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ABSTRACT Thermobacillus xylanilyticus is a thermophilic and hemicellulolytic bacterium
able to use several lignocelluloses as its main carbon source. This draft genome sequence
gives insight into the genomic potential of this bacterium and provides new resources to
understand the enzymatic mechanisms used by the bacterium during lignocellulose deg-
radation and will allow the identification of robust lignocellulolytic enzymes.

Thermophilic microorganisms may provide robust and thermostable enzymes for plant
biorefining to produce biofuels and biomolecules (1, 2). Thermobacillus xylanilyticus XE

(deposited at the Collection Nationale de Cultures Microbiennes France under no. CNCM I-
1017) is a Gram-positive, thermophilic bacterium, originally isolated from farm soil situated
underneath a manure heap, that is able to use nonpretreated lignocelluloses as its carbon
source (3–5). This bacterium produces several hemicellulases (xylanase, arabinosidase, and
feruloyl esterase) that have resistance to high temperatures (60° to 70°C) and alkaline reac-
tion conditions (4–10) and efficiently liberate sugars and phenolic compounds from various
lignocelluloses (8, 10–15).

T. xylanilyticus was grown at 50°C on basal medium complemented with 5 g/L xylan (3).
The total genome was isolated from early-stationary-phase cell cultures using the Purelink
genomic DNA kit (Thermo Fisher). DNA was quantified using a fluorimetry methodology
(Qubit v2.0; Thermo Fisher) and by gel electrophoresis analysis. Genomic DNA was frag-
mented with a Covaris S220 instrument. DNA libraries were prepared with a TruSeq SBS kit v5
(Illumina) protocol and the SPRIworks fragment library system I. The genome was sequenced
by using 74-nucleotide paired-end sequencing with Genome Analyzer IIx instruments
(Illumina). Raw read quality was assessed using FastQC (http://www.bioinformatics.babraham
.ac.uk/projects/fastqc/), and quality filtering was performed using Sickle (https://github.com/
najoshi/sickle). The genome sequence was assembled de novo using Velvet v1.1. 04 (16) after
quality analyses and trimming of raw reads. The annotation was performed with the AGMIAL
platform (17). Default parameters were used for all software.

A total of 32,786,406 raw reads were obtained, representing an average coverage of
58�; 240 Mb of raw sequences was assembled into 108 scaffolds (146 contigs). The N50

value of the assembly was 83 kb. The largest contig size was 184,473 bp. The size of the
genome was 4,109,925 nucleotides with a G1C content of 61.0%. The draft genome
encoded 3,956 proteins and 55 tRNAs; 1 copy each of 23S rRNA and 16S rRNA was correctly
assembled. The lignocellulolytic potential of T. xylanilyticus was assessed by identifying the
relevant genes for lignocellulose utilization (CAZymes) by using a procedure analogous to
that used for the analysis of daily releases of GenBank data by the CAZy database (www
.cazy.org) (18) and involving both automated and human curation-based BLASTP (https://
blast.ncbi.nlm.nih.gov/Blast.cgi) and HMMER v3 (http://hmmer.janelia.org/) results against
libraries of modules derived from the database. A total of 94 genes encoding glycoside hydro-
lases, 16 genes encoding carbohydrate esterases, 45 genes encoding glycosyl transferases,

Editor J. Cameron Thrash, University of
Southern California

Copyright © 2022 Rakotoarivonina et al. This is
an open-access article distributed under the
terms of the Creative Commons Attribution 4.0
International license.

Address correspondence to
Harivony Rakotoarivonina,
harivony.rakotoarivonina@univ-reims.fr.

The authors declare no conflict of interest.

Received 26 November 2021
Accepted 18 February 2022
Published 8 March 2022

April 2022 Volume 11 Issue 4 10.1128/mra.00934-21 1

GENOME SEQUENCES

https://orcid.org/0000-0001-7513-0190
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/najoshi/sickle
https://github.com/najoshi/sickle
http://www.cazy.org
http://www.cazy.org
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://hmmer.janelia.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1128/mra.00934-21
https://crossmark.crossref.org/dialog/?doi=10.1128/mra.00934-21&domain=pdf&date_stamp=2022-3-8


and 2 genes encoding polysaccharide lyases were identified. Some of these genes were
organized in operon structures. Except for genes encoding b-glucosidases and one puta-
tive gene encoding an exoglucanase, no other genes related to cellulose degradation
were identified. Several oxidoreductases have been annotated. This genome sequence
will facilitate the identification of new genes implicated in the enzymatic fractionation of
lignocellulosic biomass for the production of new enzymes of interest.

Data availability. T. xylanilyticus raw reads and the draft genome sequence have
been deposited at the European Nucleotide Archive (ENA) under the study accession number
PRJEB43105. The raw reads are available under run accession number ERR5840465. The anno-
tated genome sequence is available under WGS sequence set CAJRAY010000000. The version
described in this paper is the first version.
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