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Abstract: This study investigates plant stress assessment by integrating advanced sen-
sor technologies and Artificial Intelligence (AI). Multi-sensor data—including electrical
impedance spectroscopy, temperature, and humidity—were used to capture plant physio-
logical responses under environmental stress conditions. The key task addressed was the
prediction of stress-related parameters using machine learning. A novel boosting-based
ensemble method, AdapTree, combining AdaBoost and decision trees, was proposed to
improve predictive accuracy and model interpretability. Experimental evaluation across
multiple regression metrics demonstrated that AdapTree outperformed baseline models,
achieving an R2 score of 0.993 for impedance magnitude prediction and 0.999 for both
relative humidity (RH) and temperature, along with low root mean squared error (134.565
for impedance, 0.006966 for RH, and 0.0050099 for temperature) and mean absolute error
values (22.789 for impedance; 1.51 × 10−5 for RH and 2.51 × 10−5 for temperature). These
findings validate the reliability and effectiveness of the proposed AI-driven framework
in accurately interpreting sensor data for plant stress detection. The approach offers a
scalable, data-driven solution to enhance precision agriculture and agricultural sustain-
ability. Furthermore, this method can be extended to monitor additional stress markers or
applied across diverse plant species and field conditions, supporting future developments
in intelligent crop monitoring systems.

Keywords: impedance; plant sensors; plant stress; relative humidity; temperature; machine
learning

1. Introduction
Plants are highly responsive to environmental conditions that significantly influence

their physiological processes, growth, and productivity. Abiotic stressors such as tempera-
ture extremes, varying humidity levels, and fluctuating light intensities can disrupt essential
functions like photosynthesis, transpiration, and nutrient uptake, ultimately reducing crop
yield and quality. High temperatures may induce cellular damage and lower photosyn-
thetic activity, while low temperatures can suppress metabolic reactions and hinder plant
development [1,2]. Humidity extremes affect stomatal regulation and water balance, in-
creasing the risk of desiccation or fungal infection [3]. Additionally, insufficient or excessive
light disrupts energy capture and biomass accumulation, adversely impacting growth.
These environmental stress factors pose critical challenges to sustainable agriculture.
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The impact of environmental stress on plant health has been extensively studied,
highlighting its effects on various physiological and biochemical processes. Traditional
methods of stress detection—primarily visual inspection and manual physiological assess-
ments—are labor-intensive, subjective, and lack the precision and scalability required for
modern, large-scale agricultural practices [4,5]. In recent years, convergence of technology
and agriculture has resulted in the development of modern diagnostic tools that enhance
both the accuracy and efficiency of stress detection. Modern approaches to plant stress di-
agnosis include: (1) Thermal and multispectral imaging to detect water stress and nutrient
deficiencies [6]. (2) Fluorescence sensors to monitor photosynthetic efficiency. (3) Wearable
plant sensors for real-time stress tracking [7]. (4) Metabolomic profiling for identifying
stress biomarkers [8]. (5) Machine Learning (ML) algorithms to analyze the complex and
multimodal datasets [9]. These advancements emphasize the importance and relevance of
integrating smart sensing into contemporary plant health monitoring systems.

Electrical Impedance Spectroscopy (EIS) is a non-invasive and non-destructive ap-
proach used to measure the electrical impedance of plant tissues to evaluate their physiolog-
ical state. By capturing frequency and phase-dependent impedance variations, EIS provides
insights into key biological processes such as cell membrane integrity, ion transport, and
water content. These changes often indicate stress responses, making EIS a valuable tool for
the early diagnosis of plant stress [10,11]. When integrated with environmental sensors that
monitor humidity, light, and temperature, EIS contributes to a comprehensive multimodal
system for real-time plant health assessment under differing environmental conditions.

Machine learning techniques have revolutionized agricultural monitoring by enabling
automated pattern recognition and predictive analytics using sensor data. These models
have demonstrated high performance in both regression and classification tasks, supporting
applications such as irrigation optimization, disease detection, and yield forecasting [6,9].
By analyzing complex multimodal datasets, ML techniques can uncover hidden patterns to
provide timely insights into plant stress responses, thus enhancing decision-making and
promoting resource-efficient, precision agriculture.

The study aims to develop an intelligent plant stress assessment framework to enable
real-time, non-invasive detection and prediction of stress responses in plants. The primary
goals of this study are:

1. To collect and analyze multimodal sensor data (temperature, humidity, and EIS) under
various environmental stress conditions.

2. To identify and predict stress-induced physiological responses in plants using
machine learning.

3. To propose a novel ensemble learning model for enhanced prediction accuracy.
4. To evaluate the efficacy of the proposed model against conventional regression tech-

niques for plant stress prediction.

Several studies have explored plant responses to environmental stress using var-
ious sensing and ML approaches. Liew et al. (2008) demonstrated the use of ther-
mal and fluorescence imaging for early pathogen detection and discussed spectral re-
flectance analysis and transgenic phytosensors for identifying nutrient and water stress [12].
Singh et al. (2020) reviewed plant responses to abiotic stressors—such as heat, salinity, and
drought—highlighting the roles of secondary metabolites, phytohormones, and transcrip-
tion factors in stress regulation [8]. Wang et al. (2021) examined plant physiological
responses to temperature extremes and humidity [13].

