissolved in isopropyl alcohol to measure lipid levels as described [47].The fecal
samples were weighted and milled with PBS solution. The next steps concluded the extraction and
measures were same as the above description and the previous reports [47,48].

4.5. Hematoxylin and Eosin (H&E) Staining and Scanning Electron Microscopy

Hematoxylin and eosin (H&E) staining: for H&E staining, the tissue was fixed in 10%
formaldehyde, embedded in OCT compound and cut into a 10 mm section according to a standard
protocol. The procedures of H&E staining mainly include the following steps: fixing, refrigeration
and embedding, modest thawing, rapid sectioning, section flatting, and staining. At last, the sections
stained with hematoxylin and eosin were examined under a light microscope.

Scanning Electron Microscopy: scanning electron microscopy was used to examine the structure
of fat tissue. According to the related protocols [49], the adipose tissue was fixed in 1% osmium
tetraoxide. The images were taken using a Philips XL-30 scanning electron microscope.
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4.6. Glucose Tolerance and Insulin Tolerance Tests

Glucose tolerance tests: at end of the whole experiment, after the mice were fasted for 12 h,
the fasting glucose levels were determined from the tail vein (0 min) before the injection of glucose.
Additional blood samples were collected at regular intervals (15, 30, 60, 90, and 120 min) for glucose
measurements following the injection of glucose (1 g/kg body weight).

Insulin tolerance tests: without the fasting of mice, mice were injected 0.3405 uL/mL insulin (0.75
U/kg body weight) by intraperitoneal, then measured at blood glucose levels of 0, 15, 30, 60, 90, and
120 min intervals.

4.7. Gene Array Experiment

4.7.1. RNA Preparation and cDNA Generation

Total RNA was extracted from the liver tissue samples using the TRizol Reagent and NucleoSpin®

RNA Clean-up Kits and purified using the MessageAmp™ Premier RNA Amplification Kit (Thermo
Fisher Scientific). Then, cDNA was synthesized by reverse transcription according to the instructions of
one Poly-A RNA Control Kit (besides, cDNA was labeled with fluorescence and purified by purification
column).

4.7.2. Gene Array Experiment and Gene Array Data Analysis

The gene chip was constructed according to the manufacturer’s instructions and previous
studies [50,51]. The gene expression was detected by the Affymetrix scanner (GeneChip® Scanner 3000,
Thermo Fisher Scientific). Based on the RMA algorithm, the data could be analyzed by differential
expression gene analysis and another series of follow-up analyses.

4.8. Quantitative Real-Time PCR Analysis of Animal Tissues

The protocol of RT-PCR followed the published methods [19,48]. Briefly, the liver and white
fat tissues (around 100 mg) were homogenized (65 Hz, 2 min) in 1 mL RNAiso Plus. Then, total
RNA was extracted according to the previous description. The cDNA was synthesized using a
cDNA synthesis kit (Applied Biosystems, Grand Island, NY, USA), and gene expression levels were
measured by quantitative real-time RT-PCR using the ABI Step one Plus Real-Time PCR system
(Applied Biosystems). The primers used in the experiments are shown in Table 1.

Table 1. Primer sequences of Real-time PCR.

Gene Forward Primer Reverse Primer

β-Actin TGTCCACCTTCCAGCAGATGT AGCTCAGTAACAGTCCGCCTAGA
PPARα AGGCTGTAAGGGCTTCTTTCG GGCATTTGTTCCGGTTCTTC
PPARβ AGTGACCTGGCGCTCTTCAT CGCAGAATGGTGTCCTGGAT
PPARγ CGCTGATGCACTGCCTATGA AGAGGTCCACAGAGCTGATTCC
LXRα GAGTGTCGACTTCGCAAATGC CCTCTTCTTGCCGCTTCAGT
LXRβ CAGGCTTGCAGGTGGAATTC ATGGCGATAAGCAAGGCATACT

Cyp7a1 GTGGTAGTGAGCTGTTGCATATGG CACAGCCCAGGTATGGAATCA
CYP8B1 GGACAGCCTATCCTTGGTGA GACGGAACTTCCTGAACAGC

SREBP-1c GGCTATTCCGTGAACATCTCCTA ATCCAAGGGCATCTGAGAACTC
FAS CTGAGATCCCAGCACTTCTTGA GCCTCCGAAGCCAAATGAG

ACC-1 GAATCTCCTGGTGACAATGCTTATT GGTCTTGCTGAGTTGGGTTAGCT
aP2 CATGGCCAAGCCCAACAT CGCCCAGTTTGAAGGAAATC

ApoE GAACCGCTTCTGGGATTACCT TCAGTGCCGTCAGTTCTTGTG
CD36 GCTTGCAACTGTCAGCACAT GCCTTGCTGTAGCCAAGAAC
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4.9. Stastical Analysis

All data were presented as means ± SD and analyzed using SPSS 21.0 for Windows. Statistical
analysis was performed using one-way analysis of wariance (ANOVA). In the study, p < 0.05 showed
significant difference when p > 0.05 represented not significant. All data were illustrated by GraphPad
software (Inc., San Diego, CA, USA).

5. Conclusions

In summary, we found that MDG-1could prevent the development of obesity and ameliorates
dyslipidemia in HFD-induced obese mice. These effects appear to be mediated through the inhibition
of PPARγ and activation of PPARα as well as regulation of their target genes. Thus, our results suggest
that MDG-1 may have remarkable function of adjusting the serum lipid.
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