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Abstract. Forest ecosystems in eastern North America have been in flux for the last several
thousand years, well before Euro-American land clearance and the 20th-century onset of
anthropogenic climate change. However, the magnitude and uncertainty of prehistoric vegeta-
tion change have been difficult to quantify because of the multiple ecological, dispersal, and
sedimentary processes that govern the relationship between forest composition and fossil pol-
len assemblages. Here we extend STEPPS, a Bayesian hierarchical spatiotemporal pollen–vege-
tation model, to estimate changes in forest composition in the upper Midwestern United States
from about 2,100 to 300 yr ago. Using this approach, we find evidence for large changes in the
relative abundance of some species, and significant changes in community composition. How-
ever, these changes took place against a regional background of changes that were small in
magnitude or not statistically significant, suggesting complexity in the spatiotemporal patterns
of forest dynamics. The single largest change is the infilling of Tsuga canadensis in northern
Wisconsin over the past 2,000 yr. Despite range infilling, the range limit of T. canadensis was
largely stable, with modest expansion westward. The regional ecotone between temperate
hardwood forests and northern mixed hardwood/conifer forests shifted southwestward by
15–20 km in Minnesota and northwestern Wisconsin. Fraxinus, Ulmus, and other mesic hard-
woods expanded in the Big Woods region of southern Minnesota. The increasing density of
paleoecological data networks and advances in statistical modeling approaches now enables
the confident detection of subtle but significant changes in forest composition over the last
2,000 yr.

Key words: Bayesian hierarchical models; forest dynamics; historical ecology; paleoecology; palynology;
pollen–vegetation modeling; Tsuga.

INTRODUCTION

The presettlement data can be interpreted as a
stable baseline and used to evaluate changes in the
landscape caused by humans. Such an evaluation
is possible because the geographic distributions of
major tree species. . .have changed little over the
last 3000 years.

(Frelich 1995)

Estimating the population and community dynamics
of trees in the millennia before the rapid changes of the

past two centuries is important for conservation biology
and global-change ecology. The rates and patterns of
vegetation change preceding agroindustrial society offer
baseline targets for management of natural areas
(Barnosky et al. 2017) and benchmarks for assessing
subsequent change (National Research Council 2005,
Willard and Bernhardt 2011, Jackson 2012). Long-term
ecological time series provide constraints on processes in
tree communities that play out over centennial to millen-
nial timescales, that is, at timescales beyond human per-
ception and the instrumental record (Magnuson 1990).
Records of past forest dynamics are also helpful for
assessing the sensitivity of forests to past environmental
change (Nolan et al. 2018) and the degree of disequilib-
rium between climate change and forest response (Sven-
ning and Sandel 2013, Blonder et al. 2018). Because
current accelerated rates of environmental change are
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expected to persist indefinitely, extending our under-
standing of forest dynamics across a range of timescales
is essential to forecast future forest dynamics (Dietze
2017).
Networks of fossil pollen data provide empirical evi-

dence about dynamics of plant populations and commu-
nities at timescales of decades to millennia. Fossil pollen
data have provided rough estimates of range expansions
and contractions (Woods and Davis 1989, Davis et al.
1991, Parshall 2002), continental-scale changes in taxon
distributions (Bernabo and Webb 1977, Williams et al.
2004), and local- to landscape-scale community shifts
(Grimm 1983, Umbanhowar et al. 2006, Hotchkiss
et al. 2007, Jackson et al. 2014) driven by long-term
changes in climate and disturbance regimes. However,
quantifying past trends in forest composition with
uncertainty has been more difficult. Despite a century of
pollen analysis (Edwards et al. 2017), obtaining robust
statistical estimates of the rates and patterns of past for-
est change remains a major research frontier.
The key challenge for deriving robust inference about

the rates and patterns of population and community
change in forests from fossil pollen data is that the rela-
tionship between the data (changing relative abundances
of pollen types in sediment cores from networks of lakes
or mires) and the subject of interest (changing abun-
dances of taxa across a landscape) is noisy and governed
by many interacting processes (Webb and McAndrews
1976, Webb et al. 1993, Jackson 1994). Differential pol-
len production and dispersal, long-distance pollen trans-
port and deposition, and uncertainty in age estimates all
contribute to uncertainty in inference about the chang-
ing abundance of trees on the landscape. Additionally,
differences in the spatial and temporal scales of pollen
and forest survey data must be reconciled. Pollen records
integrate pollen source radii ranging from tens of meters
to hundreds of kilometers (Bradshaw and Webb 1985,
Prentice et al. 1987, Jackson 1994, Calcote 1995),
depending on species and the size and type of sedimen-
tary basin, and they typically have decadal- to centen-
nial-scale resolution because of sediment mixing,
sampling density, and decadal- to centennial-scale uncer-
tainties in age inferences (Webb 1993, Goring et al.
2012, Liu et al. 2012). Conversely, forest survey data in
the eastern United States are typically collected at the
scale of the individual tree for individual survey points
or plots (Schulte and Mladenoff 2001) and can then be
aggregated to study vegetation patterns at broader spa-
tial grains and extents. Individual surveys represent dis-
crete snapshots in time that are sometimes repeated
(Woudenberg et al. 2011), and sometimes not (Goring
et al. 2016).
Disentangling these processes and scale interactions is

not easy. Much of paleoecology’s contribution to con-
servation biology and global-change ecology has conse-
quently relied on analyses of raw pollen abundance data
(Hunter et al. 1988, Williams et al. 2013, Maguire et al.
2016). Other efforts have sought to build quantitative

and process-based models for inferring vegetation com-
position and structure from fossil pollen (Prentice 1985,
Sugita 2007a, b, Gaillard et al. 2010, Williams et al.
2011, Mazier et al. 2015). However, even these quantita-
tive reconstructions usually do not provide statistically
robust estimates of uncertainty.
The upper Midwestern United States (UMW), rang-