Hamed et al. (2016) employed EIS to examine how the halophyte Cakile maritima
adapts to salinity under different growth conditions, revealing that hydroponic systems
induce higher stress levels and that impedance parameters vary dynamically with salt
exposure [10]. Kashyap et al. (2021) further validated EIS as a non-destructive method to
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detect early physiological stress in plants [11]. Wearable sensors, as described by Lee et al.
(2021), enable real-time monitoring of biomarkers and microenvironmental parameters in
plants [7].

Machine learning has shown promise in agricultural diagnostics. Patel et al. used
ML algorithms for early plant disease detection and improved crop management [9].
Unmanned Aerial Vehicle (UAV)-based multispectral imagery was applied by Zhang et
al. (2019) to map maize water stress, leading to empirical models for the Crop Water
Stress Index (CWSI) [6]. An ML model using k-mer-based feature encoding and Support
Vector Machines (SVM) has been successfully applied by Pradhan et al. (2023) to predict
abiotic stress–responsive microRNAs, highlighting the potential of computational tools in
stress-resilient crop development [14]. The GenPhenML framework, combining molecular
markers and phenotypic traits with ML by Akbari et al. (2024), demonstrated high accuracy
(R2 > 0.99) in predicting and classifying barley genotypes under drought and salinity stress
using neural networks [15].

Despite these advances, existing research often focuses on isolated stress factors, lacks
integration across sensing modalities, or fails to support real-time, scalable monitoring.
Most approaches rely on a single data type (e.g., imaging, EIS, or weather sensors), leav-
ing the synergistic potential of multi-sensor fusion underutilized. The application of EIS
with machine learning, especially across diverse plant species and environments, remains
underexplored. To address these gaps, this study proposes a novel AI-driven framework
that integrates EIS, temperature, and humidity data with ensemble learning techniques
to enable early detection, accurate classification, and real-time prediction of plant stress,
thereby supporting precision and sustainability in agriculture.

2. Materials and Methods
This section describes the experimental setup, including the plants monitored and the

environmental conditions simulated. It details the data collection process and the machine
learning algorithms applied for analysis.

Electrical impedance spectroscopy measurements were collected by Dr. Lee Bar-On at
Tel-Aviv University for 30 to 60 days for each experiment involving various plants [16,17].
The experimental configuration is detailed below. Figure 1 illustrates both the methodology
employed in the present research and the application domain of the proposed research.

2.1. Experimental Setup and Data Acquisition

The data examined in this study were collected using a combination of methods to
assess plant stress. This data was subsequently analyzed with various AI techniques for
applications and predictions in precision agriculture. The experiments were conducted in an
outdoor greenhouse facility, where a wide range of tests provided substantial data on plant
responses and activities, measured through established plant physiological monitoring
methods. Figure 2 demonstrates the experimental system setup in the greenhouse using
the PlantArrayTM system (Plant-Ditech Ltd., Yavne, Israel) and a monitored environment,
in addition to the collection of data simultaneously using the electrical impedance response
across a variety of frequencies.

This comparative approach and study, which provides reliable data from multiple
systems simultaneously over time, lays the foundation for developing and implementing
various AI algorithms to predict plant stress.

1. Gravimetric System:
An advanced gravimetric plant monitoring system was employed as the primary
setup for automated whole-plant phenotyping. This system captured data related to
plant weight and water use efficiency, leveraging the gravimetric method, which is
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widely recognized for its ability to reflect plant health and growth patterns [18,19].
Monitoring water usage further enabled insights into the physiological status and
development of the plant.

2. Four-Point-Probe Electrical Impedance Spectroscopy System:
Alongside the gravimetric system, novel four-point probe impedance spectroscopy
measurements were conducted. These measurements continuously gathered data
directly from the plant stem over periods ranging from weeks to two months. The
setup, detailed and modeled in [16], used a four-point probe configuration to ensure
accuracy and reliability. Impedance magnitude and phase values were collected
spanning the frequency range of 50 Hz to 2 MHz, with samples taken every 9 min.

3. Environmental Monitoring in Greenhouse:
The experimental work took place in a controlled greenhouse facility at Tel Aviv
University, Israel. This environment, although located outdoors and naturally lit,
was systematically regulated for temperature and humidity. The tobacco plant used
in the study was connected to the impedance system and monitored throughout
the experiment. Around 15 young tobacco plants, cultivated for 3–4 months, were
used in the study. These plants had stem diameters ranging from 0.7 to 1.1 cm and
an overall height of approximately 0.7 to 1 m. They were cultivated in 3.9 L pots
containing coarse sand. The Vapor Pressure Deficit (VPD) within the greenhouse was
continuously monitored and exhibited consistent patterns over multiple days. Each
pot was irrigated daily during the nighttime hours (around 9PM) with 2 L of water
to ensure saturation and promote healthy plant development. A centrally located
weather station within the greenhouse continuously recorded vital environmental
parameters such as plant weight, Relative Humidity (RH), temperature, Volumetric
Water Content (VWC), and Vapor Pressure Deficit (VPD). These readings supported
the identification of plant stress and optimization of growing conditions.

