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ABSTRACT

Network science has begun to reveal the fundamental principles by which large-scale brain
networks are organized, including geometric constraints, a balance between segregative and
integrative features, and functionally flexible brain areas. However, it remains unknown
whether whole-brain networks imaged at the cellular level are organized according to similar
principles. Here, we analyze whole-brain functional networks reconstructed from calcium
imaging data recorded in larval zebrafish. Our analyses reveal that functional connections
are distance-dependent and that networks exhibit hierarchical modular structure and hubs
that span module boundaries. We go on to show that spontaneous network structure places
constraints on stimulus-evoked reconfigurations of connections and that networks are
highly consistent across individuals. Our analyses reveal basic organizing principles of
whole-brain functional brain networks at the mesoscale. Our overarching methodological
framework provides a blueprint for studying correlated activity at the cellular level using
a low-dimensional network representation. Our work forms a conceptual bridge between
macro- and mesoscale network neuroscience and opens myriad paths for future studies
to investigate network structure of nervous systems at the cellular level.

AUTHOR SUMMARY

Little is known about the principles by which mesoscale functional networks are organized
and whether they parallel the features of macroscale networks. Here, we used network
science methods to investigate the architecture of functional connectivity in zebrafish larvae.
We find that its architectural features are remarkably similar to that of macroscale functional
brain networks, with connection weights exhibiting clear distance-dependence, evidence of
multiscale and hierarchical community structure, high participation hub regions, and flexible
reconfiguration across a range of tasks.

INTRODUCTION

Nervous systems are collections of functionally and structurally connected neurons, neuronal
populations, and brain areas (Sporns, Tononi, & Kötter, 2005). Coordination of and within
these networks underpins an organism’s ability to process sensory stimuli (Downar, Crawley,
Mikulis, & Davis, 2000; Ko et al., 2011), to successfully navigate its environment (Hartley,
Lever, Burgess, & O’Keefe, 2014; Jacobs et al., 2013), and to perform goal-directed action
(Spreng, Stevens, Chamberlain, Gilmore, & Schacter, 2010). Network science provides a
quantitative framework for representing and analyzing the organization of biological neural
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networks (Bassett & Sporns, 2017). Within this framework, neural elements and their pairwise
interactions are modeled as the nodes and edges of a complex network (Bullmore & Sporns,
2009), to which one can apply a growing suite of powerful graph-theoretic tools to assay the
network’s structural (Rubinov & Sporns, 2010), functional (Park & Friston, 2013), and dynami-
cal (Deco, Jirsa, Robinson, Breakspear, & Friston, 2008) properties.

Though the network model can be applied to nervous systems imaged at virtually any spatial
scale (Betzel & Bassett, 2017b; Craddock et al., 2013; Schröter, Paulsen, & Bullmore, 2017),
the majority of applications thus far have focused on the macroscale, where nodes represent
brain regions and connections represent pairwise statistical associations of recorded activity
(functional connectivity; FC). Though macroscale network analyses have been most successfulFunctional connectivity:

Statistical associations between
activity recorded at different
locations in the brain.

in linking variation of network features to cognition (Park & Friston, 2013), disease (Fornito,
Zalesky, & Breakspear, 2015), and development (Di Martino et al., 2014), they have also begun
to elucidate the general principles by which biological neural networks are organized (Betzel
et al., 2016; Rubinov, 2016).

These principles include a balance between network structures that support segregative (lo-
cal and specialized) and integrative (global and generalized) information processing (Cohen &
D’Esposito, 2016; Sporns, Tononi, & Edelman, 2002), such as modules versus hubs (Meunier,Hubs:

Nodes whose connections span
modular boundaries, linking
modules to one another.

Lambiotte, Fornito, Ersche, & Bullmore, 2009; Power, Schlaggar, Lessov-Schlaggar, & Petersen,
2013; Sporns & Betzel, 2016; van den Heuvel & Sporns, 2013), a strong brain-wide drive to
reduce the material and metabolic cost of wiring (Betzel & Bassett, 2018; Bullmore & Sporns,
2012; B. L. Chen, Hall, & Chklovskii, 2006), and an intrinsic functional architecture that recon-
figures subtly and efficiently in response to tasks or stimulation (Cole, Bassett, Power, Braver,
& Petersen, 2014; Schultz & Cole, 2016).

While these organizing principles have been observed at the macroscale across individu-
als and phylogeny (Rubinov, Ypma, Watson, & Bullmore, 2015; van den Heuvel, Bullmore,
& Sporns, 2016), it remains unclear whether analogous principles shape the architecture of
nervous systems at the mesoscale, where networks represent interactions among collectionsMesoscale:

Spatial organization of cell-to-cell
connectivity aggregated into parcels,
regions, or areas.

of cells and molecules (Humphries, 2017; Schröter et al., 2017). Though the number of studies
investigating mesoscale network structure continues to grow (Betzel, Wood, Angeloni, Geffen,
& Bassett, 2018; Briggman & Kristan, 2006; Bruno, Frost, & Humphries, 2015; Dann, Michaels,
Schaffelhofer, & Scherberger, 2016; Faber, Timme, Beggs, & Newman, 2018; Lee et al., 2016;
Mann, Gallen, & Clandinin, 2017; Orlandi, Soriano, Alvarez-Lacalle, Teller, & Casademunt,
2013; Romano et al., 2017; Rosch, Hunter, Baldeweg, Friston, & Meyer, 2017; Yamamoto et al.,
2018), technological limitations restricting the field of view and an emphasis on neuronal pop-
ulations as the unit of interest (rather than the brain as a whole) have made it difficult to uncover
the general principles by which mesoscale functional networks are organized.