ing from Minnesota to Upper Michigan, has been the
focus of decades of paleoecological study and has one
of the densest networks of fossil pollen data worldwide.
Key ecological changes include the ongoing westward
range expansion of several tree taxa in the Great Lakes
region (Davis et al. 1986, Woods and Davis 1989, Jack-
son and Booth 2002, Booth et al. 2012a, Jackson et al.
2014, Wang et al. 2016), population expansion for some
species such as hemlock (Davis et al. 1998) and white
pine (Tweiten et al. 2015), the establishment of mesic
hardwood forests in the Big Woods of south-central
Minnesota (Umbanhowar et al. 2006, Shuman et al.
2009, Hupy 2012), and southward shifts in the ecotone
between northern mixed forests and temperate broad-
leaved forests (Hupy 2012). There is also evidence for
ecologically significant climatic changes in the UMW
during the past 3,000 yr (Booth et al. 2002, 2006,
Booth and Jackson 2003, Shuman et al. 2009, Tweiten
et al. 2009) and shifts in fire regimes (Umbanhowar
2004).
Qualitatively, these forest compositional changes are

clear across fossil pollen records. However, they are
small relative to those associated with the last deglacia-
tion and Euro-American land use (Frelich 1995), and
interpretations of raw pollen percentage data present
problems typical of paleoecological interpretation.
Given the small magnitude of some reported trends over
the last 2,000 yr and uncertainty in observations, are
these changes truly significant, statistically or ecologi-
cally? Can the magnitude of past compositional changes
be determined, with quantified uncertainty?
Here, we use the hierarchical Bayesian model STEPPS

(Dawson et al. 2016) to predict the changes in the rela-
tive abundance of tree taxa over the last two millennia.
STEPPS reconstructs spatiotemporal variations in forest
composition from fossil pollen data, using a process-
based statistical representation of pollen productivity
and dispersal. STEPPS assesses uncertainty in data and
parameters and produces gridded probabilistic estimates
of tree abundance. These posterior estimates make it
possible to assess changes (and associated uncertainty)
at multiple levels of ecological organization, ranging
from individual taxa to community-level indices of
change. We take the epigraph from Frelich as our chal-
lenge: Using an exceptionally dense paleoecological net-
work and modern statistical techniques, we ask whether
systematic community changes in the millennia preced-
ing agroindustrial society are large enough to rise above
statistical noise. We further ask: Were such changes uni-
form across the landscape, or were they patchy in space
and/or time? What were the rates of shifts in
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populations, communities, and ecotones? Where is there
statistically significant evidence for either change or
stability?

DATA

We focus on a part of the UMW that comprises
Minnesota, Wisconsin, and the Upper Peninsula of
Michigan. We choose this spatial domain for three
reasons: (1) the dense network of records allows for a
regional-scale reconstruction (Fig. 1), (2) the area
contains several major climatically sensitive ecotones,
and (3) the well-established paleoecological literature
provides a series of reported vegetation changes that
can be tested.
As in Dawson et al. (2016), we focus on 10 tree genera

that include the most abundant taxa as well as several
taxa that are less abundant but have been hypothesized
in the literature to have undergone range shifts or com-
positional changes in the UMW over the recent millen-
nia: Acer (maple), Betula (birch), Fagus (beech),
Fraxinus (ash), Larix (tamarack), Picea (spruce), Pinus
(pine), Quercus (oak), Tsuga (hemlock), and Ulmus
(elm). The remaining tree taxa “Other Hardwood” and
“Other Conifer” represent an aggregation of the remain-
ing hardwood and conifer taxa.

Pollen records

Sediment pollen records were obtained from the Neo-
toma Paleoecology Database (Williams et al. 2018)
using the R neotoma package (Goring et al. 2015). Each
record includes pollen counts for multiple depths in a
sediment core, usually from a lake or mire, and a set of
age controls used to constrain age-depth models.
Inferring temporal changes from the pollen records

requires that each pollen sample be associated with an
age estimate or age distribution. In an effort toward con-
sistency and uncertainty quantification, age-depth mod-
els were refit for all pollen records in the spatial domain
using Bacon (Blaauw and Christen 2011). Age-depth
model construction methods and results are described in
more detail in Goring et al. (2019) and Kujawa et al.
(2016). We follow radiocarbon and paleoecological con-
vention of representing time as “years before present,”
where present is fixed at the year 1950 (Vogel 1969). We
use this time scale here, and denote its use by YB1950.
The pollen records cover the spatial domain, although

the sampling density in Minnesota is much higher than in
Wisconsin and the Upper Peninsula of Michigan (Fig. 1),
largely due to work by Edward J. Cushing (University of
Minnesota, unpublished data). In this work we consider
the two millennia preceding Euro-American settlement
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FIG. 1. Upper: Availability of pollen records for some of the considered time intervals. Lower: Time span of the pollen records
from 2,150 to 150 YB1950 (light gray lines) and the intervals with pollen samples (black crosses) for each record. Dates represent
mean estimates from the Bacon-generated age posteriors. Lower inset: Map of the United States highlighting the study area.
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(2,150–150 YB1950). Fifty-six pollen records span the
entire temporal domain of interest, and another 147
records cover a portion of this interval (Fig. 1).

Calibration data set

As described in (Dawson et al. 2016), Public Land Sur-
vey (PLS) forest composition data compiled by Goring
et al. (2016) and statistically interpolated by Paciorek
et al. (2016), as well as settlement-era pollen data, were
used to calibrate STEPPS. The PLS compilation for this
domain comprised 367,209 corner points and included
various corrections to minimize surveyor biases in PLS
data, including spatially varying correction factors for
sampling design, corrections for azimuthal censoring, set-
ting minimum diameter limits, aggregation to genus, and
aggregation to an 8-km grid (Goring et al. 2016, Cogbill
et al. 2018). This 8-km grid defines the spatial resolution
of the STEPPS calibration model.

METHODS

STEPPS is used to estimate relative abundance,
defined to be the proportion of total stems represented
by each species; we refer to this reconstructed variable as
relative abundance or forest composition. In this appli-
cation of the model, relative abundance is defined by the
statistically interpolated PLS tree count data (Paciorek
et al. 2016); which represents trees with a diameter
greater than 8 inches at 1.4 m (diameter at breast height,
dbh). In the STEPPS modeling framework, there are
two stages to estimating past forest composition: cali-
bration and prediction. The calibration stage requires
the quantification, with uncertainty, of key process
parameters, including pollen productivity and dispersal.
The prediction stage uses the calibration parameter esti-
mates in conjunction with fossil pollen samples to infer
past forest composition. The prediction is done in a way
that borrows strength across space and time; in other
words, the model accounts for the spatial and temporal
dependence of forest composition. Here we focus on the
methods and models used in the prediction stage, which
build upon previous work presented in Paciorek and
McLachlan (2009) and Dawson et al. (2016).