Figure 1. Proposed methodology and the application area of the proposed research.

Table 1 provides comprehensive overview of experimental parameters gathered from
three primary systems: the impedance spectroscopy setup, the gravimetric plant array
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system, and the environmental monitoring unit. Each parameter is described along with
its corresponding unit and the range of values observed during the experiment. These
parameters form the foundation of the gathered dataset and are essential for analyzing plant
stress and physiological responses under varying environmental conditions. In addition to
the detailed list of experimental parameters, a subset of the collected data is presented in
Table 2 to illustrate the structure and variability within the sample dataset.

Figure 2. Experimental systems setup in greenhouse utilizing PlantArray system and monitored
environment.

Table 1. List of gathered parameters from the experimental systems with their description, unit,
and range.

Experimental Systems Gathered Parameter Description Units Range

Impedance Spectroscopy Setup

Frequency The frequency value at which
measurements were collected. Hertz (Hz) 50 to 3,940,000

Impedance Magnitude
(Impedance)

Ratio between the Alternating
Current (AC) voltage to the AC

phasors.
Ohm (Ω) 282.3103 to

7958.325

Impedance Phase
(Phase)

The delay of the angular component
of a periodic wave vs. that of the

excitation.
Degree (◦) −40.232 to −3.127

Gravimetric Plant Array System
Plant Weight The weight of the plant. Kilograms (kg) 0.54347 to 1.14102

Volumetric Water
Content (VWC)

The amount of water present in a
given volume of soil. Percentage (%) 0.02961 to 0.18781

Environmental Parameters

Relative Humidity (RH)
The proportion of water vapor
present in air to the maximum

amount the air can hold.
Percentage (%) 27.5 to 91.8

Temperature The temperature at which the plant
is maintained. Degree Celsius (◦C) 19 to 30

Vapor Pressure Deficit
(VPD)

The difference between the moisture
content in the air and the maximum
amount of moisture the air can hold.

Kilopascal (kPa) 0.19159 to 3.07549
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Table 2. Sample dataset.

Explanatory Variables Outcome Variables

Frequency Phase VPD VWC Weight Impedance RH Temperature

1,000,000 −20.541 0.44159 0.18251 1.01719 327 81.1 20

101 −3.563 0.29206 0.18429 1.01821 4529.482 87.5 20

1010 −16.043 0.28972 0.1835 1.0172 3892.253 87.6 20

10,100 −32.47 0.32935 0.18468 1.01668 1869.21 85 19

101,000 −34.239 0.54206 0.18291 1.01812 785.5841 76.8 20

1020 −15.933 0.34252 0.18311 1.01747 3821.377 84.4 19

10,200 −32.441 0.25234 0.18291 1.01771 1846.688 89.2 20

102,000 −34.205 0.24767 0.18311 1.01713 775.136 89.4 20

2.2. Data Pre-Processing and Model Training
2.2.1. Data Analysis

A heatmap is a graphical tool that employs colors to depict the relative values of each
data point in a matrix, allowing for easy visualization of patterns and correlations among
various parameters. In the heatmap, darker shades represent higher values, while lighter
colors represent lower values. In this research, parameter correlation values were analyzed
using a heatmap to investigate their relationships. The heatmap in Figure 3 displays the
measured correlation matrix, showing a strong inverse relationship between RH & VPD,
the strong direct relationship between temperature & VPD, and moderate relationship
between frequency & impedance. The heatmap also served as a diagnostic tool to ensure
that each independent variable had a meaningful relationship with the dependent variable
while minimizing multicollinearity among the independent variables. This preliminary
check helps in identifying and possibly discarding redundant or irrelevant features that
may adversely affect model performance. However, in this study, all variables met the
correlation criteria, and thus, no features were excluded from further analysis.

Figure 3. Heatmap for environmental stress parameters.
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2.2.2. Data Preparation

A total of 796,830 data entries from the collected dataset were included for modeling.
The experimentally acquired data were cleaned and pre-processed using various techniques.
The raw measurements were consolidated into a single file and processed as follows:

a. Handling Missing Values:
Missing entries were imputed using hot-deck imputation, which involves substituting
null values with data from a similar entry within the dataset [20].

b. Data Standardization:
Each data sample was individually normalized to the unit norm, rescaling values to a
common range, usually between 0 and 1.

c. Dividing the Dataset into Train and Test Units:
The dataset was split into 70% for training (557,781 instances) and 30% for testing
(239,049 instances) to develop and assess the machine learning models.