Currently, the organizing principles underpinning whole-brain mesoscale networks remain
largely unexplored. Here, we take advantage of recent technological advances (Ahrens et al.,
2012; Ahrens, Orger, Robson, Li, & Keller, 2013; Keller & Ahrens, 2015; Panier et al., 2013;
Vladimirov et al., 2014) and a publicly available dataset (X. Chen et al., 2018) to investi-
gate spontaneous and stimulus-evoked FC in zebrafish larvae. Our analyses reveal several
putative organizing principles. These include strong geometric constraints on the magnitude
and valence of connection weights, and evidence of hierarchical and multiscale modularHierarchical and multiscale modules:

Smaller modules nested within larger
modules; may span multiple
hierarchical levels.

structure balanced by the presence of polyfunctional hubs. We show that spontaneous and
stimulus-evoked networks are highly similar. Nonetheless, we also find evidence of stimulus-
driven module reconfiguration. Interestingly, the nodes with the greatest propensity for
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reconfiguration overlap with the same polyfunctional hubs uncovered under spontaneous
conditions, linking intrinsic network architecture to behavior. In summary, our findings link
whole-brain macro- and microscale analyses and highlight network science as a framework
for bridging neuroscientific inquiry across spatial scales and domains.

RESULTS

Here, we aimed to uncover organizing principles of spontaneous and stimulus-evoked FC
in zebrafish larvae. All details concerning data acquisition and network construction are in-
cluded in the Materials and Methods section. The following subsections are organized as
follows. First, we analyze group-representative spontaneous FC to identify signatures of geo-
metric constraints, hierarchical modular structure, and polyfunctional hubs. Next, we extend
these analyses to stimulus-evoked FC and show that it is shaped by the brain’s intrinsic (sponta-
neous) functional organization. Finally, we present results of single-subject analyses and show
a high level of intersubject consistency.

Geometric Organization of Spontaneous FC

Previous analyses of whole-brain FC have revealed that connection weights and other network

Geometric organization:
Dependence of functional
connectivity on the spatial
organization of the brain. features are shaped by underlying geometric relationships, such as nodes’ locations in space

(Bellec et al., 2006; Stiso & Bassett, 2018; Vértes et al., 2012). These constraints result in net-
works that favor strong, short-range connections and are believed to reflect brain-wide drives
to reduce the metabolic cost of coordinating activity between brain areas over long distances
(Laughlin & Sejnowski, 2003). However, it remains largely unknown whether whole-brain
mesoscale functional networks are subject to similar constraints. To address this question, we
analyzed single-cell calcium fluorescence traces from Nsub = 11 zebrafish larvae recorded
in stimulus-free (i.e., spontaneous) conditions. We aggregated cells into N = 256 hemispher-
ically symmetric, functionally homogeneous, and spatially localized parcels (Figure 1A; see
Materials and Methods for details; see Supporting Information Figure S4a for a side projection
of same figure). The number of cells per parcel followed a heavy-tailed distribution, with many
parcels containing a small number of cells and a few parcels containing disproportionately
many (See Supporting Information Figure S1). We then calculated the average fluorescence
trace for each parcel (node), and computed A = {Aij}, the full matrix of Fisher-transformed
Pearson correlations (Figure 1B; see Materials and Methods for preprocessing details). Unless
otherwise noted, all subsequent analyses were carried out on this group-averaged matrix A,
which we regarded as a fully weighted and signed connectivity matrix.

First, to assess whether FC exhibited hemispheric symmetries, we calculated the similar-
ity of all left and right within-hemisphere connections (Figure 1C). We observed that within-
hemisphere connectivity patterns were highly correlated (r = 0.88; p < 0.05). To further assess
the relationship of network architecture with geometry, we then plotted connection weight as
a function of the Euclidean distance between parcel centroids. We found that, on average,
connection weight decayed monotonically as a function of distance. However, we also ob-
served a small subset of interhemispheric connections that were unexpectedly strong given
their length (Figure 1D). We provide an additional analysis of these stronger-than-expected
connections as they relate to homotopy in Supporting Information Figure S2. A similar pat-
tern was observed when we classified connections according to their valence and magnitude,
and examined the proportion of each class within a fixed set of distance bins (Figure 1E). In
general, nodes separated by short distances tended to be linked by strong, positive correla-
tions. At longer distances, however, the proportion of positive correlations decreased and was
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Figure 1. Spatial features of zebrafish whole-brain functional connectivity. (A) Thresholded network in anatomical space. Nodes represent
parcels with size proportional to average absolute correlation. Red and blue lines represent top 400 positive and negative correlations/
anticorrelations according to magnitude. (B) Correlation matrix, A, ordered by hemisphere. (C) Scatterplot of left versus right within-
hemisphere connectivity (D) Scatterplot of straight-line distance between parcel centroids and their correlation magnitude. Within- and
between-hemisphere connections are plotted separately. Note that in both cases, connection weight decays as a function of distance. However,
there nonetheless exists a small fraction of long-distance interhemispheric connections. (E) Breakdown of connection types by distance bins.
Note that in general, the proportion of positive (strong or weak) correlations decreases with distance, while the prevalence of anticorrelations
increases with over longer distances. In this panel, the term “neutral” is used to refer to correlations whose magnitude was close to 0.

overtaken by an increase in neutral (i.e., weak correlations whose magnitude was near zero)
to strong anticorrelations.

These observations confirm that geometric relationships serve as powerful determinants
of connections’ strengths and valences. Despite the fact that connection weight (on average)
decreases monotonically with distance, the presence of strong, long-distance correlations sug-
gests that geometry insufficiently explains brain-wide patterns of FC, and that coordination of
activity over long distances may act as an additional functional constraint on network archi-
tecture. Collectively, these findings are analogous to those observed at the macroscale (Bellec
et al., 2006; Stiso & Bassett, 2018) and draw a clear conceptual link between the organization
of biological neural networks at the macro- and mesoscales.

Modular Organization of Spontaneous FC

In the previous section, and in agreement with observations made at the macroscale, we
suggested that a monotonically decaying relationship of connection weight with distance
may serve as a key organizing principle responsible for shaping the architecture of biological
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neural networks. Here and in the next section, we explore another putative organizing prin-
ciple. Namely, the requirement that biological neural networks balance features that support
both segregated (localized) and integrated (global) brain function, that is, network modulesModules:

Cohesive groups of nodes that are
segregated from the rest of the brain.

and hubs, respectively (Cohen & D’Esposito, 2016; Sporns et al., 2002).

