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Abstract

Background

The cat flea, Ctenocephalides felis, is prevalent worldwide, will parasitize animal reservoirs

of plague, and is associated with human habitations in known plague foci. Despite its perva-

siveness, limited information is available about the cat flea’s competence as a vector for

Yersinia pestis. It is generally considered to be a poor vector, based on studies examining

early-phase transmission during the first week after infection, but transmission potential by

the biofilm-dependent proventricular-blocking mechanism has never been systematically

evaluated. In this study, we assessed the vector competence of cat fleas by both mecha-

nisms. Because the feeding behavior of cat fleas differs markedly from important rat flea

vectors, we also examined the influence of feeding behavior on transmission dynamics.

Methodology/Principal Findings

Groups of cat fleas were infected with Y. pestis and subsequently provided access to sterile

blood meals twice-weekly, 5 times per week, or daily for 4 weeks and monitored for infec-

tion, the development of proventricular biofilm and blockage, mortality, and the ability to

transmit. In cat fleas allowed prolonged, daily access to blood meals, mimicking their natural

feeding behavior, Y. pestis did not efficiently colonize the digestive tract and could only be

transmitted during the first week after infection. In contrast, cat fleas that were fed intermit-

tently, mimicking the feeding behavior of the efficient vector Xenopsylla cheopis, could
become blocked and regularly transmitted Y. pestis for 3–4 weeks by the biofilm-mediated

mechanism, but early-phase transmission was not detected.

Conclusions

The normal feeding behavior of C. felis, more than an intrinsic resistance to infection or

blockage by Y. pestis, limits its vector competence. Rapid turnover of midgut contents

results in bacterial clearance and disruption of biofilm accumulation in the proventriculus.

Anatomical features of the cat flea foregut may also restrict transmission by both early-

phase and proventricular biofilm-dependent mechanisms.
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Author Summary

Although plague primarily affects wild rodents, human plague outbreaks still occur peri-
odically in some areas of the world. Yersinia pestis, the bacterial agent of plague, is trans-
mitted by fleas. Cat fleas are abundant worldwide, regularly infest human habitations in
plague endemic areas, and readily bite humans. The cat flea has long been considered to be
a poor vector, but this reputation is based on very limited studies; and in general the rea-
sons why some flea species are better vectors than others are not well understood. We
found that cat fleas can transmit Y. pestis, but at rates strongly influenced by feeding fre-
quency after the infectious blood meal. When infected cat fleas had unrestricted access to
blood (their preferred feeding pattern), most rapidly cleared the infection and they trans-
mitted only during the first week after infection. However, when post-infection blood
meals were limited to mimic patterns typical of efficient flea vectors, cat fleas regularly
transmitted for one month after infection. Our results indicate that cat fleas in their natu-
ral environments have limited potential to develop transmissible infections. However, if
their regular daily feeding habit is interrupted, they can be capable vectors.

Introduction
The cat flea, Ctenocephalides felis, is a mammalian ectoparasite commonly found on domesti-
cated animals, and, by association, humans [1]. C. felis is a known vector for the bacterial patho-
gens Rickettsia felis, R. typhi, and Bartonella spp. [2–4]. However, relatively limited information
is available regarding the cat flea’s competency as a vector for Y. pestis and its potential role in
plague ecology and epidemiology. Cat fleas parasitize a wide range of animals including cats,
dogs, livestock, wild mammals, and occasionally rats [1,5–8]. C. felis confirmed positive for Y.
pestis have been collected from the Democratic Republic of Congo [9]. In addition, C. felis is the
predominant species associated with human habitations in plague endemic regions of China
and Uganda [10,11]. Their broad geographic range, low host specificity, and willingness to bite
humans elevates the importance of investigating cat fleas as a vector of Y. pestis [12,13].

Y. pestis is the etiologic agent of plague, a zoonotic disease that is typically maintained in
wild rodent populations. The most common presentation of the disease is bubonic plague, in
which bacteria deposited into the dermis of a mammalian host from the bite of an infected flea
migrate to the draining lymph node and quickly multiply. Without therapeutic intervention,
plague bacilli frequently enter the host blood stream and disseminate throughout the body
[14]. When a host is in the bacteremic stage of disease, fleas ingesting a blood meal can become
colonized by Y. pestis. If the flea is unable to clear the infection, Y. pestis will produce an exopo-
lysaccharide that allows bacteria to aggregate and form a biofilm in the flea digestive tract [15].
Y. pestis biofilms can form in the flea midgut, the proventriculus (a valve in the foregut that
when closed prevents the reflux of ingested blood back into the esophagus), or in both locations
[16,17]. As it gradually accumulates, the biofilm can completely block the passage of blood
through the proventriculus, rendering the flea incapable of taking future blood meals [18].
Blocked fleas will make repeated feeding attempts, during which plague bacilli can be dissoci-
ated from the biofilm and refluxed into a feeding site [19].

Biofilm-mediated transmission can occur as early as one week after infection, but is more
commonly observed after two weeks or more of infection [20]. This is a biological transmission
mechanism, in that the bacteria actively colonize, replicate, and undergo developmental
changes within the vector in order to become infectious [21–23]. The rat flea Xenopsylla cheo-
pis is considered the most efficient vector of Y. pestis due to its high potential to become

Cat Flea Feeding Behavior Modulates Vector Competence for Y. pestis

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004413 February 1, 2016 2 / 25



infected and blocked [24]. Reported blockage rates vary considerably among other flea species
thought to be important vectors for Y. pestis [25]. However, most of these blockage rates were
not determined in controlled laboratory settings with defined infectious doses, making com-
parisons between studies difficult to interpret.

Y. pestis can also be transmitted via a biofilm-independent mechanism termed early-phase
transmission (EPT) [26–29]. This mode of transmission occurs primarily upon the first feeding
of the flea within 4 days after an infectious blood meal containing a high titer of Y. pestis [30].
The mechanism of EPT has not been determined. The brief time period immediately after flea
infection during which EPT occurs fits a mechanical transmission model whereby contamina-
tion of flea mouthparts with plague bacilli results in bacterial deposition into the host dermis
[31]. However, regurgitation of digestive tract contents has been hypothesized to be a more
likely explanation [30].

Previous studies of C. felis vector competence for Y. pestis primarily examined EPT using
low numbers of infected fleas, short infection periods, and small animal models. The Indian
Plague Research Commission [31] and Devignat [32] were able to successfully infect cat fleas
with Y. pestis, but did not observe transmission when groups of 20–25 infected cat fleas were
used to challenge naïve mice or guinea pigs during the first week after infection. These results
are contrary to those of Verjbitski and Eisen et al., who did detect EPT by cat fleas, although at
low efficiency compared to other flea vectors (5–33% transmission rate to mice or rats chal-
lenged by groups of 7–11 infected cat fleas) [26,33]. Wheeler & Douglas showed that 50
infected cat fleas placed on a naïve guinea pig during the first week after infection transmitted
Y. pestis, but challenge with individual fleas did not result in transmission [27]. They also
reported seeing evidence of infection but not proventricular blockage in histological sections of
infected cat fleas [27,34]. More recently, Tam et al. demonstrated that Y. pestis could form a
biofilm in the proventriculus of C. felis, indicating the potential for cat fleas to transmit through
a biofilm-mediated mechanism [35]. Taken together, these studies suggest that cat fleas are
capable yet inefficient at EPT but have not been evaluated for their ability to transmit via block-
age-dependent transmission. The reason for the cat flea’s relative inefficiency as a vector by
EPT has not been established.