Calibration stage

The pollen–vegetation calibration model defines the
theoretical relationship between pollen and vegetation.
Pollen counts at sedimentary basin i for taxon k are
denoted by yi,k. Pollen counts are modeled by a Dirich-
let-multinomial distribution to account for statistical
overdispersion; see Dawson et al. (2016). So,

yi;� �DMðni;uiÞ

where ni ¼
PK

k¼1 yi;k. The sum
P

i ui quantifies the
degree of overdispersion relative to the multinomial

distribution and is equal to the sum of the local and
nonlocal pollen contributions of forests in the spatial
domain. For location i located within grid cell s(i), we
denote the forest composition of taxon k by rs(i),k. Then

ui;k ¼ ck/krsðiÞ;k þ
1
C
ð1� ckÞ/k

X
sj 6¼sðiÞ

rsðiÞ;kwkðsðiÞ; sj ; hÞ

(1)

where ck represents the relative contributions of local
and nonlocal pollen for taxon k, /k represents pollen
production for taxon k, wk(s(i), sj, h) quantifies the
weights of the relative contribution of pollen from cell sj
to focal cell s(i) as a function of parameters in the weight
function h. Finally, C represents a scaling factor equal to
the sum of the weights in the spatial domain.
The values of the weights wk(s(i), sj, h) are determined

by a specified parametric dispersal kernel, the parame-
ters of which are estimated during model fitting. Here
we use the symmetric and spatially invariant inverse
power-law kernel (Austerlitz et al. 2004); this kernel had
a better predictive ability than the shorter-tailed Gaus-
sian kernel (Dawson et al. 2016). Posterior estimates of
ck, /k, and wk(s(i), sk, h) are used to propagate uncer-
tainty through the prediction stage.

Prediction stage

Results from the STEPPS pollen–vegetation calibration
stage provide estimates of parameters that govern the pol-
len–vegetation relationship. Shifting from calibration to
prediction requires assuming that the fundamental pro-
cesses that link pollen and vegetation have remained
unchanged over the last two millennia, as have the param-
eterizations of these processes. This assumption is stan-
dard in pollen–vegetation modeling and is a form of the
broader assumptions of uniformitarianism in the geo-
sciences: that the processes we observe today can be
employed to gain insight into the unobservable and latent
processes operating in the past. The key determinants of
pollen dispersal and atmospheric entrainment, including
size and shape of pollen grains and the morphology of
male flowers and microstrobili, have not changed over the
last two millennia (and beyond; Jackson and Lyford
1999). Canopy structure and roughness may affect pollen
dispersal, but their effects are not well understood (Jack-
son and Lyford 1999). Pollen release from anemophilous
trees generally occurs today under unstable atmospheric
conditions (high turbulence; Jackson and Lyford 1999).
Here we assume that this relationship of pollen entrain-
ment and weather has remained unchanged in the past, an
assumption of uniformitarianism.
Pollen productivity varies among individual trees,

and also within trees over their life span (maturation,
masting, interannual climate variation; Jackson 1994,
Hicks 2001, Minckley and Shriver 2011). Although
some determinants of productivity are conserved (i.e.,
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pollen grains per anther or microsporangium, anthers
per flower, microsporangia per microstrobilus), the
number of flowers (or microstrobili) per tree or per
unit biomass may be more variable. However, here we
are primarily interested in relative pollen productivity,
exploiting the fact that differences in pollen produc-
tivity are far greater among taxa than within taxa
(Prentice 1988). For a more detailed discussions of
these assumptions, we refer readers to Jackson and
Lyford (1999) and Jackson (1994).
We emphasize that these assumptions are standard in

palynology, and have been extensively and explicitly dis-
cussed and examined over the past several decades (Pren-
tice 1988, Jackson 1994, Jackson and Lyford 1999).
Framing a pollen–vegetation relationship in a Bayesian
hierarchical context allows for the assessment of uncer-
tainty in understanding of these processes during calibra-
tion, and establishes a natural framework for rigorous
quantitative testing of hypotheses about temporally vary-
ing processes that affect pollen dispersal and production.
With the assumption that the distributions of these

parameters remain constant throughout the considered
time domain, information from the calibration stage can
be used to estimate vegetation from pollen counts back
through time.
The component of the prediction model linking pollen

counts to inferred vegetation is identical to the calibra-
tion model, with added time dependence. Pollen counts
at location i for time t for taxon k are denoted by yi,t,k
and are Dirichlet multinomially distributed according to

yi;t;� �DMðni;t;ui;tÞ

where ni;t ¼
PK

k¼1 yi;t;k and the parameter ui;t;k repre-
sents the sum of the local and nonlocal pollen contribu-
tions for taxon k such that

ui;t;k ¼ c/krsðiÞ;t;k þ
1
C
ð1� cÞ/k

X
sj 6¼sðiÞ

rsðiÞ;t;wðsðiÞ; sjhÞ.

In the calibration model, the proportional vegetation
composition was known. In prediction, we seek to esti-
mate proportional vegetation. The proportional vegeta-
tion for grid cell s at time t and for taxon k is denoted rs,t,k
and is linked to the corresponding taxon-specific under-
lying spatial processes gs,t,k through an additive log-ratio
sum-to-one constraint

rs;t;k ¼ expðgs;t;kÞPK
k¼1 expðgs;t;kÞ

.