Modules are groups of nodes that are densely connected to one another, but weakly con-
nected between groups (Meunier et al., 2009; Sporns & Betzel, 2016). Because of modules’
near-autonomy from one another, they are thought to represent groups of nodes that perform
the same or similar brain function and are believed to engender specialized information pro-
cessing. In general, modules are not restricted to a single topological scale and can be arranged
hierarchically, with deeper levels of the hierarchy reflecting increasing functional specializa-
tion (Betzel & Bassett, 2017b; Betzel, Bertolero, Gordon, et al., 2018; Betzel et al., 2013).

While modular organization has been frequently observed in whole-brain macroscale net-
works (Bertolero, Yeo, & D’Esposito, 2015; Power et al., 2011; Sporns & Betzel, 2016), little
is known about the modular structure of whole-brain networks at the mesoscale (Bruno et al.,
2015; Lee et al., 2016; Vanni, Chan, Balbi, Silasi, & Murphy, 2017). Here, we leverage re-
cent advances in modularity maximization, a data-driven method for uncovering a network’s
modules, to uncover the hierarchical modular structure of spontaneous FC (Jeub, Sporns, &
Fortunato, 2018; see Materials and Methods for more details).

Modularity maximization returns hierarchically related partitions of nodes into modules,
where the hierarchical levels are determined using a statistical criterion (Jeub et al., 2018).
We found evidence of a hierarchy comprising 24 distinct levels, with the number of modules
at any level ranging from 2 to 25 (Figure 2A). For the sake of brevity, we show partitions of
nodes into c = 2 (Figure 2A–C), 4 (Figure 2D–F), and 9 (Figure 2G–I) modules (see Supporting
Information Figure S4b–d for side projections of the same modules). We note that the quality
of detected partitions, as indexed by the modularity index, Q (Newman & Girvan, 2004),
was significantly greater in the empirical networks compared with the partitions of networks
estimated from phase-randomized surrogate time series (p < 0.05, Bonferroni-corrected; see
Supporting Information Figure S3).

Many of the modules recapitulate known functional and anatomical divisions of zebrafish.
For instance, the red module (labeled 4 in Figure 2E and 9 in Figure 2H) overlaps closely the
telencephalnon. Interestingly, this module isolates itself early within the hierarchy, and exhibits
no clear subdivisions at deeper levels. Similarly, module 2 in Figure 2E and modules 4, 5, 6,
and 8 in Figure 2H depict coarse and fine approximations of the mesencephalon. Unlike the
telencephalic cluster, we identify multiple mesencephalic subdivisions, suggesting that these
areas have the capacity to subtend varying levels of functional specialization.

Collectively, these findings suggest that spontaneous FC is organized hierarchically into
modules that exhibit clear mappings to known neuroanatomy. These findings are in close
agreement with analogous investigations of whole-brain networks at the macroscale
(Meunier et al., 2009) and suggest that modular organization may be a unifying principle by
which brain networks at all scales are structured (Taylor, Wang, & Kaiser, 2017).

Hub Organization of Spontaneous FC

In the previous section we presented evidence that zebrafish spontaneous FC exhibits hier-
archical modular structure. While segregated modules may be useful for the development of
specialized brain function, complex behavior also requires network features that support the
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Figure 2. Hierarchical and multiresolution modular structure. (A) Coassignment matrix with hier-
archy cut to highlight a two-module division (red blocks). (B) Modules plotted in anatomical space.
Nodes are colored according to their module assignment, and within-module connections are col-
ored similarly. (C) Correlation matrix ordered and blocked to highlight modular structure. Panels D–F
and G–I show similar figures but with the number of modules equal to four and nine, respectively.

integration of information across different modules (Cohen & D’Esposito, 2016; Deco, Tononi,
Boly, & Kringelbach, 2015; Sporns, 2013). One class of network feature that supports precisely
this type of processing is hubs, nodes whose connections straddle the boundaries of modules.
Here, we identify hubs in spontaneous FC using the network measure participation coefficient
(Guimera & Amaral, 2005).

Participation coefficient measures the uniformity with which a node’s connections are
distributed across modules; values close to 1 or 0 indicate nodes that connect to many dif-
ferent modules or are concentrated within a small number of modules, respectively. We illus-
trate this concept schematically in Figure 3A, where we show examples of two nodes—one
with low (top) and another with high (bottom) participation. We calculated each node’s par-
ticipation coefficient at every hierarchical level and averaged these values over the entire hi-
erarchy. In Figure 3B we show these coefficients after a rank transformation. On average, we
find marked heterogeneity in the spatial locations of high-participation hubs, with the greatest
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Figure 3. Participation coefficient and hub classification. (A) Schematic illustration of low- and
high-participation nodes. Connections made by nodes with low participation (nonhubs) are con-
centrated within those nodes’ modules; connections made by nodes with high participation (hubs)
are distributed across many modules. (B) Mean participation coefficient (ranked) as a function of
the number of detected modules. (C) Average participation coefficient when the number of mod-
ules ranges from 2 to 25. (D) Correlation of brain-wide participation coefficient maps for different
numbers of modules. While the changes in participation coefficient maps are subtle, there nonethe-
less appear to be three “regimes” (based on visual inspection) corresponding to distinct patterns of
participation. (E) Participation coefficient and signed strength, z-scored and plotted against one
another. Both measures serve as indices of “hubness” but are, on average, only weakly correlated.
(F) Nodes in the top 25th percentile by participation and absolute strength. On average, there is
little overlap.

concentration appearing within the rhombencephalon (Figure 3C). Though brain-wide patterns
of participation coefficient are largely stable as we vary the number of modules, we nonethe-
less observe subtle scale dependencies (Figure 3D), suggesting that small subsets of nodes may
be uniquely configured to act as hubs at one particular scale but less so at another.