A number of factors have been postulated to contribute to flea vector competence for plague
including the anatomy of the flea proventriculus, physiological conditions in the gut, as well as
environmental conditions such as temperature [17,20,36]. However, little is known about how
different feeding behaviors influence vector competence. In the wild, cat fleas prefer to remain
associated with their host and are frequent blood feeders. Females can ingest 15 times their body
weight in blood per day [37]. In contrast, X. cheopis andOropsylla montana, flea vectors fre-
quently implicated in plague transmission cycles, feed much more intermittently [24,30,38,39].

In this study, we used standardized, well-defined methodologies to determine the infection
potential, the incidence of proventricular blockage, and vector competence of cat fleas with
respect to Y. pestis. Cat fleas were maintained using different feeding schedules after infection
to determine whether their specialized feeding behavior influences long-term infection and
transmission potentials. In addition, we compared the foregut anatomy of C. felis and X. cheo-
pis to identify traits that could potentially influence the reflux of Y. pestis from the digestive
tract and transmission efficiency.

Materials and Methods

Flea colony maintenance
Cat fleas were obtained from El Labs (Soquel, California) and were reared in a climate-con-
trolled incubator at 25°C and 75% relative humidity (RH). The bottom of the high-walled
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container housing the flea colony contained a layer of flea bedding (mixture of fine sawdust,
powdered milk, powdered mouse chow, and dried blood) for larval development and pupation.
The colony was fed 8 hours/day, Monday through Friday on sterile defibrinated sheep blood
(Quad Five, Rygate, Montana) using the 5W1 membrane feeding system (Hemotek Ltd, Lan-
caster, England). Parafilm “M” was stretched over the blood meal reservoir to serve as a feeding
membrane [40]. Sterile gauze was tightly fitted over the parafilm membrane to aid in flea
attachment and feeding. The feeding unit was set to 37°C and suspended above the bedding
layer in the flea colony. X. cheopis fleas were from established colonies at Rocky Mountain Lab-
oratories maintained as previously described [41].

Flea infection
Adult cat fleas were removed from the colony and starved for 5 days prior to infection. Fleas
were infected with the Y. pestis strain KIM6+ (Pgm+, Lcr-) transformed with pAcGFP1 (ampr),
a plasmid that encodes a constitutively expressed green fluorescent protein gene (Clontech,
Mountain View, CA). A frozen stock of Y. pestis KIM6+ (pAcGFP1) was used to inoculate
brain heart infusion broth (BHI) supplemented with 10 μg/ml hemin and 100 μg/ml carbenicil-
lin. Following 24 hours of incubation without aeration at 28°C, the culture was diluted 1:100 in
100 ml of BHI supplemented with carbenicillin and then incubated for 16–18 hours at 37°C
without aeration. A volume of culture estimated by optical density measurement to contain
~1.2x109 CFU was centrifuged at 5000 rpm for 5 minutes and the pellet was resuspended in 1
ml of sterile phosphate buffered saline (PBS). The bacterial suspension was added to 5 ml of
heparinized mouse blood (initial bacterial concentration ~2x108 CFU/ml, a biologically rele-
vant level of bacteremia that has been routinely used for transmission studies [25,30,42]) and
this blood was added to the feeding apparatus that has been described previously [15]. Approx-
imately 300 fleas were given the opportunity to feed for 4 hours, collected, immobilized by
placing them on ice, arrayed on a chill table, and screened using a dissecting microscope for the
presence of fresh red blood in the midgut. Fleas that did not take a blood meal were removed
from the study. Low- and high-frequency experimental group fleas fed on the same infectious
blood meal and were then segregated; moderate-frequency group fleas were infected separately.
Rat fleas were infected identically as described above but were only allowed to feed for 1 hour
on the infectious blood meal. The bacterial concentration in the infectious blood meal was
determined by removing a sample immediately after adding bacteria to the blood and again
after the 4-hour feeding period, and plating serial dilutions on blood agar plates (BA) supple-
mented with carbenicillin. Colonies were counted after incubation at 28°C for 48 hours.

Maintenance of infected fleas
Three groups of cat fleas (approximately equal numbers of males and females) were housed in
plastic capsules and kept at 21°C, 75% RH. For every experiment, one capsule of ~100 infected
cat fleas was used to monitor blockage, mortality, and bacterial transmission; and a second cap-
sule of ~150–200 infected fleas was used to determine infection rates, bacterial titers, and sever-
ity of proventricular infection. A third capsule of ~100 cat fleas that fed on sterile blood served
as a matching uninfected control and was used to track mortality. All three capsules were given
maintenance (uninfected) blood meals over a 28-day period according to one of the following
schedules: twice a week on Tuesdays and Fridays for 4 hours (low frequency), 5 times a week,
Monday through Friday for 4 hours (moderate frequency), or daily for 18–22 hours (high fre-
quency). Maintenance feeding schedules for all 3 groups began 22 hours after cat fleas were ini-
tially infected. For each maintenance feed, capsules containing the cat fleas were secured to the
bottom of a Hemotek feeder, set up as described above and incubated at ambient room
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temperature (21–22°C) and humidity. Cat fleas fed at high frequency remained exposed to the
feeding unit except for the 2–6 hours between feedings. Blood fed to the high-frequency group
was supplemented with 100 μg/ml carbenicillin to prevent overgrowth of bacterial contami-
nants; this was not necessary for the low- and high-frequency groups, which fed for only 4
hours. Rat fleas received maintenance blood meals twice a week as previously described [43].

Flea blockage, mortality, and infection rate
Immediately following each maintenance feed, flea mortality was recorded and the fleas were
screened microscopically for signs of proventricular blockage (the presence of fresh red blood
in the esophagus and not in the midgut). Upon diagnosis of blockage, blocked fleas were
removed from the group and placed in a separate capsule to monitor their survival and trans-
mission independently from the larger experimental populations. Blocked flea mortality was
included in group mortality rate calculations. Non-blocked fleas were returned to the original
capsule.

Samples of 10–20 fleas (approximately equal numbers of males and females) were collected
immediately after the infectious blood meal, and at weekly intervals post-infection, and stored
at -80°C. Subsequently, fleas were surface sterilized with successive washes of 3% hydrogen per-
oxide, 95% ethanol, and sterile distilled H2O. Individual fleas were mechanically disrupted in
1ml of PBS using lysing matrix H beads and a bead beating apparatus (MP Biomedicals, Santa
Ana, California). Dilutions of the triturated fleas were plated in BHI soft agar overlays, supple-
mented with carbenicillin and 10 μg/ml hemin to determine the infection rate and average
CFU per infected flea.

Mass transmission
Following maintenance feedings on sterile blood, fleas were removed, the blood meal reservoir
was detached from the heating unit, and the blood was collected, avoiding potential contamina-
tion from the outer surface of the parafilm. The entire 2.4 ml of blood was distributively plated
on BA plates with carbenicillin. The reservoir was washed once with 500 μl of sterile PBS to
recover any residual blood, which was also plated. CFUs were counted after 2–3 days incuba-
tion at 28°C; colonies were confirmed to be GFP-positive.

Transmission by individual blocked cat fleas
The day after a flea was diagnosed as blocked, it was allowed to feed by itself for 4 hours in a
Hemotek feeding unit. At the end of the feeding period, fleas were screened for signs of
attempted feeding and persistence of blockage, and blood meal reservoirs were screened for
bacterial transmission by CFU count (as above). Fleas were categorized as still blocked (and
transmitted), still blocked (did not transmit), fed (cleared blockage), or did not attempt to feed.
Following feeding, fleas were returned to the housing capsule, placed in the 21°C/75% RH incu-
bator, and were either dissected or monitored for survival without any additional opportunities
to feed.