The underlying smooth spatial processes gk are nor-
mally distributed according to

gs;t;k �Normalðlgs;t;k;r2
s;t;kÞ;

where the process mean (lgs;t;k) is the sum of several
terms. The process mean at the first time step is the
sum of an overall adjustment term (lk) and a spatial

process term (mss;k), both of which are time invariant.
This time invariance of the process mean at t = 1 allows
us to estimate the spatial processes at other times as
deviations from the process at this initial time. For all
other times such that t > 1, the process mean is the
sum of the same overall adjustment and space-varying
term as before, but also a temporal (spatially invariant)
term (ltt;k), and a term that accounts for the spatially
correlated innovations that quantify the change across
space between consecutive time steps (msts;t;k). More for-
mally, we have that

lgs;t;k ¼ lk þ mss;k; for t ¼ 1
lk þ mss;k þ ltt;k þ msts;t;k; for 2\t\T

�
(2)

The time-varying term is given by the first-order
autoregressive model

ltt;k �
Normalð0; n2Þ; for t ¼ 2;
Normalðltt�1;k; n

2Þ; for 3\t\T

�
(3)

Both the spatially varying mean and the spatial
innovations must be estimated for each cell and for
each taxon. Because of the complex dependence struc-
ture inherent in the model, the size of the domain,
and computational limitations, we use the modified
predictive process (Banerjee et al. 2008, Finley et al.
2009), which is a statistical representation of a spatial
or spatiotemporal Gaussian process used to improve
computational tractability. In brief, in the modified
predictive process, the spatial process is estimated at a
number of spatial locations referred to as knots s* in
the spatial domain, where the number of knots is
fewer than the original number of spatial points in
the domain (Finley et al. 2009). A transformation and
variance correction are then applied to the knot loca-
tion process estimates to obtain estimates for the orig-
inal domain.
According to the modified predictive process, the

spatial-varying time invariant term can be represented
as

ms�;k ¼ ckðs; s�;gk; qkÞC��1
k ðs�;gk; qkÞas�;k;

where

as�;k �MultivariateNormalð0;Ckðs�;gk; qkÞÞ (4)

and

Ckðs�;gk; qkÞ ¼ g2
k expð�dðs�Þ=qkÞ; (5)

ckðs; s�;gk; qkÞ ¼ g2
k expð�dðs; s�Þ=qkÞ. (6)

Ck and ck are covariance matrices that quantify the spa-
tial covariance between pairs of knot locations and pairs
of knot and cell locations, respectively. The covariance is
modeled using an isotropic, exponential covariance that
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decays as a function of distance. Covariance depends on
the absolute distance between pairs of locations, denoted
by the distance matrices d(s*) and d(s, s*) with dimen-
sions Nknots 9 Nknots and N 9 Nknots. Covariance
parameters gk and qk determine the amount of spatial
smoothing, and are estimated a priori by fitting a
modified predictive process model with identical knots
and spatial domain to the settlement-era composition
data.
The innovations that result from differences in con-

secutive time steps also follow a modified predictive
process, where

mst�;t;k ¼ ckðs; s�;gk; qkÞC��1
k ðs�;gk; qkÞat�;t;k;

and are autoregressive where

at�;t;k �MultivariateNormalðx � at�;t�1;k; ð1� x2Þ�
C��1ðs�;g2; qkÞÞ.

The parameter x defines the behavior of the inno-
vations and specifies constant prior variance across
time. Using an autoregressive component allows the
data to borrow strength across time but relies on the
assumption composition changes smoothly through
time. This representation may smooth over abrupt
changes.
The process variance term r2

s;t;k is the sum of three
terms; two are variance corrections associated with the
predictive processes that represent the spatially varying
mean and the autoregressive innovations; these correc-
tions capture the additional fine-spatial-scale variabil-
ity that cannot be represented by the predictive
process approximation. The third term is commonly
referred to as a nugget, which describes the variance
at a single point in time and space due to fine-scale
variability not accounted for in the model. Then we
have that

r2
s;t;k ¼ g2

k � g2
kðcðs; �ÞC��1cðs; �Þ0Þs þ s2; t ¼ 1

r2
s;t;k ¼ g2

k � g2
kðcðs; �ÞC��1cðs; �Þ0Þs þ ð1� x2Þ�

g2
k � ð1� x2Þ � g2

kðcðs; �ÞC��1cðs; �Þ0Þs
þ s2; t[ 1

In the case where a knot and cell have equal coordi-
nates, the distance between them will be zero, resulting
in a cross-covariance of one and a variance correction
equal to g2. When this correction is subtracted from the
variance of the parent process we obtain a difference of
zero. This is not necessarily cause for concern—the esti-
mated process at that cell is equal to estimated process at
the knot. However, to simplify computational implemen-
tation we define a nonzero nugget s2 = 1 9 10�5 that is
added to the process variance at each cell to ensure non-
zero variance.

Spatial and temporal resolution of predictions

The prediction model estimates composition for dis-
crete points in space and time. The spatial resolution of
predictions is constrained by the resolution of the grid-
ded PLS data, the ability of dispersed networks of pollen
sites to resolve fine-scale heterogeneity in vegetation
composition, and computational limitations. For these
reasons, composition predictions are made on a regular
square grid with cells that are 24 9 24 km.
To account for pollen sample age uncertainty, 40 sets

of age posterior draws are randomly selected. For a
given site, each posterior draw represents a distinct
parameterization of the age-depth model. For each of
these 40 sets of age posteriors, and for each site, pollen
samples are binned in 100-yr intervals from 2,150 to 150
YB1950. STEPPS is then used to infer vegetation com-
position for each of these 40 pollen data sets.
The discrete centennial-scale time discretization is

needed for computational tractability and increases the
effective sample size for each time interval, but decreases
temporal precision. Additionally, we note that because
of the spatiotemporal autocorrelation in the model, sub-
sequent temporal estimates are not truly independent;
changes that the model detects emerge despite the mod-
eled dependence. Pollen samples that represent postset-
tlement forests are excluded because of this paper’s
focus on presettlement vegetation change. Samples were
classified as postsettlement if they were younger than
either the expert-identified Euro-American settlement
horizon (Dawson et al. 2016) or 150 YB1950 (based on
age-depth models).

Computation

Parameters were estimated using the adaptive No-U-
Turn Sampler (NUTS), a variant of the Hamiltonian
Monte Carlo method (Hoffman and Gelman 2011). The
dependence structure of the model in both time and
space results in a computationally intensive analytic
expression for the mathematical gradient of the joint log
posterior. The complexity of the model gradient pre-
vented the use of automatic differentiation as imple-
mented in the Stan software (Stan Development Team
2017). To overcome this challenge, we used the Stan
implementation of adaptive NUTS (Stan v2.17.1) with a
hard-coded implementation of the mathematical gradi-
ent. Additionally, we used openMP to parallelize the
evaluation of gradient and joint posterior functions
(Dagum and Menon 1998). All postprocessing and anal-
ysis of posterior parameters estimates was completed in
R (version 3.4.2; R Development Core Team 2013).