To better contextualize these findings, we compared nodes’ participation coefficients with
their absolute strength (total weight of functional connections), another measure sometimes
used for identifying hubs (Figure 3E). In general, we find that these two metrics are only weakly
correlated (r = 0.16; p < 0.05), that is, the most hub-like nodes according to participation
coefficient and strength are not necessarily overlapping. Indeed, when we examine the top
25% of hubs according to each measure, we find little overlap between the two hub measures
(Figure 3F).

These findings, combined with those from the previous section, suggest that spontaneous FC
at the mesoscale strikes a precarious balance between features that promote segregated (i.e.,
local) brain function and those that promote integrative (i.e., global) brain function. These find-
ings mirror those reported in macroscale networks (Cohen & D’Esposito, 2016), where the ex-
pression of hub areas has been linked to both genetics and cognitive performance (Bertolero,
Yeo, Bassett, & D’Esposito, 2018). An important caveat here is that, typically, a node’s “hubness”
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is defined based on how it is situated with respect to a network’s modules (participation) and
its capacity to exert influence over the network (degree/strength; Guimera & Amaral, 2005).
Here, we study fully weighted and signed networks in which nodes have uniform degree and
both positive and negative strengths (both of which are biased by community size; Power et al.,
2013). Rather than risk misinterpreting a node’s capacity for influence, we focus entirely on
the participation measure.

Correspondence of Spontaneous and Stimulus-Evoked FC

In the previous sections, we focused on organizing principles of spontaneous (i.e., stimulus-
free) FC. Spontaneous FC represents an intrinsic, baseline state in which functional connections
are shaped primarily by an underlying network of physical pathways, projections, and fiber
tracts rather than the functional demands of a task or stimulus (Goñi et al., 2014; Honey et al.,
2009; Lin, Okun, Carandini, & Harris, 2015; Park & Friston, 2013). Nonetheless, nervous sys-
tems must be flexible and capable of reconfiguring in order meet those demands should
they arise (Betzel, Bertolero, & Bassett, 2018; Cole et al., 2014). What features character-
ize stimulus-induced reconfiguration? Is it a wholesale reorganization of the network? Is it
restricted to a small subset of connections or nodes? In this section, we explore the effect of
different stimuli on FC organization.

To study stimulus-evoked changes in functional network organization, we estimated FC dur-
ing the presentation of different visual stimuli. In addition to spontaneous activity, we consid-
ered phototaxis (PT), optomotor response (OMR), looming response (Looming), and dark-flash
response (DF; see Materials and Methods for more details).

First we estimated a FC matrix separately for each stimulus condition (Figure 4A). To as-
sess the similarity of these matrices, we extracted their upper triangle elements, computed
pairwise interstimulus correlations (Figure 4B), and also generated a scatterplot of these ele-
ments against one another (Figure 4C). Overall, we found that the stimulus-evoked connectivity
matrices were highly similar (mean correlation of r = 0.72; p < 0.05, Bonferroni-corrected).
Additionally, we statistically assessed the correspondence of spontaneous and stimulus-evoked
correlation structure using the Mantel test (Mantel, 1967). For all combinations, we found that
the correspondence was statistically significant (p < 0.05, Bonferroni-corrected; see Supporting
Information Figure S9). These results support the hypothesis that the differences between
spontaneous and stimulus-evoked connectivity is characterized by subtle shifts in connection
weights and not by a wholesale reorganization of FC. In the next section, we explore these
subtleties in greater detail.

Hub Nodes Reconfigure in Response to Stimuli

In the previous section we found that stimulus-evoked and spontaneous FC were highly cor-
related with one another across different stimulus conditions. In this section, we tease apart
those differences. To address this question, we adapted a multilayer modularity maximization
procedure (see Materials and Methods for more details; Mucha, Richardson, Macon, Porter,
& Onnela, 2010), which has been used to study time-varying FC (Bassett et al., 2011) and
interindividual differences at the macroscale (Betzel, Bertolero, Gordon, et al., 2018). This
procedure entails treating each spontaneous and stimulus-evoked FC matrix as a “layer” in a
multilayer network ensemble. Layers are coupled to one another and the entire ensemble used
as input for modularity maximization, thereby estimating modules in all layers simultaneously.
As a result, this procedure allows us to effortlessly map modules across stimulus conditions
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Figure 4. Comparing spontaneous and stimulus-evoked network architecture. (A) Functional connectivity matrices for four different stim-
ulus conditions: dark-flash (DF), looming, optomotor response (OMR), and phototaxis (PT). (B) Upper triangle correlation for four stimulus
conditions + spontaneous. (C) Scatterplot of all stimulus conditions plotted against one another. Size and color of each point indicate density
of points at that location. Examples of (D) low-flexibility and (E) high-flexibility modules. In D and E, modules have been recolored to match
the nine-module partition detected using the spontaneous network alone. Nodes with gray colors have module assignments that cannot be
easily mapped to one of the nine modules. (F) Similarity (z-score of the Rand index) of stimulus-evoked and spontaneous modular structure
as a function of the interlayer coupling parameter, ω. When ω is small, detected modules reflect specific stimuli; when ω is larger, detected
modules are more similar to spontaneous modular structure. (G) Node-level flexibility grouped according to modules. Note: high levels of
heterogeneity across modules. (H) Node-level flexibility plotted in anatomical space. (I) Correlation of stimulus-evoked flexibility and par-
ticipation coefficient estimated from spontaneous network data alone (J) Variation of flexibility patterns as the number of detected modules
changes.

and to identify flexible and inflexible nodes, that is, those whose module assignments are
consistently variable versus those that are stable.

The multilayer modularity maximization framework includes an additional free parameter,
ω, that can be tuned to different values so that the detected modules emphasize either the
unique modular structure for each stimulus condition or the shared modular structure across
conditions. When ω is large (emphasizing common modular structure), the detected multi-
layer modules are highly similar to those detected in the previous section using the sponta-
neous networks, alone (Figure 4D). This result is expected given the high correlation between
stimulus-evoked and spontaneous FC. Here, we show as an example the module assignments
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that best match the nine-module partition shown in Figure 2G. When ω is set to smaller val-
ues, however, the algorithm detects modules that are uniquely suited to each layer and there-
fore more variable (Figure 4E). We see this more clearly when we compare stimulus-evoked
and spontaneous modular structure as a function of ω (Figure 4F). The average similarity of
stimulus-evoked and spontaneous modular structure, as measured by the z-score of the Rand
index (Traud, Kelsic, Mucha, & Porter, 2011), increases monotonically as a function of ω.