Estimated transmission efficiency
Transmission efficiency (maximum likelihood estimation or MLE) per individual flea was cal-
culated based on the results of three independent mass transmission experiments using Micro-
soft Excel Add-In PooledInfRate version 4.0 software that has been used previously to
determine cat flea transmission efficiency [33]. The estimation is based on the number of
blood meal reservoirs exposed to a potentially infectious flea population, the number of
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infected fleas that fed on the feeding unit, and whether or not bacteria were recovered from the
feeding unit at the end of the feeding period (successful transmission). This calculation requires
that 1) at least one infected flea fed on a given day; and 2) the three feeding events were not all
positive for bacterial transmission. In cases where both of these conditions were not met, the
estimated transmission efficiency was unable to be calculated. The number of fleas that fed in
mass transmission experiments that were still infected was calculated based on the weekly
infection rate determinations described above.

Flea dissection and microscopy
Fleas were placed in 20 μl of PBS on a glass microscope slide and dissected with a set of fine for-
ceps. The flea exoskeleton was removed and in most cases an 18 x 18 mm glass cover slip was
gently placed over the top of the digestive tract. Images of flea digestive tracts and bacterial bio-
films were obtained using a Nikon Eclipse E800 microscope. Fluorescent images of bacterial
biofilms and flea digestive tract F-actin were observed with the B-2A (450–490 EX) and the G-
2E/C (540/25 EX) fluorescent filters (Nikon). Measurements of the width of the base of the
esophagus, the proventriculus, and the muscle layer surrounding the proventriculus were per-
formed using Olympus cellSens imaging software on randomized, coded (blinded) images. All
graphically represented measurements were from digestive tracts where a cover slip was
applied. Whole fleas were observed and imaged with a Nikon SMZ 1500 dissection microscope.
All pictures were obtained with an Olympus DP72 camera and cellSens software.

Actin staining
Digestive tracts dissected from female C. felis and X. cheopis were transferred to a 1.5 ml tube,
fixed with 4% formaldehyde for 1 hour, permeabilized with 0.5% Triton X-100 for 15 minutes,
blocked with 3% bovine serum albumin for 1 hour, and stained with Alexa Fluor 594 Phalloi-
din (Life Technologies) for 20 minutes per the manufacturer’s instructions. Following each
step, digestive tracts were washed 3 times in PBS. Stained digestive tracts were mounted with
ProLong Gold anti-fade reagent (Life Technologies).

Statistical analysis
All analyses (except estimated transmission efficiency) were performed using SigmaPlot v12.5
(Systat Software Inc., San Jose, Ca.) or GraphPad Prism 6 (GraphPad Software Inc., La Jolla,
Ca.). Three independent infection experiments were done for each of the feeding-frequency
groups. Statistical tests used and relevant p values are indicated in the figure legends.

Results

Feeding frequency influences colonization of the cat flea digestive tract
by Y. pestis
The feeding frequency of C. felis is markedly different from certain fleas that are well-estab-
lished vectors of Y. pestis (e. g. X. cheopis and O.montana). As a demonstration of this, 100 C.
felis and X. cheopis fleas were starved for 5 days, and then allowed to feed for either 4 or 24
hours on sheep blood. Greater than 90% of fleas of both species took at least one blood meal
during the experiments. In the artificial membrane feeding system used, fleas feed from below,
and fecal material drops down to soil the bottom of the housing capsule. Images of the capsules
at the end of the feeding period provide a comparative estimation of the amount of blood con-
sumed and defecated. Cat fleas produced copious amounts of fecal material relative to X. cheo-
pis over both a 4- and 24-hour feeding period (Fig 1). Based on the amount of fecal material
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produced by C. felis, cat fleas ingest and passage blood through their digestive tract much more
frequently than X. cheopis. These results are consistent with previous observations of cat flea
feeding behavior [44] and are shown to contrast the differences in feeding behavior between
the two flea species.

To determine how differences in feeding frequency might influence colonization of the cat
flea digestive tract, groups of cat fleas were infected by allowing them to feed on blood contain-
ing ~2x108 CFU/ml of Y. pestis KIM6+ (pAcGFP1). Fleas that took an infectious blood meal
were placed into one of three different groups that were provided uninfected maintenance
blood meals twice a week for 4 hours (low frequency), five times a week for 4 hours (moderate
frequency), or daily for 18–22 hours (high frequency) over a period of one month (Fig 2A). As
expected, the initial infectious dose was equivalent for all three groups (Fig 2B, day 0). How-
ever, one week after infection, cat fleas fed at low or moderate frequency had significantly
greater infection prevalence (~70%) and bacterial loads than fleas fed at high frequency (Fig 2C
and 2D). The majority of cat fleas allowed to feed daily (high-frequency group) had cleared the
digestive tract of infection, with only 10% of fleas remaining infected after one week, and these
individuals had significantly lower bacterial burdens than infected fleas in the other two groups
(Fig 2B, day 7). By day 14, only 2 of the 60 fleas allowed daily maintenance feeds remained
infected. Cat fleas fed at low or moderate frequency had similar Y. pestis infection rates and
bacterial loads throughout most of the infection. By day 28, on average, 22–43% of C. felis that
fed at low or moderate frequency remained infected with Y. pestis, whereas all cat fleas that fed
at high frequency cleared the infection (Fig 2C). Therefore, cat flea feeding frequency signifi-
cantly influences Y. pestis colonization of the digestive tract. The uninfected control flea groups
also revealed a fitness cost associated with decreasing the cat flea’s preferred frequent feeding
behavior. Control fleas fed daily had a significantly lower mortality rate (~16%) over the
28-day experiments than fleas fed only twice per week (~29%; Fig 2D). Maintenance blood
meals of the group fed at high frequency were supplemented with carbenicillin in this study,
but this had no discernable effect on flea fitness (Fig 2D).

Cat flea feeding frequency influences the development and severity of
proventricular infection
Amajor transmission mechanism of Y. pestis depends on the formation of sufficient bacterial
biofilm in the proventriculus to impede normal blood flow during feeding. To determine the
capacity of C. felis to support a proventricular infection, a total of 38–60 cat fleas maintained at
the low-, moderate-, or high-frequency feeding schedules were dissected one week after infec-
tion with Y. pestis KIM6+ (pAcGFP1). Flea digestive tracts were visualized by fluorescence
microscopy and categorized as uninfected (no fluorescent biofilm detected, Fig 3A) or infected,

Fig 1. Cat fleas feedmore often than rat fleas when given unrestricted access to blood. 50 male and 50
femaleC. felis or X. cheopis fleas were starved for 5 days, placed into a clean capsule, and allowed to feed
for either 4 or 24 hours on defibrinated sheep blood in an artificial membrane system. Images show the
amount of fecal material that soiled the bottom of the capsule at the end of the feeding period.

doi:10.1371/journal.pntd.0004413.g001
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Fig 2. Feeding frequency influences colonization of the cat flea digestive tract by Y. pestis. Fleas that took a single infectious blood meal that
contained ~ 2x108 CFU/ml of Y. pestiswere subsequently provided uninfected maintenance feeds at low frequency (twice weekly for 4h), moderate
frequency (five times weekly for 4h), or high frequency (daily for 18-22h) according to the schedule shown in (A). Black and grey bars indicate the infectious
and maintenance blood meals, respectively; and the width of the bar corresponds to the 4h or 18-22h feeding period. (B) The bacterial load in individual fleas
from the low-, moderate-, and high-frequency groups was determined in samples of 10–20 fleas collected immediately after the 4h infectious blood meal (day
0) or at 7–28 days after infection. The low- and high-frequency groups fed on the same infectious blood meal prior to segregating them. Horizontal bars
represent the mean CFU/flea; dotted lines indicate the limit of detection (40 CFU). The cumulative results of three independent experiments are shown (Day
0, n = 60; Day 7, n = 60; Day 14, n = 54, 60, 60); Day 28 n = 50, 60, 40). *p <0.05 by Student’s t-test (Day 0) or by Kruskal-Wallis test with Dunn’s multiple
comparison (Day 7–28). (C) Infection rate (percentage of fleas from which CFUs were recovered) at different times after infection. The mean and range of 3
experiments are indicated; *p <0.0166 by chi-square test with Bonferonni’s post-test. (D) Cumulative mortality of infected fleas and uninfected control fleas at
the end of the 28-day experiments. The mean and standard deviation of 2–3 experiments with each of the three feeding frequency groups are indicated (low,
n = 312, 310; moderate, n = 292, 276; high, n = 184, 214; cumulative number of infected fleas and uninfected control fleas, respectively). *p <0.0055 by chi-
square test with Bonferonni post-test; NS = not significant.

