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ABSTRACT The microbiome has recently joined the club of endocrine entities of
the human body that are involved in homeostasis and disease. Microbiome charac-
terizations are now typically included in longitudinal and cross-sectional population
studies, associations with microbiome features have been made for almost any hu-
man disease, and the molecules by which the microbiome functionally contributes
to host physiology are being elucidated. The leverage of these efforts for human
health, however, is still rather modest. In this Perspective, we summarize some of
the challenges that need to be overcome in order to make microbiome studies as
informative for human health as genetic studies. Focusing on the role of the micro-
biome in host metabolism and inflammation, we also outline potential strategies
that can be employed to achieve the next milestones in the journey toward
microbiome-informed human health assessment and action.
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The successful completion of the human genome project over 15 years ago repre-
sented a milestone in medicine and enabled human diseases to be traced to causal

genetic variants, allowing treatments to be developed that were more specific and
more targeted. This has led to a wealth of genome-wide association studies (GWAS)
which enabled the characterization of disease-associated variances in the human
genome. GWAS, in turn, facilitated the study of disease genes and their role in the
complex pathogeneses of human diseases. However, two decades of GWAS have also
fortified the notion that the most prevalent human disorders, such as cardiovascular
disease, type II diabetes, obesity, neurodegeneration, and chronic inflammatory dis-
eases, cannot be fully explained by genetic variation (1). Rather, these diseases are not
only polygenic but also strongly influenced by environmental factors, as exemplified by
monozygotic twins discordant for their individual disease susceptibilities. In contrast to
the contributions that genetic variances make to human phenotypes, the specific
mechanisms and molecules by which environmental exposure and lifestyle modulate
disease susceptibility have remained unclear.

The realization that the microbiome connects the outside world and the body’s
physiology in multiple ways— by digesting food, metabolizing xenobiotics, and pro-
viding colonization resistance, among many other functions— has opened the door for
a more detailed mechanistic understanding of how the environment signals to the
body. This understanding has provided the ground for the identification of distinct
microbial species or microbial molecules that can subsequently be targeted for thera-
peutic purposes, analogous to traditional modulations of aberrantly abundant or
dysfunctional host-derived molecules in various disease contexts. Indeed, microbiome-
wide association studies (MWAS) have attempted to pursue a GWAS-like strategy in
order to find associations between the metagenome and phenotypic traits (2). Numer-
ous examples have since been found in which specific taxonomic features of the
microbiota statistically associated with a particular health outcome. Why then have
MWAS not yet been translated into clinical applications and applied pharmacology?
Inflammatory bowel diseases (IBD) may serve as a good example, given the clear role
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of the microbiome in its pathophysiology. Soon after completion of the human genome
project, IBD susceptibility genes were discovered, among them, NOD2 (3), the
interleukin-23R (IL-23R) pathway (4), and the autophagy gene ATG16L1 (5, 6). These
have since served as actionable drug targets in clinical trials. While MWAS of IBD did
yield significant associations of microbial taxa with disease outcome (7), it has been less
obvious how to harness this knowledge for combating the disease. While the sheer
time that it takes from basic discovery to clinical application is certainly one of the
reasons why recent MWAS have not yet manifested in palpable clinical outcomes, there
are multiple additional reasons why MWAS have so far led to fewer actionable insights
than GWAS. In the following, we highlight some of the field’s challenges for the coming
decade and outline strategies by which they might be overcome (Fig. 1).

First, the human genome is represented by a linear string of characters with “digital”
variances. Associating alterations in this linear sequence with phenotypic traits is
conceptually and computationally intuitive. In the case of the microbiome, the situation
is far more “analog” and complex, since numerous parallel and partially overlapping
linear genomes constitute the metagenome. The relative abundances and phenotypic
contributions of these individual genomes are highly variable and idiosyncratic. Rather
than employing nucleotide variances, MWAS have therefore primarily relied on linking
relative abundances of genes (and, in many cases, only taxonomic groups) with disease
phenotypes, which is less informative in terms of protein function than polymorphisms
in a linear genome. “Digitalizing” the microbiome to enhance the resolution of MWAS
can be achieved in multiple ways: linking phenotypic traits to microbial copy number
variations, focusing on strain-level variances in bacterial genomes, tracing horizontal
gene transfers through long-read sequencing, and advancing our understanding of
genome-to-proteome relationships in the microbiome. Recent explorations of struc-
tural variants in the microbiome have indicated that such an approach provides an
important layer of information that is associated with host health (8). Routinely incor-
porating these into MWAS will greatly enhance their power and sensitivity, thereby
getting closer to the conceptual analog of a “metagenomic single-nucleotide polymor-
phism.”