Because the multilayer modularity maximization framework preserves module labels across
layers, it facilitates straightforward comparisons of modules from one stimulus condition with
modules from another. This allows us to calculate each node’s “flexibility” (Bassett et al., 2013,Flexibility:

Nodes whose module assignment
frequently changes (here, this change
is across different stimulus
conditions).

2011), a measure of its network variability across stimuli (see Materials and Methods). Intu-
itively, nodes with high flexibility are those that frequently switch module allegiance in re-
sponse to a stimulus, whereas low-flexibility nodes are invariant and serve as stable anchors of
network organization across different conditions. Here, we calculated the average flexibility
for each node across all sets of multilayer modules for which the mean number of modules was
between 2 and 25. Interestingly, we found that flexible nodes were not uniformly distributed
across modules, but exhibited high levels of heterogeneity (Figure 4F, G). Perhaps most sur-
prising, when we compared participation coefficient (estimated from spontaneous FC alone)
with flexibility, we found a strong positive correlation (r = 0.57; p < 0.05), indicating that
spontaneous network structure may play a role in shaping network responses to stimuli.

Collectively, these findings suggest that spontaneous, intrinsic network architecture repre-
sents a powerful constraint on FC during stimulus-evoked conditions, in terms of both con-
nectivity patterns as well as modular structure. More specifically, we find a common, stable
modular core around which a flexible periphery of nodes reconfigure their connections as they
adapt and respond to ongoing stimuli (Oram, 2010). More importantly, the nodes that appear
most capable of reconfiguration under task conditions are the same nodes that occupy posi-
tions of influence with respect to the spontaneous modular structure. These findings further
validate observations made at the macroscale, wherein high participation areas overlap with
polyfunctional association cortex (Cole et al., 2013; Power et al., 2013; Zanto & Gazzaley,
2013). We note, however, that while the link between participation at rest and flexibility across
tasks is not without precedent, for example, control networks having high task flexibility (Cole
et al., 2013) and participation (Power et al., 2013), this relationship is not a mathematical ne-
cessity. The observations used to estimate spontaneous and task FC were independent from
one another. Accordingly, there is no mathematical reason to expect that participation and
flexibility should be related to one another.

Stability of Network Architecture Across Individuals

In the previous sections, we demonstrated that spontaneous FC is organized by geometry, ex-
hibits hierarchical modules and hubs, and constrains stimulus-evoked FC. In this final section,
we conclude by showing that the network structure of spontaneous FC appears to be con-
served and similar across individual subjects. To compare network structure across subjects,
we estimated spontaneous FC networks separately for subjects 8–18. We note that the deci-
sion to focus on this subset of subjects was motivated practically; at the time of data accession,
only data from fish 8–18 were fully annotated. For subjects 1–7, we were unable to determine
experimental state, such as spontaneous versus stimulus, from the data descriptors. Nodes and
connections were defined exactly as before. In Figure 5A–C we show example FC matrices for
subjects 8, 11, and 17.
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Figure 5. Intersubject similarity of spontaneous FC. Panels A, B, and C depict single-subject spontaneous FC matrices ordered according to
the nine-module partition shown in Figure 2G. (D) Correlation (similarity) matrix of upper triangle elements in subject-specific spontaneous
FC matrices. (E) Distribution of elements in upper triangle of correlation matrix shown in panel D. (F) Scatterplot of functional connections for
subjects s and t.

Upon visual inspection alone, the similarity of these matrices is apparent. Nonetheless,
we quantified their similarity precisely by computing the correlation of their upper triangle
elements with one another (Figure 5D). We found that the mean correlation was r = 0.35 ±
0.08, indicating that while the correspondence of network architecture across subjects was
imperfect, it was nonetheless robustly similar. We visualize these findings in two different ways:
In Figure 5E we plot the distribution of intersubject similarity and in Figure 5F we show the
two-dimensional histogram of connections plotted against one another. We also report a robust
correspondence of spontaneous and task-evoked connectivity (mean correlation of rest to all
tasks of r = 0.45 ± 0.10) and evidence that, averaged across tasks, subjects are more similar
to themselves than to other subjects (mean self-similarity of r = 0.46 ± 0.08 and intersubject
similarity of r = 0.34 ± 0.04; Finn et al., 2015; Supporting Information Figure S8).

In summary, these findings indicate that network structure of spontaneous FC is reproducible
and conserved across individuals. Further, they suggest the presence of a neuro-functional
blueprint shared across individuals. These findings contribute to the growing literature on un-
covering sources of intersubject variability in FC (Gordon et al., 2017; Seghier & Price, 2018)
and extend this research domain from the macro- to the mesoscale.

DISCUSSION

Nervous systems are fundamentally complex networks of interacting neurons, neuronal pop-
ulations, and brain areas. Current research into the structure of these networks has begun to
reveal their basic organizing principles. Despite this, little is known about the architecture of
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biological neural networks at the mesoscale (at the level of groups or clusters of individual
neurons). Here, we use network science methods to investigate the organization of mesoscale
networks in larval zebrafish during spontaneous and stimulus conditions. Our analyses reveal
the effect of geometry on network structure, a modular architecture and the hubs that span
module boundaries, and the constraint of intrinsic network structure on stimulus-evoked con-
nectivity. These features are analogous to those observed in whole-brain networks constructed
at the macroscale; our findings and methods therefore serve as conceptual bridges, linking
investigations of nervous system structure and function across organizational scales. The work
presented here serves as a methodological blueprint for future mesoscale network analyses
and highlights several outstanding neuroscientific questions to be addressed with additional
experiments and modeling.