doi:10.1371/journal.pntd.0004413.g002
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with biofilm localized to the midgut only (Fig 3B), or to both the midgut and proventriculus.
Proventricular infections were scored as either light-moderate (the biofilm covered< 75% of
the proventricular surface area; Fig 3C) or heavy (the biofilm covered�75% of the proventric-
ulus; Fig 3D). Consistent with the bacterial CFU plating data (Fig 2B), only 12% of fleas fed at
high frequency were still infected (green-fluorescent bacteria observed), compared to ~70% of
fleas fed at low or moderate frequency (Fig 3E). By this 7-day time point, infection was charac-
terized by large aggregates of GFP-positive bacteria (Fig 3B–3D). The percentage of infected
fleas in which the bacterial aggregates had localized only to the midgut was significantly higher
in the group fed at high frequency (~85%) than in the group that fed at moderate frequency
(17%); and none of the fleas in the low frequency feeding group had a midgut-only infection–
the proventriculus was always colonized to some extent (Fig 3F). The relative amount of pro-
ventricular biofilm also differed among the three groups. Between 37 and 55% of cat fleas fed at
low to moderate frequency had developed a light-moderate proventricular infection; 63% of
infected fleas fed at low frequency and 28% of infected fleas fed at moderate frequency had a
heavily colonized proventriculus one week after infection (Fig 3G and 3H). In sharp contrast,

Fig 3. Cat flea feeding frequency influences severity of proventricular infection. 38–60 mixed-sex cat fleas were dissected 7 days after a blood meal
containing ~2x108 Y. pestis KIM6+ (pAcGFP1) CFU/ml and the digestive tracts were visualized with fluorescence microscopy for the presence and
localization of a Y. pestis biofilm. Representative images of an uninfected flea (A; no visible bacteria in the digestive tract; the spines of the proventriculus
[PV] autofluoresce yellow); a flea with an infection only in the midgut (MG) (B; no green-fluorescent bacteria observable in the PV); and fleas with a light-
moderate PV infection (C; <75% bacterial coverage of the PV) or a heavy PV infection (D;�75% bacterial coverage of the PV). Areas that appear white are
due to fluorescence overexposure when acquiring the image. Scale bars = 100 μm (A, B) or 50 μm (C, D). (E-H) The percentage of infected fleas (E), and of
those, the percentages with midgut-only infections (F), and with midgut plus light-moderate (G) or heavy (H) PV infections in three independent infection
experiments for the three feeding-frequency groups are shown; bars indicate the mean. Each symbol represents an individual experiment. One experiment
with the high-frequency group had no infected fleas at 7 days (thus only two symbols shown for this group in F-H). Numbers in parentheses indicate the
number of positives/total number of fleas examined. * p < 0.0166 by chi-square test with Bonferonni post-test; NS = not significant.

doi:10.1371/journal.pntd.0004413.g003
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only 7 of 56 fleas in the high-frequency feeding group were infected, and only one of these
infections had localized to the proventriculus. Thus, the severity of proventricular infection is
inversely correlated with feeding frequency.

Cat flea proventricular blockage rate is strongly influenced by feeding
frequency after the infectious blood meal
Given the heavy proventricular infection observed in some fleas, it seemed plausible that they
could eventually become blocked. Fleas were monitored for the development of proventricular
blockage over the 28-day infection period. Immediately following each maintenance feed, fleas
were individually examined microscopically for blockage. Cat fleas identified as blocked consis-
tently displayed red blood in the esophagus as well as dark midgut contents, likely consisting of
a combination of partially digested blood from previous blood meals and bacterial aggregates
(Fig 4A). Of the 58 fleas diagnosed as blocked, 44 were dissected to confirm the presence of a
bacterial biofilm that filled the proventriculus. Even after dissection, red blood could be seen in
the esophagus and the proventriculus was obstructed by a bacterial mass that occasionally
extended outward, beyond the base of the esophagus (Fig 4B and 4C).

During the four-week period following an infectious blood meal, up to 15.2% of cat fleas
developed complete blockage of the proventriculus (Table 1). However, the blockage rate corre-
lated strongly with decreased frequency of maintenance feeds. None of the fleas permitted to
feed daily after infection became blocked, whereas ~12% of fleas in the low feeding-frequency
group became blocked. Fleas in the moderate-frequency group had an intermediate blockage
rate of ~7%. Fleas became blocked as early as day 6 post-infection and as late as day 28 in both
the low and moderate frequency groups, with a mean time to blockage of 16.5 and 14 days,
respectively, which was not significantly different (Table 1). The mean time to blockage for all
blocked fleas was 15.8 ± 6.8 days (n = 58, 34♀/24♂,). Our data demonstrate that cat fleas feed-
ing at their normal high-frequency (daily) rate for extended periods of time (18–22 hours) are
unlikely to become infected and blocked by Y. pestis, but they can become blocked if access to
daily blood meals from an uninfected host is restricted.

Proventricular biofilm interferes with normal blood feeding and fleas that are completely
blocked rapidly starve. Thus, increased mortality is an indirect indicator of the severity of pro-
ventricular infection. The mortality rate of infected fleas correlated with their observed rates of
heavy proventricular infection and complete blockage, with fleas in the low-frequency feeding
group having the highest rates of all three (Figs 2D and 3, Table 1). For example, ~60% of fleas
randomly selected from the low-frequency group had a heavy proventricular biofilm infection
by day 7 (Fig 3D–3H), which may impede blood feeding enough to effect fitness. Overall, the
data indicate that the severity of proventricular infection with Y. pestis is inversely correlated
with feeding frequency.

Transmission potential of Y. pestis-infected cat fleas
Due to the capacity for cat fleas to develop heavy proventricular infections that can lead to
blockage, we wanted to assess the cat flea’s competence as a vector. To do this, bacterial trans-
mission was screened in a “mass” transmission experimental model. After each regularly
scheduled maintenance feed on sterile blood by groups of ~100 infected fleas, the entirety of
the feeding unit’s blood reservoir was plated for recovery of viable Y. pestis. Cat fleas fed at low
to moderate frequency were capable of transmitting throughout the 28-day period (Fig 5A and
5B). However, fleas allowed to feed at high frequency only transmitted over the first 8 days of
infection, with the majority of transmission events occurring during the first 4 days (Fig 5C).
The percentage of feeding days in which transmission occurred was inversely correlated with
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Fig 4. Y. pestis is capable of producing proventricular blockage inC. felis. (A) Female cat flea blocked
with Y. pestis expressing GFP, examined immediately after a feeding attempt. Fresh red blood is present in
the esophagus only (arrow), with none in the midgut, which contains dark, digested blood from previous blood
meals. (B) Bright field and (C) fluorescent microscopy images of the dissected digestive tract of the same
blocked flea, showing the dense GFP+ bacterial mass that fills and blocks the proventriculus (PV) and also
extends into the esophagus (E) and midgut (MG). Fresh red blood that was blocked from entering the midgut
is still observable in the esophagus. (D-F) The same image series for an uninfected cat flea, which has fresh
red blood in the midgut and an absence of a dark bacterial mass in the proventriculus. Scale bar = 100 μm.

doi:10.1371/journal.pntd.0004413.g004

Table 1. Summary ofC. felis infection experiments.