2.3. Model Training

Training a machine learning model involves using data to learn and adjust its parame-
ters. This step includes implementing an AI-based solution to predict required parameters,
such as the impedance, relative humidity, and temperature, using the acquired data. These
parameters will indicate the optimal conditions for plant growth. To ensure a comprehen-
sive evaluation, several machine learning models were employed in this study. K-Nearest
Neighbors (KNN) and Decision Tree (DT) were selected for their simplicity, interpretabil-
ity, and effectiveness in modeling non-linear patterns. Multivariate Linear Regression
(MLR) was included to provide a baseline for comparison with more sophisticated models.
AdaBoost and the DT+AdaBoost combination were chosen to benefit from the boosting
technique’s ability to reduce bias and variance, enhancing overall prediction performance.
Additionally, a Multi-Layer Perceptron (MLP) was utilized to model intricate, non-linear
relationships in data, leveraging the strength of neural network architectures. This diverse
model selection helps to comprehensively assess performance across various algorithmic
families. These models are described below.

a. Decision Tree (DT):
The Decision Tree (DT) regressor operates by iteratively dividing the input data
into increasingly smaller subsets based on a set of splitting criteria until each subset
consists of data points that share similar values of the target variable. The splitting
criteria are chosen based on a measure of impurity or error, such as mean absolute or
squared error. Once built, predictions for new data points are generated by navigating
the tree from the root to the leaf node, where predicted output is the mean or median
of training examples in that leaf node. Decision tree regressors can be prone to
overfitting [21].

b. K-Nearest Neighbors (KNN):
KNN regression is a non-parametric algorithm in machine learning. It forecasts a new
instance by considering k close neighbors and averaging their target values. The k
parameter requires fine-tuning to avoid overfitting [22].

c. Multivariate Linear Regression (MLR):
In MLR, the model can be represented by a set of linear equations, one for each
dependent variable. Multivariate linear regression aims to estimate the coefficients
that reduce the difference between observed values and the model’s predicted values
across all dependent variables. This is typically achieved using techniques such as
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least squares regression, which reduces the total sum of squared errors across all
dependent variables [23]. The equation for MLR is:

y1 = b10 + b11x1 + b12x2 + b13x3 + b14x4 + b15x5 + ϵ1

y2 = b20 + b21x1 + b22x2 + b23x3 + b24x4 + b25x5 + ϵ2

y3 = b30 + b31x1 + b32x2 + b33x3 + b34x4 + b35x5 + ϵ3

(1)

where: y1, y2, y3 denote the dependent variables and x1, x2, x3, x4, x5 represent inde-
pendent variables. bij are the coefficients for the independent variables, xj in the
equation for dependent variable yi, bi0 are the intercepts for each dependent variable
and ϵi represents the error terms for each dependent variable.

d. AdaBoost:
The AdaBoost regressor is an adaptive method that adjusts the weights of individual
models to enhance overall system performance. It combines several weak learning
models to construct a robust and precise model. In every iteration, a weak learning
model is trained using a subset of the training data, and its efficacy is assessed.
Instances misclassified by the weak model are assigned higher weights, and this
process repeats until the desired level of accuracy is obtained. The final prediction is
the weighted mean of all weak model predictions [24].

e. Multi-Layer Perceptron (MLP):
An MLP regressor comprises several layers of nodes (neurons) connected by weighted
edges, where every node in one layer is connected to each node in adjacent layers. It
processes input values through a series of hidden layers, each applying an activation
function to the weighted sum of its inputs [21].

The value of tuning parameters for machine learning models employed in this current
study is tabulated in Table 3.

Table 3. List of machine learning models with their tuned parameters.

S.No. Model Tuning Parameters

1 DT criterion = ‘gini’

2 KNN n_neighbors = 2

3 MLR fit_intercept = True; n_jobs = −1; max_iter = 1000; tol = 0.0001

4 AdaBoost n_estimators = 100

5 MLP hidden_layer_sizes = (20, 30); max_iter = 200; alpha = 0.001;
solver = ‘adam’

2.3.1. Proposed Boosting-based Ensemble Approach: AdapTree (Adaptive Boosted Tree for
Plant Stress Analysis)

Boosting is an advanced ensemble technique that focuses on improving the perfor-
mance of weak learners by combining them into a robust predictive model. The boosting
process entails training models in sequence, with every subsequent model addressing errors
made by its predecessor. A stepwise outline of the boosting-based ensemble approach is
presented here:

Step 1: Create the base model. The first step is to define the base model. The base model
serves as the weak learner in the ensemble. The choice of the base learner allows for
capturing non-linear relationships and interactions between variables.
Step 2: Initialize weights and train the first model. Initialize weights for all training samples
equally. Train the base model on the weighted training dataset. The initial model will be
focused on minimizing errors across the dataset.
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Step 3: Compute model errors and update weights. After training the first base model,
compute the errors for each training instance. Increase the weights of incorrectly predicted
samples so that the next model focuses more on these challenging cases. Update the
weights accordingly to reflect the importance of each sample.
Step 4: Train subsequent models. Train additional base models in sequence, where every
model focuses on the errors of the predecessor model. Each new model is trained on a
modified dataset with updated weights to emphasize the mistakes made by earlier models.
Step 5: Aggregate models using boosting algorithm. Combine the predictions from all
trained base models using the boosting algorithm. The boosting algorithm assigns a weight
to each model based on its accuracy, and the final prediction is computed as a weighted
sum of individual model predictions from all models.
Step 6: Make the final prediction. Use the aggregated predictions to make the final
prediction. The combined output from the boosting algorithm will result from the weighted
majority vote or the weighted sum of the predictions made by all the base learners.