Bridging Scales

Nervous systems exhibit meaningful organization and behavior across a wide range of spa-
tial scales—from the level of cells and molecules up to brain areas (Betzel & Bassett, 2017b).
However, different spatial scales are imaged using different technologies, resulting in data that
are often modeled and analyzed using different statistical and mathematical methods. These
distinctions in how spatial scales are researched can give rise to sometimes competing or con-
tradictory accounts of nervous system organization and behavior; this is especially true when
the neural phenomenon being studied is not clearly restricted to a single scale. Accordingly,
there is a growing need for theoretical frameworks capable of explaining and modeling obser-
vations simultaneously at many scales.

In the present work, we use network science methodology to model and characterize whole-
brain mesoscale networks. Though these methods have been widely used at the macroscale
(Bullmore & Sporns, 2009; He & Evans, 2010; Rubinov & Sporns, 2010), they are only begin-
ning to be applied to mesoscale functional datasets and have been restricted to network re-
constructions at the population level (Bruno et al., 2015; Faber et al., 2018; Muldoon, Soltesz,
& Cossart, 2013; Orlandi et al., 2013; Yamamoto et al., 2018) or at the level of entire brains
but without cellular resolution (Barson et al., 2018; Lake et al., 2018; Vanni et al., 2017). In
extending the network approach to the whole-brain level and for networks reconstructed from
single-cell observations, we provide a powerful demonstration of the utility of network science
for gaining insight into nervous system architecture. Moreover, our work showcases network
science as a framework with the ability to form bridges across spatial scales and, potentially,
help reconcile disparate findings (Bassett & Sporns, 2017).

Universal Organizational Principles

One of the goals of network neuroscience is not simply to describe a network, but to iden-
tify the principles by which nervous systems are organized (Bassett & Sporns, 2017). In other
words, what are the rules by which a network’s structure is shaped (Betzel & Bassett, 2017a;
Ercsey-Ravasz et al., 2013; Goulas, Betzel, & Hilgetag, 2018; Vértes et al., 2012) and are those
rules universally true or do they apply only to particular organism and scale (van den Heuvel
et al., 2016)? This goal is challenging to address, as most research that constitutes network
neuroscience has focused on a single scale (macro) for a single organism (human), limiting the
possibility of discovering scale- and species-invariant organizing principles.

Here, because of recent advances in cellular-level imaging (Ahrens et al., 2012; Vladimirov
et al., 2014), we constructed whole-brain mesoscale functional networks and found, surpris-
ingly, that these networks express analogous features as macroscale networks, suggesting that
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similar rules and principles are responsible for their organization. These features include con-
nection weights with a strong geometric dependence, a balance between segregated and in-
tegrated brain function, and subtle stimulus-induced reconfigurations of network architecture.
These findings indicate that functional networks reconstructed at the mesoscale may be orga-
nized according to an analogous set of rules and principles, suggesting that these rules may
be approximately scale-invariant. Moreover, these findings also suggest that, despite increases
in dimensionality at the mesoscale, network organization can be succinctly described by a
low-dimensional set of principles.

Future Directions

There are several ways that the work presented here could be extended in the future. First,
although the network science methods we used provided novel insight into network structure
at the mesoscale, those methods are relatively established in the network neuroscience litera-
ture (Guimera & Amaral, 2005; Newman & Girvan, 2004; Rubinov & Sporns, 2010). Recently,
increasingly novel methods have been developed that assay more nuanced aspects of net-
work structure; in the long term, it would be useful to test whether these new (but more com-
plex) approaches based on algebraic topology (Saggar et al., 2018), control theory (Gu et al.,
2015), blockmodeling (Betzel, Medaglia, & Bassett, 2018), and graph signal processing
(W. Huang et al., 2018) can give novel insights into mesoscale network structure and function.
In the near term, a potentially more fruitful approach could involve estimating time-varying FC
to track fluctuations in network structure over short timescales and thereby gain insight into
network dynamics (Hutchison et al., 2013).

Second, though networks analyzed here were reconstructed from single-cell recordings,
we aggregated cells into parcels that we regarded as nodes. Though the parcels were defined
to be both spatially and functionally homogeneous, each parcel-averaged fluorescence trace
likely does not perfectly explain the variance of traces for every cell assigned to that parcel. In
future work, it is critical to explore the effect of alternative parcellations on network statistics
(Wang et al., 2009). Additionally, it would be useful to explore parcellation-free approaches,
wherein connections are estimated between individual cells (though this approach will likely
scale poorly as the number of recorded cells increases; Kim et al., 2016).

Additionally, our work sets the stage for future studies to form much stronger bridges be-
tween observation and theory. In network neuroscience, specifically, there is no shortage of
theories concerning the functional roles of particular classes of network structures. For exam-
ple, it remains unclear exactly what role connections play in shaping communication patterns
between neural elements, and whether this process is selective, for example, biased towards
the utilization of specific pathways, or unguided, as in a random walk or diffusion process
(Avena-Koenigsberger, Misic, & Sporns, 2018). Testing hypotheses like these is challenging,
largely because the experimental perturbations necessary, such as ablating cells or pathways,
are invasive and because most macroscale networks are constructed noninvasively in human
subjects, where invasive perturbations are, in general, not possible (with some notable ex-
ceptions; Solomon et al., 2018). Extending network analysis to the mesoscale and to model
organisms like zebrafish makes it possible to leverage focused perturbations (Yamamoto et al.,
2018) and novel neuroscientific techniques (Vladimirov et al., 2018), to confront, test, and
disambiguate network-level hypotheses about brain function.

Another important direction for future work involves the comparison of the functional imag-
ing data analyzed in this study and made available via (X. Chen et al., 2018), with additional
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biological data collected and disseminated as part of other neuroinformatics studies. For in-
stance, paralleling structure-function work carried out at the macroscale (Betzel et al., 2019),
future studies could establish an anatomical basis for correlated activity at the mesoscale and
cellular levels through detailed comparisons against physical connections (Kunst et al., 2019).
Similarly, and by virtue of working with model organisms, the genetic mechanisms that un-
derlie patterns of correlated activity can be probed in much greater detail than is possible at
the macroscale by, for example, taking advantage of publicly available gene expression atlases
(Sprague, Doerry, Douglas, & Westerfield, 2001).