Flea group Y. pestis CFU/ml in infectious blood meal* Fleas (n) % Blocked fleas (n) Mean time to block (days)

Low-frequency maintenance feeding schedule:

Expt 1 2.3x108- 4.9x108 105 6.7% (7) 16.9

Expt 2 1.3x108- 4.5x108 102 14.7% (15) 14.4

Expt 3 2.5x108- 4.4x108 105 15.2% (16) 18.4

mean 2x108- 4.6x108 104 12.2%†§ 16.5

Moderate-frequency maintenance feeding schedule:

Expt 1 1.3x108- 8.4x108 96 4.2% (4) 12

Expt 2 2.3x108- 6.1x108 108 9.3% (10) 16

Expt 3 2.3x108- 5.7x108 88 6.8% (6) 12.2

mean 2x108- 6.7x108 97 6.8%† 14

High-frequency maintenance feeding schedule:

Expt 1** 2.3x108- 4.9x108 104 0% (0) NA

Expt 2 1.3x108- 4.5x108 92 0% (0) NA

Expt 3 2.5x108- 4.4x108 92 0% (0) NA

mean 2x108- 4.6x108 96 0% NA

*Range indicates the CFU/ml determined immediately after adding the bacteria to the blood meal and again after the 4-hour feeding period.

**Expt 1 with the high-frequency group was terminated after 22 days.
†p < 0.0001 compared to the high-feeding frequency group;
§p = 0.026 compared to moderate-frequency group by chi-square test

Mean time to blockage was not significantly different between groups by chi-square test

doi:10.1371/journal.pntd.0004413.t001
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feeding frequency (high to low feeding frequency: 12.8%, 36.5%, and 75% of test days with pos-
itive transmission results).

For cat fleas fed at low to moderate frequency, early-phase transmission (EPT, occurring on
the first maintenance feed following infection; i.e. day 2 for the low-frequency group and day 1
for the moderate-frequency group) was not detected (Fig 5, arrows). In 1 of 6 experiments with
these two groups of fleas, transmission occurred on the second feeding after the infectious
blood meal, but otherwise transmission began on day 6, concomitant with the first detection of
blockage (Fig 5B, experiment 2). These results are consistent with previous reports that cat
fleas are relatively inefficient transmitters during the early phase [26,33]. In contrast to the
early phase, Y. pestis was transmitted in ~89% and ~36% of feeding days during weeks 2–4 of
infection by low-frequency and moderate-frequency group fleas, respectively, during the
period in which blocked fleas were diagnosed.

Fig 5. Cat fleas transmit Y. pestis after the early phase at an efficiency that correlates with feeding frequency and proventricular blockage rate. The
number of Y. pestisCFUs recovered from the blood meal reservoir after maintenance feeds by ~100 cat fleas fed for 28 days at eitherA) low frequency (twice
a week for 4 hours), B)moderate frequency (five times a week for 4 hours), or C) high frequency (daily for 18–22 hours) from 3 independent experiments (top
to bottom, experiments 1 through 3). Blood was plated after a 4-hour feeding period for the low- and moderate-frequency groups (grey bars) or after an 18–22
hour feeding period for the high-frequency group (hatched bars). All infected flea groups initiated their maintenance feeding schedules 24 hours after the
infectious blood meal. The numbers above each bar indicate the number of non-blocked and blocked fleas that fed on that day (# non-blocked (dash) #
blocked). Blocked fleas were removed from the feeding pool upon identification. N, not fed on the indicated day; arrows indicate expected peak occurrence
of early-phase transmission (EPT); X indicates that feeding began on day 1 post-infection but extended into day 2 (see Fig 2A). The results of three
independent experiments with each group are shown.

doi:10.1371/journal.pntd.0004413.g005
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Transmission by cat fleas fed at high frequency exhibited a distinctly different pattern. Fleas
in this group transmitted predominantly during the first three days after the infectious blood
meal, with no transmission after day 8 (Fig 5C). The time frame suggests this represents EPT;
however this does not conform to the traditional definition of EPT occurring predominately
during the first feeding after the infectious blood meal, with a decrease in transmission upon
subsequent blood meals. Furthermore, EPT by fleas in the high-frequency group appeared to
require the long 18–22 hour feeding period, because EPT was not detected in the other groups
that were infected identically, but allowed to feed for only 4 hours (Fig 2A).

From 2 to 3780 CFU were recovered from the mass transmission blood meals for the low-
and moderate-frequency group cat fleas. However, these numbers include CFU actually trans-
mitted plus any post-transmission bacterial multiplication in the feeding reservoir during the
4-hour feeding period. We determined that Y. pestis numbers increase 2.5- to 7-fold during a
4-hour incubation in defibrinated sheep blood at 37°C, depending on the growth phase of the
bacteria used to inoculate the sterile blood (Table 1). Thus, it is likely that our values for the
number of CFUs transmitted (Fig 5) are artificially high. This caveat is even more pertinent to
the results from fleas in the high-frequency fed group, which were allowed to feed for 18–22
hours before blood was collected for CFU plating. A range of 17 to>10,000 CFUs were recov-
ered from transmission experiments with the high-frequency group, but the majority presum-
ably reflect extensive bacterial growth in the blood meal during the overnight feeding period.
Thus, the significant difference in the length of the feeding period make it impossible to quanti-
tatively compare the actual numbers of CFU transmitted by the high-frequency vs. the low-
and moderate-frequency groups (indicated by hatched bars in Fig 5C).

To further assess the competence of C. felis as a vector, transmission efficiency (the proba-
bility that an individual infected flea will transmit Y. pestis during a bite) was evaluated by MLE
statistical analysis. Results from time points (days after infection) common to all 3 feeding
schedules and encompassing both early-phase and later biofilm-mediated transmission were
analyzed. Overall, transmission efficiencies for the cat flea were low, ranging from 0–3.76%
across all three feeding-frequency groups (Table 2). For fleas in the low- and moderate-fre-
quency feeding groups, transmission efficiency increased with time post-infection. In contrast,
fleas that fed at high frequency always transmitted on day 2 post-infection, once in 3 experi-
ments on day 6, but never on days 13 or 20 (Table 2). Lack of transmission by this group of
fleas at later time points reflects the very low infection rates after one week post-infection (Fig
2, Table 2). An estimated transmission efficiency (3.76%) could only be calculated for day 6
post-infection. Estimated transmission efficiencies could not be calculated for day 2 because all
pools transmitted, or for days 13 and 20 because no transmission was detected and most fleas
had already cleared the infection.

It is important to note that all blocked fleas documented on the mass transmission graphs
represent a distinct, individual flea becoming blocked (Fig 5A–5C). Fleas that became blocked
only participated in transmission up until the day they were diagnosed, at which point they
were removed from the population in order to be analyzed separately. This likely altered the
subsequent transmission potential of the populations, as the fleas most likely to transmit were
removed from mass transmission pools, potentially resulting in conservative estimates of bio-
film-mediated transmission efficiency.

In summary, the mass transmission data indicate that cat fleas are competent vectors for Y.
pestis and their transmission efficiency increases over time when fed at low to moderate fre-
quency. The converse is true for cat fleas fed at high frequency, as their transmission efficiency
declined rapidly after the first week of infection.
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Individual blocked cat fleas transmit Y. pestis
A portion of the blocked fleas that were diagnosed during the mass transmission trials
(Table 1, Fig 4) were removed and monitored separately for survival and transmission capabil-
ity. Individual blocked fleas were given access to a separate blood meal reservoir for 4 hours the
day after their diagnosis. Of 25 blocked fleas examined, 17 showed evidence of having
attempted to feed (fresh red blood in the esophagus and/or midgut), and of these, 9 fleas trans-
mitted Y. pestis (19–262 CFUs recovered; median = 49), with 7 out of the 9 transmission events
yielding<100 CFU (Fig 6).