Assuming T total base models, the final prediction ŷ for new data point x is calculated as:

ŷ(x) =
T

∑
t=1

αt · ht(x) (2)

where: ŷ(x) denotes final prediction for input x, T denotes number of base models, αt

denotes weight assigned to t-th model, determined by boosting algorithm, and ht(x)
denotes prediction of t-th base model for input x.

In the current study, the proposed AdapTree model integrates decision trees with
the AdaBoost ensemble method. Decision trees were selected for their interpretability
and capability to handle non-linear relationships, which are common in biological data
such as plant stress parameters. However, single decision trees may suffer from insta-
bility and overfitting. To overcome these limitations, AdaBoost was incorporated, as it
improves model robustness by sequentially combining multiple weak learners and focusing
on difficult-to-classify instances. This ensemble approach enhances generalization and
predictive accuracy. The integration of these methods was particularly suitable for the
plant stress prediction task, where subtle variations in environmental and physiological
parameters require a model that can adaptively learn from complex patterns while reducing
bias and variance.

Thus, for the given case, DT is the base learner, and AdaBoost is the boosting method.
The prediction of the decision tree model (h1) is given by h1(x). h2(x) is derived from
the boosting process where h2 represents the aggregated model based on AdaBoost. The
formula for the two models would be:

ŷ(x) = α1 · h1(x) + α2 · h2(x) (3)

where: α1 is the weight for the DT model, α2 is the weight for the AdaBoost model, h1(x)
is the prediction from the DT, h2(x) is the prediction from the AdaBoost model, α1 · h1(x)
represents the contribution of the DT model and α2 · h2(x) represents the contribution of
the AdaBoost model. The weights α1 and α2 are determined during the boosting process,
reflecting the performance of each model.

Figure 4 illustrates the working procedure of this approach.

2.3.2. Plant Stress Calculation

Plant stress can be computed using the Environmental Stress Index (ESI) measure,
which combines various environmental factors and physiological responses. A general
formula for ESI includes weighted contributions from each factor.
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ESI =
(

T − Topt

Tmax − Tmin

)
· w1 +

(
RH − RHopt

RHmax − RHmin

)
· w2 +

(
PI − PIopt

PImax − PImin

)
· w3 (4)

where the acronyms mean the following: T: Temperature; RH: Relative Humidity; PI: Plant
Impedance; w1, w2, w3: The weights assigned to each factor based on their importance,
opt, max, min: Optimal, maximum, and minimum values for each factor that the plant can
tolerate before experiencing stress.

The weights w1, w2, and w3 reflect the relative importance of each factor (T, RH, and
PI) in determining the overall environmental stress on the plant. The significance of these
factors may differ based on the plant species and environmental conditions. The current
study assigns equal weight to each factor (T, RH, and PI). Thus, each factor would weigh:

w1 = w2 = w3 =
1
3

(5)

Figure 4. Diagram illustrating the proposed boosting algorithm AdapTree.

3. Results and Discussion
This section presents the findings of the study, including the performance of machine

learning models used to predict plant stress and the effectiveness of these models in
identifying stress conditions (described in Tables 4–6). It discusses the implications of
these findings for plant health monitoring and stress mitigation. The efficacy of the trained
models is assessed using various regression performance metrics.

1. Mean Absolute Error (MAE):
The MAE represents average absolute differences between predicted and actual values.

MAE =
1
n ∑(|yi − ŷi|) (6)

where n stands for the total number of observations, yi denotes the actual value of the
output variable, and ŷi denotes the predicted value of the output variable.
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2. Mean Squared Error (MSE):
The MSE computes the average of squared differences between predicted and
actual values.

MSE =
1
n ∑(yi − ŷi)

2 (7)

3. Root Mean Squared Error (RMSE):
The RMSE represents the square root of the MSE and quantifies the standard deviation
of the differences between predicted and actual values.

RMSE =

√
1
n ∑(yi − ŷi)2 (8)

4. Pearson Correlation Coefficient (PCC):
The PCC calculates the covariance between two variables, measuring how much
the variables vary together. The value of the PCC ranges between −1 and +1. It is
calculated using the formula:

PCC =
∑((X − X̄)(Y − Ȳ))

(n − 1) · Sx · Sy
(9)

where: X and Y represent the two variables being analyzed, X̄ and Ȳ denote their
respective means, n represents the total number of observations, and Sx and Sy

represent the standard deviations of X and Y, respectively. When the PCC approaches
1, it signifies a strong positive linear correlation between the variables, suggesting
that as one variable rises, the other typically increases too. Conversely, a PCC close to
–1 represents a strong negative relationship, meaning that as one variable increases,
other typically decreases.