While this work includes analysis of functional brain networks reconstructed from cellular-
level recordings, to facilitate intersubject comparisons it was nonetheless necessary to cluster
cells into a set of parcels. This aggregation step resulted in a consistent set of network nodes
across all individuals. Future work should explore granular approaches for analyzing these
networks that do not sacrifice the single-cell resolution of these data, such as by embedding
subject-level networks in the same space (Simas, Chavez, Rodriguez, & Diaz-Guilera, 2015).
Though this work helps clarify the organizational features and constraints of biological neural
networks at the mesoscale, future studies of single-cell organization will provide even greater
clarity (Ponce-Alvarez, Jouary, Privat, Deco, & Sumbre, 2018).

Limitations

Despite contributing to our understanding of the organizing principles underpinning mesoscale
biological neural networks, this study has a number of important limitations. First, it is critical
to note that our measure of connectivity is a linear correlation. Though this particular measure
has been used extensively to model functional connectivity of slowly evolving fMRI BOLD
data (David, Cosmelli, & Friston, 2004) and performs well in recovering underlying network
structure when applied to synthetic time series data (Smith et al., 2011), it is not a direct mea-
sure of structural connections (axonal projections), it is not equivalent to the coupling matrix in
a dynamical systems model, does not indicate directedness of a connection, and is in no way
a measure of causality or mechanism. Consequently, the results of all analyses are descriptive
in nature. In future work, perturbational experiments and novel network reconstruction tech-
niques will help clarify the causal role of network organization (L. Huang et al., 2018; Lansdell
& Kording, 2018).

Second, we infer connection weights based on zero-lag correlations of calcium fluores-
cence, which serves as an indirect measurement of a neuron’s activity. This indirectness,
coupled with lack of temporal precision (two volumes acquired per second), opens to the pos-
sibility that reconstructed networks are not fully recapitulating the “true” correlation structure
of neurons’ activities. Advances in electrophysiological methods that enable recording from a
large number of neurons (Jun et al., 2017) and optical techniques for accelerating acquisition
times (Sadovsky et al., 2011) will prove useful in addressing these and related issues in future
work.

Finally, another limitation concerns the methodology used for parcel (node) definition.
Here, we combined data from all subjects and all stimulus conditions to generate spatially
contiguous and functionally homogeneous parcels, which is common in the large-scale imag-
ing literature (Eickhoff, Yeo, & Genon, 2018). In principle, these parcels would be validated
in an independently acquired dataset to ensure their robustness and reduce the risk of overfit-
ting. However, because of the uniqueness of the present dataset, finding a second comparable
and independent dataset was not possible. Relatedly, parcels were defined to be similar across
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subjects and stimulus conditions. However, recent large-scale imaging work has shown that
parcel boundaries fluctuate with both individuals and task (Salehi et al., 2019). As sim-
ilar datasets become available in the future, the validity and robustness of parcels should be
investigated further using cross-validation procedures. Similarly, future work should explore
alternative parcellations that may better reflect subject-level and stimulus-specific network
organization.

MATERIALS AND METHODS

Data Acquisition

Activity from a majority of neurons was recorded in larval zebrafish using light-sheet mi-
croscopy (Vladimirov et al., 2014). Activity was recorded under spontaneous conditions and
also while subjects were presented with a series of visual stimuli. As reported in X. Chen et al.
(2018), calcium imaging data were recorded at ≈ 2 volumes/second for ≈ 50 min (or ≈ 6, 800
volumes). As in Vladimirov et al. (2014), the calcium indicator GCaMP6f (T.-W. Chen et al.,
2013), was expressed pan-neuronally and fused to cell nuclei, allowing for the automatic seg-
mentation of cells (Kawashima, Zwart, Yang, Mensh, & Ahrens, 2016). The result was contin-
uous fluorescence traces for ≈ 80,000 cells per subject. As noted in X. Chen et al. (2018), this
number accounts for the majority of neurons in the brain, excluding extremely ventral areas.
For complete details of data acquisition, see X. Chen et al. (2018).

Spontaneous Activity and Visual Stimuli

Most of our analyses focused on networks reconstructed from spontaneous activity, that is,
in the absence of any visual stimuli. During this condition, which lasted on average 419.0 ±
131.4 s, the fish engage in fictive swimming through a series of alternating left- and right-turn
sequences (X. Chen et al., 2018; Dunn et al., 2016).

In addition to spontaneous activity, subjects were imaged concurrent with the presenta-
tion of visual stimuli, the precise timing of which varied from subject to subject (see X. Chen
et al., 2018, for complete details). Briefly, these stimuli included the following:

1. Phototaxis: Subjects were presented with half-field black and white visual stimuli on
either side. Presentations were followed by a whole-field black stimulus. On average,
the half-field black and white stimuli were presented for 17.9 ± 5.2 s, interspersed by
the whole-field black stimulus, lasting for 7.04 ± 3.6 seconds. This repeated motif of
whole-field black to half-field white to whole-field black to half-field black lasted for
759.7 ± 331.7 s.

2. Optomotor response: Whole-field stripes moving in different directions. Here, some sub-
jects were presented with three different movement directions and others with four, the
precise timing of which was variable. Presentation lasted 8 ± 3.9 s, between which were
blank stimuli lasting approximately 9.6 ± 4.3 s. The total duration of this stimulus was,
on average, 631.5 ± 303.1 s.

3. Looming response: Expanding discs on either left or right side interspersed by long peri-
ods of no stimulus. The disc periods alternated and lasted, on average, 3.6 ± 1.3 s, while
the nonstimulus periods lasted 18.1 ± 6.6 s. This stimulus lasted 350.0 ± 158.7 s.