As described above, the actual numbers of bacteria transmitted may be lower than the num-
ber of CFUs recovered, as bacteria transmitted early during the 4-hour feeding period likely
replicated, resulting in an estimated increase of 2.5 to 7-fold in the blood meal reservoir. Eight
blocked fleas did not show evidence of feeding and did not transmit bacteria. Of the 17 fleas
that showed evidence of feeding, 4 appeared to have either completely or partially cleared the
biofilm blockage, because fresh red blood was present in the midgut. Those blocked fleas that
cleared the blockage and acquired a new blood meal did not transmit bacteria. Blocked cat fleas
died within 1–5 days after being diagnosed as blocked, on average, surviving 2.93 ± 1.14 days
(n = 14, 10♀/4♂). Fleas that cleared their blockage were not included in survival analysis.

Differences in foregut anatomy between C. felis and X. cheopis that may
affect vector competence
Hydrodynamic forces generated during blood feeding likely affect colonization of the proven-
triculus and regurgitative transmission of Y. pestis [45]. Because these forces depend on physical

Table 2. Transmission efficiency of infected cat fleas.

Transmission results at different times after the infectious blood meal*

Flea group Day 2 Day 6 Day 13 Day 20

Low-frequency maintenance feeding schedule:

Expt 1 – (57) – (56) – (29) + (26)

Expt 2 – (91) + (74) + (46) + (30)

Expt 3 – (105) + (75) + (41) + (27)

Estimated Transmission Efficiency (MLE)** (95% CI)† 0 (0–.96) 1.18 (.25–6.44) 2.12 (.44–11.76) ND

Moderate-frequency maintenance/ feeding schedule:

Expt 1 – (96) + (65) – (36) – (37)

Expt 2 + (102) + (90) – (52) + (63)

Expt 3 – (74) + (47) – (36) + (41)

Estimated Transmission Efficiency (MLE)** (95% CI) .36 (.02–2.17) ND 0 (0–1.96) 1.72 (.36–9.39)

High-frequency maintenance feeding schedule:

Expt 1 + (57) – (0) – (0) – (0)

Expt 2 + (82) – (9) – (8) – (3)

Expt 3 + (90) + (17) – (0) – (0)

Estimated Transmission Efficiency (MLE)** (95% CI) ND 3.76 (.26–29.26) ND ND

*+/- indicates whether or not bacteria were transmitted to the blood meal reservoir; number in parentheses is the estimated number of infected fleas that

fed, based on data shown in Fig 2 (see Methods for details)

** MLE; maximum likelihood estimation; ND, not able to calculate MLE because all experiments were positive for transmission or because all fleas were

uninfected in more than one of the three experiments
† 95% confidence interval

doi:10.1371/journal.pntd.0004413.t002
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anatomy of the foregut, which may vary among flea species, we compared esophageal and pro-
ventricular dimensions of uninfected female C. felis and X. cheopis. The proventriculus and the
muscle layer surrounding it were both significantly wider in C. felis than in X. cheopis, whereas
the cat flea esophagus is narrower (~48 μm) than that of X. cheopis (~83 μm) (Fig 7). The pro-
ventriculus::esophagus (P/E) width ratio for cat fleas was ~4, twice that of X. cheopis (Fig 7F).

Uninfected midguts were also imaged without application of a coverslip, because the cover-
slip weight potentially affected width measurements by compressing the lightly-muscled X.
cheopis foregut more than that of C. felis. Images taken without the application of a coverslip
showed similar trends in foregut dimensions between species (Fig 8A and 8B). Interestingly, in
these preparations, a thick muscle layer surrounding the base of the esophagus that was absent
in the rat flea became obvious (arrow, Fig 8A–8D). The musculature narrows the cat flea
esophagus at its base, which was not observed in X. cheopis. Phalloidin stains of fixed, permea-
bilized foreguts also showed noticeably less actin, a major component of muscle tissue, sur-
rounding the base of the rat flea esophagus compared to the cat flea (arrow, Fig 8E and 8F).

We examined whether the thicker muscle layer that surrounds the base of the cat flea esoph-
agus would constrict esophageal expansion typically seen in blocked X. cheopis fleas. Blocked
X. cheopis fleas dissected immediately after feeding, which filled their esophagus with blood,
exhibited increased distension of the base of the esophagus when compared to blocked C. felis
(Fig 9A–9D), and the proventricular biofilm appeared to extend into the posterior portion of
the esophagus. The esophageal width of blocked cat fleas (~68 μm) was significantly less than
that of blocked rat fleas (~127 μm). The average esophageal width of blocked cat fleas increased
by ~41% above uninfected cat fleas, whereas the blocked rat flea esophageal width increased by
~53% (Figs 7C and 9E). While the overall width of a blocked proventriculus was similar
between flea species (Fig 9F), the increase in width from uninfected to blocked fleas was three-
fold greater in rat fleas (~22.5% increase) compared to cat fleas (~7.5% increase). Consistent
with measurements of uninfected fleas, the blocked proventricular/esophageal width ratio also
differed significantly between the two species (Fig 9G).

Discussion
In this study, we have evaluated the vector competence (the capability to transmit Y. pestis) of
the cat flea C. felis. Three fundamental components of vector competence were assessed: 1) the

Fig 6. Transmission by individual blocked cat fleas. Frequency distribution of CFUs recovered from blood
meal reservoirs fed on by individual blocked cat fleas (n = 25) after a 4-hour feeding period. DNF = did not
attempt to feed.

doi:10.1371/journal.pntd.0004413.g006

Cat Flea Feeding Behavior Modulates Vector Competence for Y. pestis

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004413 February 1, 2016 15 / 25



percentage of fleas that become infected after feeding on bacteremic blood; 2) the percentage of
infected fleas that develop a dense proventricular biofilm infection important for biological
transmission; and 3) the actual transmission efficiency during a 28-day period after infection.
Because the feeding behavior of C. felis differs markedly from that of the established plague vec-
tors X. cheopis and O.montana, we also determined the effects that frequency and length of
post-infectious blood meals have on vector competence.

Our data demonstrate that when infected C. felis are restricted to a feeding pattern typical of
X. cheopis, Y. pestis can survive, multiply, and block the digestive tract. However, cat fleas will
feed much more frequently if given the opportunity, and this feeding pattern significantly
decreased vector competence in our experiments. The majority of fleas that were provided
daily, prolonged access to maintenance blood meals rapidly cleared their infection, the few
chronically infected fleas rarely developed a heavy proventricular infection, and complete
blockage was never detected. Cat fleas excrete large amounts of partially digested blood while

Fig 7. The cat flea has a narrower esophagus and thicker proventricular musculature than the rat flea,
X. cheopis. Digestive tracts dissected from recently fed, uninfected femaleC. felis (A) or X. cheopis (B) fleas
in 20 μl of PBS were overlaid with a cover slip and the base of the esophagus (E) and the widest part of the
proventriculus (P), and the proventriculus plus surrounding musculature (P+M) were measured. Dotted red
lines indicate the location where measurements were taken. (C-E) Width of the esophagus, proventriculus,
and proventricular muscle layer (P+M–P)/2) of individual fleas. (F) Ratio of proventricular width to esophageal
width (P/E). Horizontal bars indicate the mean and error bars the standard deviation (n = 20). *p > 0.0001 by
Student’s t-test. Scale bar = 50 μm.

doi:10.1371/journal.pntd.0004413.g007
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feeding (Fig 1) [46]. This frequent turnover of the digestive tract contents likely results in com-
plete elimination of Y. pestis in the feces before the bacteria can multiply and form the large
biofilm aggregates that typify a chronic infection. Frequent blood meal acquisition and defeca-
tion are also characteristic of Xenopsylla skrjabini, a flea that will normally feed several times a
day on great gerbils [47]. Infected X. skrjabini provided daily post-infection blood meals also
tended to clear their infections at a high rate, although up to 60% showed evidence of complete
or partial blockage within 14 days. However, this study used a particularly high-titer infectious
blood meal (1x1010 CFU/ml) and the daily maintenance feeding duration was only 2 hours.