Analysis of forest composition estimates

The prediction model estimates spatial patterns of for-
est composition over time. In this work our interest lies
in regional-scale changes estimated by the Gaussian
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process mean lgs;t;k (recall that s refers to the grid cell, t
refers to the time, k refers to the taxon, and the super-
script denotes that this mean is associated with the gaus-
sian process denoted by g). This process mean is the
smooth portion of the spatial variation in the propor-
tional presence of a given taxon, namely, the portion
that can be represented by the predictive processes. The
full spatial process, gs,t,k, includes the mean lgs;t;k, the
variance corrections for each of the predictive process
components, and an additional (but negligible) nugget
effect (described in the Prediction stage section). This
additional heterogeneity from the variance corrections
allows the model to represent the variability in the data
better; however, the process mean better represents the
smooth large-scale patterns.
To determine statistical significance, for each posterior

draw (which consists of estimates of the proportional
abundances for many individual tree taxa through space
and time) we calculated the difference in proportional
abundance for a given taxon between all pairwise combi-
nations of times for each grid cell in the spatial domain.
For a given grid cell and comparative pair of time peri-
ods, we determined the probability of a directional
change in proportional abundance. Changes with a
probability greater than or equal to 0.85 are considered
statistically significant; we note that in a Bayesian frame-
work, this is analogous to the statement that significant
changes are those that occurred with 85% certainty. Note
that this cutoff is relaxed slightly from standard thresh-
olds (e.g., 0.95) to accommodate the noisiness of pollen
data relative to the trends of the last two millennia.
An artifact of the statistical model is that it predicts

tree proportions to be nonzero throughout the entire
spatial domain for all taxa. However, for certain taxa we
know that their ranges do not cover the entire spatial
domain. For any statistically significant changes to be
deemed ecologically significant, we required that the rel-
ative composition of the taxon be greater than 3% for at
least one of the pair of times being compared; this cutoff
was based on expert elicitation about the possibility of
using pollen records to identify changes in taxa that are
low in relative abundance. We note that this cutoff is
conservative; a lower cutoff would have resulted in the
claim that more statistically significant changes
occurred. However, when relative abundances get well
below 3%, it becomes increasingly difficult to tease apart
statistical artifacts from true signal. This is not to say
that uncommon taxa lack ecological importance, but
uncertainty roughly scales according to the range of
observed percentages. As such, for these less common
taxa there is lower certainty relative to the variation.
The tests described allow us to identify statistically

and ecologically significant change. However, the poste-
rior distributions provided by STEPPS enable more
detailed inference about change in relative abundance.
Specifically, we can test for both statistically significant
large changes and statistically significant stability. When
comparing large relative abundance estimates for pairs

of time intervals for each grid cell, we can distinguish
among three cases: (1) a taxon experienced large and sig-
nificant changes in relative abundance; (2) a taxon was
significantly stable; and (3) neither of the previous two
cases applies. To do this we test if the differences in rela-
tive composition for a pair of time points and a spatial
location are significantly above 5% (large change thresh-
old) or significantly below 3% (stability threshold).
These thresholds are subjective but well aligned with
prior ecological interpretations of fossil pollen records,
which commonly use thresholds of 0.5% to 5% for visu-
alization and analysis of pollen data as rough indices of
species presence (Van der Knaap et al. 2005). In subse-
quent analyses, we identify locations with at least one
taxon experiencing large change and locations of signifi-
cant stability across all taxa (where every taxon is signifi-
cantly stable).
Confidence in identifying changes in the abundance

for each taxon in any given grid cell is a function of the
posterior distribution of the estimated relative abun-
dance of trees in that grid cell. The shape and spread of
that distribution is a combined function of the uncer-
tainties estimate by STEPPS, including the calibrated
pollen–vegetation relationship for each taxon, dating
uncertainty, and the consistency in signal across space
and time. To illustrate how some of these factors influ-
ence statistical certainty about composition change, we
chose two example taxa: beech and pine (Fig. 2). Beech
is found only in a subset of our spatial domain, but the
proportion of beech pollen has a relatively robust rela-
tionship with the proportion of beech trees on the land-
scape (Webb et al. 1981, Jackson and Kearsley 1998,
Paciorek and McLachlan 2009, Dawson et al. 2016).
Pine is distributed across the UMW domain, and is
known to have overdispersed pollen. To examine the
relationship between changes in relative abundance and
uncertainty of these changes, we compute and map the
mean and standard deviation (from the posterior distri-
bution) of differences in relative abundance for pairs of
time points for each grid cell.

Ecotone analysis

We represent the position and shifts in ecotones via
empirical orthogonal function (EOF; see Cressie and
Wikle 2015) analysis to decompose the high-dimensional
forest composition data into dominant patterns of vari-
ability. EOF analysis was completed using singular value
decomposition (Cressie and Wikle 2015). The spatial
pattern of the first principal component of the EOF
analysis closely corresponds to the long-recognized
tension zone between northern mixed forests and the
temperate hardwoods and oak savannas to the south
(Curtis 1959).
For visualization purposes, we delineate the tension

zone ecotone as a line that represents the point at which
the first principal component changes sign (i.e., where
the first EOF is zero). This line represents the most
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abrupt transition between the northern and southern
forest communities. However, we keep in mind that the
transition between these forest communities may occur
abruptly or gradually; in both cases it is possible to
demark the position of greatest community turnover. We
then represent shifts in the position of the ecotone by
creating a transect that is roughly perpendicular to the
ecotone and quantify the movement of the ecotone line
as kilometers of movement along each of these transects,
relative to the ecotone position at the most recent time
interval used in analysis (350–250 YB1950).

RESULTS

Forty prediction model runs were completed, with a
warm-up period of 250 iterations and a sampling period
of 2,000 iterations. For each run, pollen sample ages and
calibration parameters were drawn from previously
generated posterior distributions for these quantities
(Dawson et al. 2016) and provided as model input. Ini-
tial conditions varied among runs, and were determined
using the default methods implemented in Stan (Stan
Development Team 2017). Posterior parameter estimates
were combined across runs, and every 40th sample was
retained for further processing (for computational
tractability). Initial assessment of the results suggested
that agroindustrial signals were present at 200 YB1950;
as a result, we excluded this time interval from all fur-
ther analysis to avoid erroneously reporting agroindus-
trial impacts as natural variability. Code used to
estimate model parameters and perform the analysis,

and posterior draws for the relative abundance vegeta-
tion predictions, are archived and available; see the Data
Availability statement.