Second, in contrast to the host genome, which remains constant over the orga-
nism’s life span (perhaps with the exception of accumulated somatic mutations), the
microbiome is highly dynamic in both the temporal and spatial dimension. Several
body sites are colonized by commensal microorganisms, including the skin and the
gastrointestinal, respiratory, and urogenital tracts. The relative contributions of the
metagenomes at all of these sites to human health are not easily quantified. Even
within each of these organs, the microbiome displays strong regional features and is
unequally distributed with respect to both taxonomic composition and functional
output. Furthermore, the microbial communities are evolving over time, with a pro-
found impact on host health (9). As such, cross-sectional association studies in analogy
to GWAS are less likely to achieve an accurate representation of the microbial genetic
predisposition to a disease. Rather, longitudinally performed MWAS might enable us to
identify intermediate time points associated with the initiation of a disease state. These

FIG 1 Schematic of five areas of microbiome research undergoing active developments toward harnessing the metagenomic influence on host health.
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transient microbiome configurations might be more informative than stable states
which might be a consequence rather than cause of a disease (10).

Third, the majority of MWAS have focused on clinically defined endpoints, such as
liver cirrhosis, atherosclerosis, or Crohn’s disease, among many others (2). While using
such clinically defined endpoints is plausible for GWAS, where the underlying assump-
tion is that a genetic variance directly correlates with disease risk in a digital manner,
this conjecture is less applicable to the metagenome. Microbiome variations often
influence host biological processes in subtler, more finely grained ways than genetic
alterations. As such, microbiome-controlled variances in host physiology and patho-
physiology may not always fall into the categories associated with clinically diagnosed
diseases. As a result, associations of clinical endpoints with specific metagenomic
features are harder to achieve, especially in light of the temporal and spatial dynamics
discussed above. For instance, if the function of an enzyme is essential in the patho-
physiology of a disease and if a genetic variant leads to loss of function of the
enzyme-encoding gene, then a GWAS approach will detect the variant as disease
associated. In contrast, microbiome-derived molecules may modulate the function of
this enzyme in ways that are more subtle than clear gain or loss of function. Attempting
to reduce the effects of the microbiome to clinically defined endpoints introduces
analytical tunnel vision in categorizing metagenomic effects. Moving forward, the field
will greatly benefit from shifting the focus from disease phenotypes to broader health
parameters. For instance, instead of determining the microbiome impact on athero-
sclerosis, it might be more informative to associate microbiome features with blood
cholesterol levels, vascular macrophage biology, systolic blood pressure, etc. Indeed,
the initial MWAS of individual parameters of host physiology have shown great promise
(11) and will be a useful tool to disentangle specific metagenomic influences from
composite disease outcomes. This more extensive focus on metagenome associations
with health rather than with disease will be facilitated by inclusion of microbiome
features in electronic health records. Similar to personal lifestyle elements such as
smoking, diet, and physical activity, recording microbiome features associated with
health parameters across the human population will prove immensely informative with
regard to determining metagenomic states that are optimal for human health.

Fourth, given the difficulty in stably modulating the microbiota for therapeutic
purposes, focusing on microbiota-derived metabolites in MWAS is emerging as a
powerful strategy to link disease outcomes to the functional (rather than taxonomic)
state of the microbiome (12). Indeed, this approach has started to yield functional
insights into disease etiologies (13) that not only go beyond knowledge about the
microbial ecosystem achieved by taxonomic survey but also provide a more direct view
of potential therapeutic interventions.

Finally, the use of artificial intelligence (AI) approaches has enabled microbiome-
based predictions of phenotypic outcomes (14). These are valuable in assessing those
microbiome variables with the highest contribution to predictive power. However,
several challenges remain, including those represented by cases in which (i) the
structured data are more limited in availability, (b) the outcome is highly dimensional
and phenotypically complex, and (c) the outcome is nonstatic in nature, i.e., changes
are desirable. The latter point is essential for the ability of AI technologies not only to
map influences of the microbiome on human health parameters but also to harness this
knowledge and provide actionable insights of clinical relevance. Areas of computa-
tional development, including deep neural networks, along with the generation of
large databases of information regarding host-microbiome interactions may facilitate
this development (15). New machine learning strategies, such as those using ecological
principles to infer the likelihood for a particular microbe to impact intestinal microbial
ecology, together with information about within-host microbiome evolution and mi-
crobiome adaptation to different environmental conditions, may not only determine
significant microbiome parameters which influence host physiology but also predict
the effects of modulating these parameters in individuals.

Together, these steps toward digitalization of the microbiome will greatly improve
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our ability to derive clinically and pharmacologically meaningful action items from
microbiome surveys. Microbiome science has introduced numerous revolutionary con-
cepts of how we think about many aspects of human physiology. The time is ripe to use
these insights to start revolutionizing many aspects of human medicine.
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