Another potential contributing factor is that cat fleas often remained associated with the
artificial membrane during maintenance feeds. The combination of frequent ingestion of 37°C
blood and close contact with the membrane (surface temperature of 31.5°C) during the 18–22
hour daily feeds may raise the flea body temperature, resulting in decreased or less adherent
biofilm formation. Synthesis and export of the extracellular polysaccharide matrix encoded by
the hmsHFRS operon and required for biofilm formation are temperature-dependent, and rat
fleas maintained at>25°C have greatly reduced proventricular blockage rates [43,48]. A previ-
ous study that examined Y. pestis infection of cat fleas reported higher rates of infection and
proventricular biofilm development than we observed in fleas provided daily feeds during the
first two weeks after infection; however, daily feeds lasted only 5 hours in that study [35].

Fig 8. Proventricular musculature surrounds and constricts the base of the esophagus ofC. felis, but
not of X. cheopis. Digestive tracts dissected from uninfected female C. felis (A) or X. cheopis (B) fleas in
20 μl of PBS were photographed without the application of a cover slip. Arrows indicate a layer of muscle
surrounding the base of the esophagus that is present inC. felis but absent in X. cheopis. (C-F) Actin stains of
fixed, permeablized C. felis (C, E) and X. cheopis (D, F) digestive tracts were visualized by bright field and
fluorescence microscopy (red fluorescence = actin). Representative images of 14–18 stained digestive tracts
from 2 independent experiments are shown. Scale bar = 50 μm.

doi:10.1371/journal.pntd.0004413.g008
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Infection rates, the development of heavy proventricular infections, and the incidence of
complete blockage of the proventriculus were all significantly higher in cat fleas fed twice-
weekly (low frequency) or five times per week (moderate frequency) for 4 hours and kept at
21°C between feedings. These rates were inversely correlated with feeding frequency. Fleas fed
at low frequency had the highest rates of chronic infection, localization to the proventriculus
during infection, and complete blockage. We were able to directly demonstrate complete pro-
ventricular blockage of cat fleas in this study, but found it much more difficult to diagnose in
C. felis than in X. cheopis by the standard screening method (microscopic examination immedi-
ately after a feeding attempt and observing fresh red blood in the esophagus only, with none in
the midgut). The exoskeleton of C. felis is much more heavily sclerotized and pigmented, and
therefore much less transparent, than that of X. cheopis. In addition, the pair of respiratory tra-
cheae extending posteriorly from the head are thicker and darker in C. felis than in X. cheopis
and often obscure the esophagus. The pronotal comb, a set of dark chitinous spines located on
the dorsal part of the prothorax, can also block external visualization of portions of the esopha-
gus, particularly when the thorax and abdomen contract due to blockage-induced dehydration.

Fig 9. The cat flea esophagus is less prone to blockage-induced distension than the rat flea
esophagus. Digestive tracts dissected from blocked female C. felis (A) or X. cheopis (B) fleas in 20 μl of PBS
with (A, B) or without (C, D) the application of a cover slip. Representative images of 12–18 (with coverslip) or
15 (no coverslip) blocked fleas are shown. The width of the esophagus (E) and proventriculus (F) of individual
blocked fleas was measured, and the proventriculus::esophagus width ratio (P/E) was calculated (G).
Horizontal bars indicate the mean and error bars the standard deviation (n = 12–18). *p > 0.0001 by
Student’s t-test. Scale bar = 50 μm.

doi:10.1371/journal.pntd.0004413.g009
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These obscuring features were especially pronounced in male C. felis, and visualization of
blockage required a very bright light source, and often lateral compression of a flea underneath
a coverslip. For these reasons, a diagnosis of blockage was confirmed in the majority of cases by
dissection to demonstrate that the proventriculus was completely filled with GFP+ Y. pestis
and that fresh blood was present in the esophagus but not the midgut (Fig 4). It has been sug-
gested that up to 50% of infected cat fleas could potentially become blocked based on detection
of proventricular biofilm in dissected fleas and increased mortality rates [35]. However, this
estimation assumes that all such infected fleas eventually become blocked, which was not
observed in our analysis.

Previous studies of transmission of Y. pestis by cat fleas assessed early-phase transmission
(EPT) only and consistently reported that they were very inefficient vectors compared to other
flea species during the first week after infection [27,31,33]. We found the same result in our
experiments, in which groups of ~100 fleas were fed on sterile blood in an artificial feeding sys-
tem. No Y. pestis were recovered from the first blood meal 1–2 days after infection, when EPT
would be expected to be highest, for fleas that fed for 4 hours (low- and moderate-frequency
groups). Interestingly, Y. pestis was recovered from the first blood meal initiated 24 hours after
infection when the fleas were allowed to feed for 18–22 hours (high-frequency group). This
suggests that EPT after 4 hours was below the detection level of our plating assay and that post-
transmission bacterial amplification in the blood during hours 4–22 was required. Alterna-
tively, since the high-frequency group fleas had constant access to blood meals during the 18–
22 hour feeding period, multiple feeding attempts by individual fleas may have resulted in
more CFUs transmitted. Cat fleas from the high-frequency feeding group were capable of suc-
cessively transmitting Y. pestis on each of the first 3 days of infection in 2 out of 3 experiments.
Not surprisingly, fleas in the high-frequency group did not transmit after the first week,
because nearly all had cleared the infection by then, and in the few chronically infected fleas
the infection was usually confined to the midgut.

In contrast to EPT, fleas fed at low or moderate frequency regularly transmitted Y. pestis
during weeks 2–4 after infection, the time frame in which blockage and heavy proventricular
infections occurred, and therefore presumably due to the proventricular biofilm-dependent
regurgitative mechanism. Mass transmission was frequently recorded without identifying a
blocked flea. Partial blockage may explain these transmission events, because most infected cat
fleas fed at low or moderate frequency had substantial amounts of biofilm in their proventricu-
lus (Fig 3). Incomplete blockage of the proventriculus has previously been noted to be sufficient
for flea species including Nosopsyllus fasciatus, O.montana, and X. cheopis to reflux bacteria
into a bite site [49,50]. About half of the positive transmission events in the moderate-fre-
quency feeding group and all of the events in the high-frequency group occurred without the
identification of a blocked flea. For cat fleas that fed at low frequency following infection,
approximately 95% of transmission events occurred when at least one blocked flea attempted
to feed. However, the diagnosis of a blocked cat flea did not always coincide with transmission,
consistent with previous observations that the bites of blocked rat fleas do not always result in
transmission [24,51].

As has been reported for the EPT mechanism, our results indicate that C. felis also transmits
less efficiently than X. cheopis by the proventricular biofilm-dependent mechanism. In similar
experimental conditions (twice-weekly maintenance feeds after a comparable infectious blood
meal)>80% of X. cheopis fleas develop chronic infections and ~40% develop complete block-
age [43,52,53]; compared to 43% and 12%, respectively, for C. felis (Fig 2C, Table 1). Corre-
spondingly, the MLE transmission efficiency 14 days after infection for X. cheopis, when the
incidence of blockage is highest, was 14.1% [36]. In comparison, our calculated transmission
efficiency for cat fleas fed at low frequency was 7-fold lower (2.1%) on day 13. Furthermore,
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the numbers of CFU transmitted by X. cheopis in mass transmission experiments were
>10-fold higher than we observed for C. felis [54], even without taking into account the longer
feeding period (4 hours vs. 1 hour) which likely inflated CFU numbers transmitted by cat fleas
due to post-transmission multiplication. Thus, in three important aspects (infection potential,
proventricular blockage potential, and transmission efficiency), the vector competence of cat
fleas is lower than X. cheopis, even when they are limited to a twice-weekly feeding schedule.
Although feeding durations in these studies were not identical (4 hours for C. felis vs. 1 hour
for X. cheopis), the data suggest that feeding frequency alone cannot completely account for the
disparity in vector competence between cat fleas and X. cheopis.