Community compositional change

Higher pollen site density tends to improve confidence
in detecting compositional change (Fig. 2). However,
increasing site density does not necessarily reduce uncer-
tainty. The relationship between sediment pollen and
vegetation is a noisy process, with uncertainty arising
from measurement, radiometric dating, age-depth mod-
eling, dispersal, deposition, sedimentation, and other
sources. For beech, change greater than 10% in relative
abundance seems to signify statistically robust vegeta-
tional change (Fig. 2, upper panels). However, for pine,
even changes in mean magnitude as large as 15% are
hard to interpret with confidence (Fig. 2, lower panels).
This may in part be because there are three species of
pine in the region, but only a single beech species, or
because pine pollen is more subject to interannual fluc-
tuations in productivity and atmospheric transport.
At the level of communities, and across the UMW in

general, most locations did not experience large change
over the 2,100–300 YB1950 time period considered
(Fig. 3). Similarly, most locations were not significantly
stable. Instead, most locations experienced either (1)
small change, defined to be less than 5% but statistically
different from zero; or (2) uncertain change, defined to
be change not statistically different from zero. This sug-
gests that there is not sufficient evidence to refute the
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Frelich statement about vegetation stability. Over the
longest period preceding the impact of Euro-American
influence (2,100–300 YB1950), approximately 9% of grid
cells in the UMW experienced significant composition
change. Areas of significant change are localized to hot-
spots in north-central Wisconsin, a strip in central Min-
nesota, western Wisconsin, and the Upper Peninsula of
Michigan (Fig. 3, all panels).
Each of these hotspots represents a different combina-

tion of tree species. The changes in central Wisconsin
and the upper peninsula of Michigan can be attributed
to rising proportions of hemlock and beech over the last
two millennia (Fig. 4), whereas the band of community-
level change in central Minnesota and western Wiscon-
sin can be attributed to increases in pine and a small
southward shift of the ecotone between northern mixed
forests and southern hardwoods (Fig. 5). At the same
time, community-level analyses can obscure ecologically
(and statistically) significant changes at the taxon level,
particularly those for less common taxa, such as the rise
of mesic hardwoods and establishment of the Big Woods
in southern Minnesota (Fig. 6). We review taxon-level
dynamics more fully in the following sections.
These changes in community composition accumu-

lated over multiple centuries. Pairwise comparisons of
maps spaced a few centuries apart (main diagonal in
Fig. 3) generally do not show significant change, except
between 300 and 200 YB1950, in the earliest era of
Euro-American land use (not shown).
Across the entire region, the largest proportion of area

to experience significant landscape change was between
1,600 and 1,100 YB1950 Fig. 3), driven primarily by
increases in hemlock (Fig. 4) and pine (Fig. 5).

Hemlock

Of all individual taxa, hemlock had the most grid cells
with significant changes prior to 1,200 YB1950. At the
settlement era, its contiguous range extended from the
Upper Peninsula of Michigan to central Wisconsin
(Davis et al. 1986) although it was patchily distributed
to southwest Wisconsin and the eastern edge of Min-
nesota (Calcote 1987). Changes in hemlock abundances
over the last 2,000 yr have been episodic, with little
apparent change in overall range extent but significant
within-range changes in relative proportion (Fig. 4).
The relative abundance of hemlock increased in the
western portion of hemlock’s range in central Wisconsin
from about 2,100 to 600 YB1950, with the most acceler-
ated increase from 1,600 to 1,100 YB1950. Conversely,
hemlock abundances significantly declined in the Upper
Peninsula of Michigan between 1,600 and 600 YB1950.
Beginning at 300 YB1950 hemlock abundance declined
throughout a large portion of its range in the UMW
(not shown). This decline may have been linked to
changes in land-use patterns (Muzika et al. 2015); a
more thorough analysis of land-use histories in the
region is needed to support this hypothesis.

Beech

Significant and large increases in beech occurred in
the Upper Peninsula of Michigan during the last
2,000 yr. These increases appear to have commenced
around 2,100 YB1950, continuing until ca. 600 YB1950
(Fig. 3). In the center of its range in the Upper Penin-
sula, the relative abundance of beech increased from
20% to more than 50% within this time period. To the
east, in Lower Michigan and adjacent Ontario, beech
populations decreased between 1,000 and 600 YB1950
(Booth et al. 2012b). Beech decreased throughout its
range in our study area between 600 and 300 YB1950.
However, these decreases were minor; relative abundance
of beech after this decline remained higher than beech
abundance 2,100 YB1950. Similar to hemlock, the late
Holocene beech increase was unaccompanied by an
expansion in geographic range.

Northern mixed/southern hardwoods ecotone

The position and dynamics of the ecotone between
northern mixed forests and southern hardwood forests is
well constrained by existing paleodata networks (Fig. 1),
particularly in Minnesota, and offers an example of an
ecological phenomenon that was largely stable over the
last 2,000 yr, albeit with some movement (Fig. 4). The
ecotone appears to have shifted southwestward by about
8–30 km (Fig. 5, lower) over the last 2,000 YB1950,
with the largest shifts in northwestern Minnesota and
southward shifts throughout Minnesota and northwest-
ern Wisconsin. In central Wisconsin, there is no detect-
able movement of the ecotone.
The shifts in the ecotone can be attributed to the

southwestward expansion of pine populations (Fig. 5,
upper, and Fig. 3). In Minnesota, the ecotone is charac-
terized in part by a transition from pine- or tamarack-
dominated forests in the northeast to oak-dominated
forests in the southwest (Appendix S1: Fig. S1), with the
ecotone situated close to the point at which the relative
abundance of pine approximately equals that of oak.
These findings agree qualitatively with prior reports of

increases in Pinus strobus in northwestern Wisconsin
(Tweiten et al. 2015) and both P. strobus and Pinus
banksiana/resinosa in north-central Minnesota (McAn-
drews 1967, Jacobson 1979) over the last 2,000 YB1950.
Earlier ecological interpretations of palynological time
series, however, were confounded by the challenge of dis-
entangling local from extraregional sources of Pinus pol-
len (McAndrews 1967), so these modeling efforts add
value both by identifying specific regional loci of chang-
ing Pinus abundances (Fig. 5, upper) and by adding
quantitative rigor to the long-established efforts to infer
spatial shifts in emergent ecological phenomena (posi-
tion of vegetation formations, shifts in ecotones, etc.)
from networks of individual, site-level palynological
records (Webb et al. 1983, Williams et al. 2009).
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Big Woods expansion