5. R-Square (R2):
The R-squared measures the proportion of variability in the output variable explained
by the input variables in the model.

R2 = 1 − SSres

SStot
(10)

where: SSres represents the sum of squared residuals, representing the sum of squared
differences between actual and predicted values, and SStot represents the total sum of
squares, representing the sum of squared differences between actual values and mean
of the output variable. A higher R-squared indicates better model performance.

Table 4. Comparison of regression models for impedance parameter of environmental stress.

Regression Models R-Square MSE RMSE MAE Pearson Coefficient

MLP 0.957907 161,561.5 401.9472 288.1211 0.978876

MLR 0.224172 2,977,801 1725.631 1523.617 0.473478

DT 0.981457 26,471.97 162.7021 33.40362 0.992099

AdaBoost 0.936375 245,359.1 495.3374 347.8731 0.96841

KNN 0.982715 66,658.18 258.1824 114.5485 0.991329

Proposed 0.993125 19,812.34 134.565 22.789 0.996564

The results depicted in Tables 4–6 illustrate the effectiveness of the proposed AdapTree
model in predicting plant stress parameters using impedance, humidity, and temperature
data, respectively. The performance of this model was compared against MLP, MLR, DT,
AdaBoost, and KNN.
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Table 5. Comparison of regression models for humidity parameter of environmental stress.

Regression Models R-Square MSE RMSE MAE Pearson Coefficient

MLP 0.629311 179.5437 13.39939 8.703461 0.79441

MLR 0.948011 25.18098 5.018066 4.064481 0.973659

DT 0.996941 0.00031 0.017612 8.24 × 10−5 0.998189

AdaBoost 0.995829 2.020256 1.421357 1.13163 0.997971

KNN 0.993734 3.035085 1.74215 1.221362 0.996878

Proposed 0.999999 4.85 × 10−5 0.006966 1.51 × 10−5 0.999999

Table 6. Comparison of regression models for temperature parameter of environmental stress.

Regression Models R-Square MSE RMSE MAE Pearson Coefficient

MLP 0.505675 7.939475 2.817707 2.044328 0.711635

MLR 0.965393 0.555825 0.745537 0.62162 0.982544

DT 0.999998 3.76 × 10−5 0.006136 3.76 × 10−5 0.99999

AdaBoost 0.989251 0.172641 0.415501 0.382264 0.994867

KNN 0.987155 0.206302 0.454205 0.26097 0.993566

Proposed 0.999998 2.51 × 10−5 0.0050099 2.51 × 10−5 0.9999992

Table 4 presents the efficacy of various regression models in impedance parameter pre-
diction. The proposed AdapTree model achieved the lowest MAE (22.789), MSE (19,812.34),
and RMSE (134.565), indicating its superior accuracy in estimating impedance changes
due to plant stress. Furthermore, the model demonstrated the highest R2 (0.993125) and
PCC (0.996564), suggesting a strong relationship between predicted and actual impedance
values. In contrast, traditional regression models such as MLR performed poorly, with
higher error values (MAE: 1523.617, RMSE: 1725.631) and a lower R2 (0.224172), indicating
its limitations in capturing complex stress-related impedance variations. AdaBoost and
MLP showed moderate performance, while DT and KNN exhibited relatively competitive
results but fell short of the proposed AdapTree.

Table 4 suggests that a high error can occur even when R2 is high. However, as
noted by [25], metrics do not have absolute numeric values and require a benchmark for
meaningful interpretation. For instance, the simplest model that minimizes the root squared
error predicts the standard deviation for all samples. For the MAE, the simplest model
predicts the median. The standard deviation of the sample is 1961.246, and the RMSE is
134.565. The median of the sample is 1994.046, and the MAE is 22.789. The values indicate
that both the RMSE and MAE are relatively low compared to the benchmark values.

Table 5 compares the models’ performance in predicting humidity variations under
environmental stress conditions. The proposed AdapTree model again outperformed all
baseline models, achieving the lowest MAE (1.51 × 10−5), MSE (4.85 × 10−5), and RMSE
(0.006966), with an R2 and PCC of 0.999999. The MLR model performed reasonably well
with an R2 of 0.948011 but showed slightly higher errors (MAE: 4.064481, RMSE: 5.018066).
MLP performed the weakest, with an R2 value of 0.629311, indicating its limited ability
to model humidity-dependent stress responses. The results suggest that KNN, tree-based
architectures like DT, the ensemble-based methods like AdaBoost, and the proposed method
provide better generalization compared to other regression techniques.