Variation in foregut anatomical features and physiology, in addition to frequency and dura-
tion of feeding, may partially explain differences in vector competence between species. Dispar-
ity in esophageal and proventricular width may cause increased flow rates of blood passing
through the cat flea proventriculus relative to the rat flea, making it more difficult for a biofilm
to completely block the cat flea proventriculus. Consistent with this notion, the cat flea proven-
tricular muscles are over twice as thick as those of the rat flea, and the esophagus is narrower,
potentially influencing not only flow rate, but the suction strength of blood being forced in and
out of the proventriculus during digestion of the blood meal. Stronger proventricular contrac-
tions and higher hydrodynamic blood flow rates between the midgut and the proventriculus
may potentially dislodge adherent Y. pestis aggregates from the proventricular spines. In addi-
tion, the size and arrangement of the spines also varies between cat and rat fleas, with rat fleas
tending to have longer and broader spines [55]. In combination, these traits could make
chronic bacterial infection of the cat flea proventriculus less likely.

Two other anatomical differences of the cat flea foregut may also impede regurgitative
transmission. We noted a thick band of muscle tissue surrounding the base of the esophagus in
C. felis that was absent in X. cheopis. This may function as a sphincter that restricts backflow of
proventricular contents into the esophagus (S1 Video). In C. felis, contractions originating
from the musculature that surrounds the esophagus appear to force blood posteriorly from the
proventriculus towards the midgut (S1A Video). In contrast, proventricular contractions of X.
cheopis, which lack a muscle layer at the base of the esophagus, produce lateral but not back-
ward-directed forces (S1B and S2 Videos). It has been noted previously that Y. pestis-induced
blockage of Xenopsylla spp. results in distension of the esophagus as well as the proventriculus
[18,50]. We also observed significant extension of the proventricular biofilm into the esopha-
gus of blocked X. cheopis that greatly expanded the base of the esophagus. In contrast, biofilm
extension into the esophagus was infrequent in cat fleas, where the biofilm was typically con-
fined to the proventriculus and the esophagus remained narrow (Fig 8). Expansion of the
esophagus could increase the total surface area of infectious biofilm coming into contact with
incoming blood, increasing the probability of bacteria being dislodged and refluxed into the
dermis of a host. These observations suggest that the muscle layer at the base of the cat flea
esophagus tends to confine the biofilm to the proventriculus, potentially resulting in reduced
transmission efficiency. Regurgitation from the midgut or proventriculus has also been pro-
posed as the mechanism behind EPT [30,56], so these differences in foregut anatomy could
also explain the relative inefficiency of EPT by cat fleas.

Cat fleas can become chronically infected with and transmit both Bartonella spp. and rick-
ettsiae [57,58]. Transmission of these pathogens can occur when copious, virulent organisms
within the fecal material of infected cat fleas are rubbed or scratched into the bite site
[2,4,59,60]. Because Y. pestis was culturable from infected cat flea feces, we considered the pos-
sibility that fleas probing through fecal deposits could mechanically push bacteria through the
membrane and contaminate the blood meal reservoir. This appeared to be unlikely, because
the fleas fed from below the membrane and the vast majority of feces dropped to the bottom of
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the capsule or were absorbed by the gauze affixed to the membrane surface. In addition, feeding
units with membranes that were defecated upon for 4 hours by recently infected cat fleas were
drained of blood, the reservoir (but not the outer surface of the membrane) was washed with
sterile PBS, refilled with sterile blood; and then ~100 uninfected cat fleas were allowed to feed
through the soiled surface of the membrane for 4 or 24 hours. In two independent experiments,
no bacteria were recovered from the blood meal reservoirs. Therefore, in our feeding system,
this mode of transmission was not detectable; however, the potential for transmission via fecal
contamination of a bite site under alternative feeding conditions cannot be dismissed.

C. felis is a common domestic and peridomestic flea in parts of Africa and China where
plague is endemic. Since it feeds on a variety of hosts, including humans and wild rodent reser-
voirs of Y. pestis, it has been considered as a vector that could be responsible for transmitting Y.
pestis to humans [10,12]. Our work suggests that the most likely scenario for C. felis to become
infective would be after its host dies of septicemic plague. This would lead to a potential multi-
day lapse in feeding, a reduction in flea body temperature, and an imperative for the flea to
find a new host. Lapses in blood meal acquisition could give Y. pestis an opportunity to estab-
lish an infectious biofilm in the cat flea digestive tract. Even then, however, our results indicate
that cat flea vector competence is less than that of other common fleas in these endemic areas,
notably X. cheopis. In addition to feeding frequency, other factors that we were not able to
assess might also affect the vector competence of C. felis, including population genetic differ-
ences, digestive tract microbiota, and host blood source. For example, our laboratory colony of
C. felis has a very limited commensal microbiota, primarily consisting of intracellular endo-
symbionts [61]. Wild fleas may have a more varied and extensive microbiota, and it has been
hypothesized that geographic and temporal differences in commensal flora among intraspecific
populations could influence vector competence [62,63]. Importantly, ecological factors besides
vector competence may also moderate the overall vectorial capacity of the cat flea. For example,
cat fleas in a plague focus in Uganda may feed almost exclusively on humans and domestic ani-
mals, and not on small rodent reservoirs of plague [12]. In summary, feeding behavior, differ-
ences in host preference, and possibly foregut anatomy, rather than an intrinsic resistance to
infection and proventricular blockage, likely limits transmission of Y. pestis by the cat flea.

Supporting Information
S1 Video. Differential proventricular contraction forces generated by C. felis and X. cheo-
pis. Female C. felis (A) and X. cheopis (B) fleas were collected after feeding on sterile blood,
placed on ice, and dissected in PBS. Rhythmic contraction of the proventricular musculature
causes churning of the midgut contents, possibly to aid in digestion of the blood meal. Contrac-
tions occur about twice every second in both flea species, which is consistent with external
observations of the proventricular contractions in live fleas (S2 video). In C. felis, contractions
originating from the musculature that surrounds the base of the esophagus are directed back-
ward towards the midgut. In contrast, X. cheopis proventricular contractions are lateral, with
little to no movement of the tissue surrounding the esophagus. The stomodeal valve (connected
to the base of the proventriculus and extending into the midgut) appears to contract coordi-
nately with the proventricular musculature. However, the stomodeal valve did not stain for
actin (Fig 2E) and is likely not predominantly composed of muscle. The stomodeal valve
appears to be thicker and extends further into the midgut in C. felis than in X. cheopis. These
15-second, real-time videos were acquired using cellSens software and an Olympus DP72 cam-
era during the first 2 minutes immediately following dissection. No cover slip was applied.
(MP4)

Cat Flea Feeding Behavior Modulates Vector Competence for Y. pestis

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004413 February 1, 2016 21 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pntd.0004413.s001


S2 Video. Proventricular contractions of an undissected X. cheopis flea shortly after feed-
ing. Proventricular contractions and peristalsis of the midgut observed externally in a live,
recently fed female X. cheopis. The white circle indicates the location of the proventriculus.
This 15-second, real-time video was acquired using cellSens software and an Olympus DP72
camera.
(MP4)
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