Ash and elm are characteristic of the mesic deciduous
Big Woods and are used here as indicators of the late-
Holocene formation of the Big Woods (Grimm 1983).
The rises in ash and elm abundances between 600 and
300 YB1950 are significant and indicate that the forma-
tion of the southern Minnesota Big Woods is relatively
recent (Fig. 6). This result agrees with regional recon-
structions of vegetation history based upon qualitative
interpretations of fossil pollen records (McAndrews
1968, Grimm 1983, Umbanhowar et al. 2006), but, for
the first time, the magnitude of the rise can be quantified
(the relative abundance of ash and elm trees increased
from approximately 2–5% on average over this time per-
iod) and its statistical significance demonstrated.
The areas of statistically significant changes in the

sum of ash and elm are closely centered over the Big
Woods region (Fig. 6, upper). One caveat is that the Big
Woods region at the presettlement era is only weakly
expressed in maps of STEPPS-estimated ash and elm for
300 YB1950, despite being apparent in maps of the PLS

data (Fig. 6, lower). The same is true for the predictions
at 200 YB1950 (not shown). This discrepancy may be
attributed to the inconsistent pollen signal for elm in
that region; some pollen records from the Big Woods
region indicate that elm increases to about 10% relative
pollen abundance, whereas other records from that
region do not (Umbanhowar 2004). However, it is also
possible that the hallmark Big Woods taxa increased in
relative abundance after the time period considered here.
In this paper, the most recent predictions were for
200 YB1950; however, most PLS survey dates fall in the
second half of the 19th century—approximately 100 yr
after the our most recent predictions.

DISCUSSION

Overview

An advantage of integrated statistical analyses, like
STEPPS, is the ability to borrow strength in the data
across both space and time, producing estimates of com-
position smoothed across tens of kilometers and over a
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few centuries, with quantification of the associated
uncertainty. Here, we quantified changes in forest com-
position in a way that accounts for the major uncertain-
ties in paleoecological data. Although the application
here is to the upper Midwest, the STEPPS modeling
framework is general and can be applied to other regions
that have spatial networks of pollen and vegetation data
(for calibration) and fossil pollen records (for predic-
tion). The diverse set of dynamics documented here,
varying across space and across taxa, provides a rich
ground for further understanding the processes govern-
ing forest dynamics across a range of timescales. Here

we first review the patterns and insights gained into for-
est dynamics in the UMW over the last two millennia,
then discuss the calibration and smoothing associated
with STEPPS and the advantages of using interated sta-
tistical models like STEPPS for inference.

Vegetation dynamics in the upper Midwestern US: a
landscape of change and relative stability

Vegetation dynamics in the UMW over the last two
millennia were complex, so a key advantage of the
STEPPS approach is its ability to quantify and delineate
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this complexity. Most places in the UMW experienced
either small or uncertain change in forest composition
during the 2,000 yr before Euro-American settlement,
and a few places and taxa changed substantially. Some

taxa experienced large changes (i.e., absolute change
>5% in relative abundance with probability >0.85) in
abundance, as did community composition in some
places (i.e., absolute change >0% in relative abundance
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of with a probability >0.85). These changes tended to be
localized and within a regional background of composi-
tional change that was on average small in magnitude
and often not significantly different from zero. However,
community stability without significant change in any
species is strongly statistically supported only in south-
eastern Minnesota.
The most dramatic change in the preindustrial forest

was the explosion of hemlock abundance in central Wis-
consin (Fig. 4), accompanied by a rise in beech in north-
ern Michigan. The Midwestern expansion of hemlock
has been studied intensively (Davis et al. 1986, Davis
and Sugita 1997), so the main contributions here are: (1)
the formal quantification of magnitude and significance,
and (2) establishing the anomaly of the large hemlock
rise relative to the more muted changes for other taxa.
At the epicenter of the hemlock expansion, hemlock
abundance doubled, going from 20% to 40% in the first
thousand years of our analysis, followed by a further
20% increase in the next thousand years. Remarkably,
although this expansion took place within 100 km of the
species’ western range limit, the increase in abundance
shows no signal of an accompanying westward expan-
sion of hemlock’s range, although this analysis may miss
the establishment of small outlier populations (Parshall
2002). Similarly, hemlock abundances 100 km east of
the hemlock growth peak were stable (Fig. 4). This rapid
but localized population growth rate of a species is con-
sistent with forest simulations of hemlock dynamics,
given its restricted seed dispersal and slow but persistent
growth in low light (Pacala et al. 1996).
The local expansion of hemlock in north central Wis-

consin was synchronous with other shifts in tree taxa,
perhaps suggesting a common forcing. To the west of
the peak of hemlock, pines increased in abundance and,
to the east, beech populations expanded (Fig. 3). As for
hemlock, the beech expansion was local, with no signal
of population growth elsewhere in the study area
(Appendix S1: Fig. S3b). In fact, beech populations
underwent a decline further east, in the central Great
Lakes region between 1,000 and 600 YB1950 (Booth
et al. 2012b).
A key feature of STEPPS is that its posterior taxon-

level estimates can be readily analyzed to quantify and
assess significance of community-scale features such as
ecotone shifts. We found that, over the last 2,000 yr, the
expansion of northern forest taxa into oak forests was
highest in northwest Minnesota (40 � 5 km), but we
detect almost no movement of the southern boundary in
central Wisconsin (but note the sparsity of pollen
records in that area: Fig. 1). As with hemlock, our work
provides quantitative backing for previous studies that
have identified both the general shift toward more
northern forest types along this ecotone and heterogene-
ity in the rates of this shift (McAndrews 1966, Jacobson
1979, Almendinger 1992, Nelson and Hu 2008, Williams
et al. 2009), but were not able to formally assess the sig-
nificance of these changes.