For temperature prediction, shown in Table 6, the proposed AdapTree model achieved
the best predictive accuracy, with an R2 of 0.999998 and PCC of 0.9999992. The model
yielded the lowest MAE (2.51 × 10−5), MSE (2.51 × 10−5), and RMSE (0.0050099), outper-
forming all other models. The DT exhibited similar R2 as the proposed model, relatively
competitive results, but obtained comparatively higher error (MSE and MAE: 3.76 × 10−5,
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RMSE: 0.006136) and lower PCC (0.99999). AdaBoost (R2: 0.989251) and KNN (R2: 0.987155)
displayed suboptimal results, likely due to overfitting and sensitivity to noise. Though
MLR lagged behind the proposed approach, its performance was good (R2: 0.965393, MAE:
0.62162), affirming the strength of linear models in capturing the nonlinear interactions
between temperature and plant stress responses. The lower performance of MLP (R2:
0.505675, MAE: 2.044328) justifies that it suffers from the problem of vanishing gradient
during training, hindering convergence.

The experimental findings indicate that the proposed AdapTree model consistently
outperforms other machine learning and regression models across all three environmental
parameters. Its superior predictive capability stems from the boosting mechanism, which
refines decision trees iteratively, minimizing errors and improving model robustness. The
MLP regression model failed to capture the nonlinear relationships inherent in plant stress
responses, while DT, though competitive, exhibited slightly higher error rates.

The predictive capability of the AdapTree model is also highly dependent on the quality
of input data acquired through environmental sensors. As stated earlier, sensors were used in
this study to continuously monitor key stress indicators such as temperature, humidity, and
impedance. These real-time readings form the foundational input for the machine learning
model, enabling it to detect subtle changes in plant responses under varying environmental
conditions. The integration of sensor-based monitoring enhances the timeliness and accuracy of
the predictions, making the model more effective for dynamic agricultural environments. Thus,
the performance of the AdapTree model is strongly influenced by the accuracy and reliability
of the sensor data. On the contrary, noisy, biased, or missing readings can adversely affect
model training and inference. To address this, preprocessing techniques such as filtering and
normalization were applied to ensure high-quality input data.

These findings underscore the practical viability of the AdapTree model for precision
agriculture, where early and accurate detection of plant stress is critical for timely interven-
tion. By leveraging real-time, sensor-based data and a robust ensemble learning framework,
the model offers a scalable solution for adaptive crop management. Compared to existing
methods, which may either overlook subtle physiological changes or lack generalizability
across variable conditions, AdapTree demonstrates a superior ability to capture complex
environmental interactions. This advancement not only contributes to improved yield
forecasting and resource optimization but also paves the way for automated, AI-driven
agricultural decision-support systems.

Future research may focus on optimizing sensor placement, improving sensor hard-
ware, or incorporating signal processing algorithms to further enhance the quality of data
acquisition. Such improvements would not only increase the robustness of the AdapTree
model but also advance its practical deployment in real-world agricultural settings.

Comparison with the Baseline Studies

Table 7 compares the results between the proposed ensemble and the existing state-of-
the-art, thus highlighting its effectiveness in predicting critical environmental factors for
plant growth.

Table 7. Comparison of the proposed work with existing studies on plant stress detection using
various ai models.

Author Name (Year) Stress Parameter Plant Type Models Employed Results Achieved

Pradhan et al. (2023) [14]

Cold
Drought

Heat
Salt

- SVM

Cold Accuracy: 84.57%
Drought Accuracy: 80.62%

Heat Accuracy: 80.38%
Salt Accuracy: 82.78%
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Table 7. Cont.

Author Name (Year) Stress Parameter Plant Type Models Employed Results Achieved

Akbari et al. (2024) [15] Drought Barley Neural Network
MAE: 0.0727
RMSE: 0.0105

R2: 0.9999

Akbari et al. (2024) [15] Salinity Barley GenPhenML
MAE: 0.1206
RMSE: 0.0308

R2: 0.9995

Azrai et al. (2024) [26] Drought Maize Ensemble KNN Stress Tolerance Index:
0.82

Chandel et al. (2024) [27] Water Maize Wheat GoogLeNet Maize Accuracy: 97.9%
Wheat Accuracy: 92.9%

Sharma et al. (2024) [28] Water Wheat H2O-3 Deep Learning Model R2: 0.80

Singh et al. (2025) [29] Biotic
(Wilt Disease) Chickpea Extreme Gradient Boosting R2: 0.99

RMSE: 0.72

Proposed

Impedance

Tobacco AdapTree

MAE: 22.789
RMSE: 134.565

R2: 0.993125

Humidity
MAE: 1.51 × 10−5

RMSE: 0.006966
R2: 0.999999

Temperature
MAE: 2.51 × 10−5

RMSE: 0.0050099
R2: 0.999998

As shown in Table 7, various artificial intelligence models have been employed across
different studies for plant stress detection, targeting various stress parameters and plant
types. Traditional machine learning models like SVM achieved moderate accuracy (rang-
ing from 80.38% to 84.57%) in detecting multiple stress types (cold, drought, heat and
salt) [14], while deep learning and ensemble approaches such as neural networks (R2:
0.9999), GenPhenML (R2: 0.9995) [15], GoogLeNet (accuracy: 92.9% and 97.9%) [27], and
extreme gradient boosting (R2: 0.99) [29] have demonstrated improved performance across
specific stress conditions. The ensemble KNN used by Azrai et al. (2024) achieved a stress
tolerance index of 0.82 for drought stress in maize plants [26]. Sharma et al. (2024) reported
moderate regression results using a deep learning model H2O-3 (R2: 0.80) for water stress
in wheat plants [28].

Notably, the proposed AdapTree model outperforms all existing approaches, achieving
an exceptionally high R2 value with minimal prediction errors across all three stress pa-
rameters (MAE: 22.789, RMSE: 134.565 and R2: 0.993125 for impedance; MAE: 1.51 × 10−5,
RMSE: 0.006966 and R2: 0.999999 for RH and MAE: 2.51 × 10−5, RMSE: 0.0050099 and R2:
0.999998 for temperature). This reflects its superior ability to model complex interactions
among impedance, humidity, and temperature parameters in tobacco plants. Compared to
other studies that often focus on single stress types or limited input features, the proposed
work integrates multi-parametric sensing with a robust ensemble learning model, making
it a more comprehensive and accurate solution for real-time plant stress monitoring.

These findings highlight the capability of ensemble learning approaches in plant stress
monitoring and suggest that the integration of boosting-based models can significantly
enhance predictive accuracy for agricultural applications. By leveraging advanced machine
learning techniques, this study contributes to real-time plant health assessment, enabling
more proactive agricultural management strategies.
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Although ensemble learning methods and sensor-based monitoring have been indi-
vidually applied in agricultural contexts, the integration of a boosting-based ensemble
model—AdapTree, combining AdaBoost with decision trees—with electrical impedance
spectroscopy and real-time environmental sensing (temperature and humidity) represents a
novel methodological contribution. To the best of our knowledge, this is the first study to fuse
these three modalities into a unified, data-driven framework for plant stress prediction. Unlike
previous models that typically rely on single-modality inputs or general-purpose datasets, this
approach leverages the synergistic strengths of impedance-based physiological sensing and
adaptive ensemble learning to enhance prediction accuracy and robustness. This integrated
method addresses key limitations in prior research, such as delayed stress detection, low
model generalizability, or the absence of continuous sensing mechanisms, and demonstrates
superior performance with R² scores exceeding 0.99 across all parameters.

It is important to highlight that, although the AdapTree model demonstrated superior
performance across multiple evaluation metrics—including MAE, MSE, RMSE, R2, and
PCC—for predicting impedance, humidity, and temperature under environmental stress
conditions, it is important to acknowledge its limitations. Firstly, AdapTree, being an
ensemble of decision trees boosted via AdaBoost, is inherently more complex, which can
make the interpretation of individual feature contributions less transparent compared to
simpler models. Although correlation analysis was employed, it only provides a high-level
view of variable relationships. More advanced model explainability techniques could
be explored in future work to gain deeper insights into feature importance and decision-
making within the ensemble.

Additionally, AdaBoost can be sensitive to noisy data and outliers, potentially affect-
ing model robustness in less curated datasets. The computational overhead associated
with ensemble learning could also limit the model’s deployment in real-time or resource-
constrained agricultural settings. Moreover, while the results are promising, the dataset
used in this study is restricted to the Tobacco plant, which may limit the generalizability
of the model to other plant species or varying environmental conditions. Future research
could incorporate more diverse datasets to validate the scalability and adaptability of the
AdapTree model across different crop types and growth environments.

4. Conclusions
Based on the research analysis, the proposed boosting-based ensemble approach

combining AdaBoost and decision trees (AdapTree) outperforms other regression models
for predicting plant stress using electrical impedance spectroscopy and environmental
data. The study achieved an R2 score of 0.993 for estimating impedance magnitude and
0.999 for both relative humidity and temperature, demonstrating the model’s robustness
and accuracy across key physiological parameters.These results validate the effectiveness
of ensemble learning in capturing nonlinear plant responses and underscore the value
of integrating real-time sensor data into predictive modeling. The findings support the
potential of AdapTree to contribute to precision agriculture by enabling timely, accurate
monitoring of plant health, which in turn can improve resource use and crop management
strategies. While the current study was conducted under controlled greenhouse conditions
to ensure consistency and minimize environmental variability, it is acknowledged that such
settings do not fully capture the complexity of real-world agricultural environments.

For future work, the study can be expanded by incorporating additional physiological
indicators such as light intensity and chlorophyll content to further refine stress predic-
tion. Moreover, addressing practical deployment challenges—including sensor scalability,
species variability, and real-time data processing—will be essential for field adoption. In-
vestigating techniques such as signal compression, edge/cloud integration, and adaptive
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sensor placement strategies could further enhance the system’s applicability in real-world,
data-driven agricultural decision-making. Also, to fully capture the complexity of real-
world agricultural environments, future work can extend the current experiments to field
conditions with varying climatic, soil, and pest-related challenges. This will help validate
the robustness and adaptability of the proposed system under practical scenarios.
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