For most locations and times we find no statistically
significant evidence for either large change or stability.
The expected change in any taxon over any 500-yr inter-
val is less than 2%. For any 1,000-yr interval, the change
in posterior mean for any taxon is less than 3%. Even
across the largest time interval of almost 2,000 yr, only
9% of grid cells showed significant changes in any taxon
greater than 5% (Fig. 3). The aggregate data across the
region hence do not suggest large shifts in vegetation
over most areas over the 2,000 yr before Euro-American
settlement. Hence, for many regions of the UMW,
assumptions of late Holocene stability prior to Euro-
American settlement (Frelich 1995, Schimel et al. 2013),
or at least changes too subtle to be detected confidently,
are supported by the STEPPS model.
Although we do not formally assess here the role of

potential environmental drivers on these vegetation
changes, many of the above changes are consistent with
regional trends toward cooler and moister conditions
over the last 2,000 yr (Marlon et al. 2017). There is also
strong evidence that extensive droughts (Booth et al.
2012b) and changing fire regimes (Umbanhowar 2004,
Tweiten et al. 2015) have affected UMW vegetation. A
next key step is to combine these vegetation reconstruc-
tions with climate reconstructions for the last several
millennia (Ahmed et al. 2013) to understand better the
combination of external forcings, internal feedbacks,
and interaction of slow and fast processes (Svenning and
Sandel 2013) that produced the observed mixture of for-
est change and stability.

STEPPS calibration, smoothing, and signal-to-noise

STEPPS is well calibrated across our entire study area
(Dawson et al. 2016), so estimates of taxon abundance
across our study area should be unbiased. PLS data are
affected by surveyor biases (Kronenfeld and Wang 2007,
Bouldin 2008), but these effects are strongest for esti-
mates of stem density and biomass, which are not used
here, and the PLS-based data layers used here include
corrections for these biases (Goring et al. 2016, Cogbill
et al. 2018).
The STEPPS model as implemented here is best sui-

ted for detecting multi-centennial-scale changes in forest
composition. By borrowing strength across space and
time, the model induces some spatiotemporal smooth-
ing in estimates of compositional change, so rapid or
local changes in pollen abundances might be smoothed.
The Big Woods provide an example of how STEPPS
interprets rapid local changes. The expansion of Big
Woods mesic hardwood forests over the last millennium
is well established (Grimm 1983, Camill et al. 2003),
but STEPPS is confident that all changes in abundance
were less than 3% (Fig. 3). In the Big Woods region
(Fig. 6), the combination of noisiness in pollen data
and the coarse resolution of the 24-km grid tends to
smooth out local variation in vegetation. STEPPS
should accurately capture the magnitude of regional
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changes across grid cells at time intervals longer than a
few centuries.
Analyses of these posterior estimates show how esti-

mating vegetation changes from fossil pollen networks
can be affected by variations in signal-to-noise ratios
within and across taxa (Fig. 2). These ratios can change
spatially as a function of site density and abundances of
other taxa. STEPPS usually can confidently identify a
10% change in hemlock abundance, but a 10% change in
pine is only identifiable in some locations, because the
taxa have different signal-to-noise ratios (Fig. 2).
Increasing site density does not always help reduce these
uncertainties, because of inherent noise in the process of
translating pollen abundance to tree abundance. Such
issues have been well known in paleoecology since its
inception (Von Post 1916, Edwards et al. 2017), but full
representation of these uncertainties has been difficult
for traditional statistical methods.

Advantages of STEPPS modeling framework

An integrated statistical approach to ecological infer-
ence from paloecological data carries several advantages.
First, it allows an even-handed analysis of spatiotempo-
ral trends. STEPPS is well calibrated against the UMW
settlement-era pollen and vegetation data sets (Dawson
et al. 2016), so estimates of taxon abundance and uncer-
tainty scale appropriately over space and time. Uncer-
tainty is accordingly amplified in locations far from
fossil sites. At the resolution allowed by the data, we can
determine which time periods and spatial patterns
emerge beyond the noise, and that determination is con-
sistent with prior knowledge. Maple, for instance, is
known to be poorly represented in sedimentary pollen
(Jackson 1994), and our reconstruction of maple abun-
dance is appropriately uncertain (Appendix S1: Fig. S3f,
S5f). Accounting for the multiple sources of uncertainty
in paleodata helps gain confidence that significant
changes, when identified, represent real ecological sig-
nals (e.g., Fig. 3).
Second, calibration against forest data allows us to

make statistical inference about the long-term popula-
tion and community trends of trees, rather than of raw
pollen abundances, in terms and units relevant to
contemporary forest ecologists. The doubling time of
hemlock in central Wisconsin, for instance, was approxi-
mately 600 � 200 yr, and we can say with some degree
of statistical confidence that this increase was not
accompanied by detectable westward expansion (Fig. 4).
Understanding the long-term population growth rates of
trees (Giesecke et al. 2017) and the rates of biome shifts
(Williams et al. 2004) are of immense practical impor-
tance (Iverson et al. 2004), but palynology has always
faced the challenge of discriminating palynological and
taphonomic artifacts from ecological signals (Jackson
1994).
Third, because of this challenge, sometimes paleoecol-

ogists may have erred on the side of caution,

underemphasizing trends that were apparent in the data
but were difficult to report without a formal uncertainty
analysis. Hence, this statistical approach allows identifi-
cation of previously unidentified features of the prea-
groindustrial landscape. For example, the spread of
hemlock toward its western range boundary has been
widely reported (Davis et al. 1986), but changes in popu-
lation size have not been statistically estimated. In prior
papers (Heide 1984), the rapid expansion of hemlock is
apparent in the data, but was not commented upon. By
borrowing strength across all pollen counts in our
region, STEPPS was able to identify previously unre-
ported trends and better quantify previously observed
trends.
Finally, STEPPS’ process-based modeling of vegeta-

tion–pollen relationships and associated uncertainties
create new opportunities to use the recent fossil record
to constrain ecological forecasts for coming decades.
STEPPS is one of an emerging class of modeling frame-
works known as proxy system models (Evans et al.
2013), which aspire to represent the processes by which
environmental and ecological processes are recorded in
proxy observations. The posterior estimates from
STEPPS, which embed and integrate multiple sources of
uncertainty, can be used via state- or parameter-data
assimilation to test and refine the predictive ability of
forest simulators, helping close the loop between obser-
vational data and mechanistic models (Dietze et al.
2018), at timescales beyond that available to the instru-
mental record.
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