4. Dark-flash response: Sudden darkening of environment lasting, on average, 15.2 ± 6.7 s,
followed by lightening, lasting almost an equal amount of time, 16.1± 7.2 s. This stimulus
lasted, on average, 335.2 ± 109.3 s.
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Node Definition

Rather than analyze networks where nodes correspond to individual cells, we focused on
networks where the nodes represented clusters of cells, effectively reducing computational
burden and facilitating straightforward interpretation. We developed a data-driven approach
to assign cells to clusters that possessed three distinct properties: (a) spatial contiguity, (b)
functional homogeneity, and (c) intersubject consistency.

To generate clusters with this set of properties, we designed a multistage clustering algo-
rithm. First, we aggregated normalized spatial coordinates of cells in the left hemisphere across
all subjects and clustered them using k-means into k = 2, 500 contiguous spatial clusters
(distance metric = Euclidean; number of replicates = 10). This aggregation step was possible
because cells had previously been aligned across subjects (X. Chen et al., 2018). We then mir-
rored the centroids about the midline and assigned cells in the right hemisphere to the nearest
spatial cluster centroid (5,000 hemispherically symmetric clusters; mean spatial cluster size
of 280 ± 73 cells). Because this procedure defines spatial clusters based on cells’ spatial loca-
tions, the resulting spatial clusters were also spatially contiguous. Moreover, because spatial
clusters were defined using aggregated coordinates, spatial clusters contained cells from mul-
tiple subjects. Of the 5,000 spatial clusters, 82.6% contained cells from all subjects and 92.5%
contained cells from at least 75% of subjects.

Next, we concatenated spontaneous and stimulus-evoked activity and regressed the global
signal from each cell’s fluorescence trace (Power et al., 2014). This procedure ensured that
any observed fluctuations in fluorescence were not driven by changes in baseline fluores-
cence. (Note: We also carried out select sets of analyses on data in which the global signal
regression step was omitted and found generally similar results, but with baseline correlation
increased and more clear monotonic decay of connection weight as a function of distance;
see Supporting Information Figure S5.) Then for each spatial cluster and each subject, we ex-
tracted a cluster-averaged fluorescence trace, and computed pairwise correlations for all spa-
tial clusters. This correlation structure reflects both spontaneous and stimulus-evoked activity
and effectively helps mitigate the possibility that subsequent clusters are overfit and biased
towards the correlation structure of one condition or another. We repeated this algorithm sep-
arately for both each hemisphere before averaging over subjects and hemispheres, resulting
in a single 2,500 × 2,500 matrix of group- and hemisphere-averaged correlations (we were
able to average over hemispheres because spatial clusters were defined to be hemispherically
symmetric and so each spatial cluster had a homotopic partner). Next, we used this matrix to
identify functional clusters with high average functional homogeneity by clustering its rows
using k-means. We asked the algorithm to generate k = 100 functional clusters (distance =

correlation; number of replicates = 10). However, the resulting functional clusters were, in
general, no longer spatially contiguous (i.e., functional clusters could include spatial clusters
whose fluorescence traces were similar, but not necessarily proximal to one another). Accord-
ingly, we extracted all spatial clusters assigned to each functional cluster and further divided
them according to their spatial coordinates until the maximum diameter was <200 pixels and
each spatial cluster in a functional cluster was no fewer than 60 pixels from any other spatial
cluster assigned to the same functional cluster. In the end, this procedure resulted in N = 256
parcels, each of which represented a node in our network.

We note that this clustering procedure necessarily sacrifices some of the resolution at which
the original data were recorded. That is, by consolidating single cells into clusters, the unique
identities of those cells (and any information carried by fluctuations in their activity over time)
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is lost. However, in doing so, we generate parcels whose identities are preserved across indi-
viduals, thereby facilitating intersubject comparisons that would have, otherwise, been difficult
to carry out.

Network Construction

To construct networks, we mapped the N = 256 nodes defined in the previous section back
to individual subjects and to single cells. For each subject and for each node, we extracted the
average fluorescence trace of its constituent cells and computed the pairwise correlation for all
pairs of nodes. All correlation coefficients were subsequently Fisher transformed. We also con-
firmed that the observed correlation patterns were not driven by low-level statistical properties
of the fluorescence traces. For each subject, we generated 1,000 phase-randomized surro-
gates in which we calculated the discrete Fourier transform of each fluorescence trace, added
random phase offsets, and took the inverse transform (Theiler, Eubank, Longtin, Galdrikian,
& Farmer, 1992). We then estimated the correlation structure of the resulting surrogate time
series (as a Spearman correlation). We found that the surrogate time series generate wildly
different correlation patterns compared with the observed network (average mean similarity
across subjects of ρ = −3.6 × 10−4 ± 5.9 × 10−4). This strongly suggests that the correlation
structure estimated from the original time series is not driven by low-level statistics of the cal-
cium fluorescence traces.

Multiresolution Modularity Maximization

Modularity maximization is a flexible, data-driven method for partitioning networks into sub-
networks called “communities” or “modules” (Newman & Girvan, 2004). It operates according
to a simple principle—compare observed connections against what would be expected under
a null connectivity model. Modules, then, are groups of nodes whose observed internal den-
sity of connections is maximally greater than expected. This intuition is quantified using the
modularity heuristic, Q, defined as the following:

Q(γ, {gi}) = ∑
ij
[Aij − γ · Pij]δ(gi, gj). (1)

Here, Aij and Pij are the observed and expected connection weights between nodes i and j;
γ is the structural resolution parameter; gi ∈ {1, . . . , C} is the module assignment of node i;
and δ(x, y) is the Kronecker delta function, where δ(x, y) = 1 when x = y and is δ(x, y) = 0,
otherwise. Effectively, this function calculates the total weight of within-module connections
less that of the null model. Partitions that correspond to larger values of Q are considered
to be, objectively, of higher quality. Here, we used a uniform null connectivity model, that
is, Pij = 1, which helps mitigate issues related to the resolution limit (Traag, Van Dooren,
& Nesterov, 2011) and is appropriate for use with correlation matrices (Bazzi et al., 2016).
We note that under this null model the expected magnitude of correlation is controlled by γ

parameter.

Hierarchical modules. Here, we used two variants of modularity maximization to detect mod-
ules in zebrafish functional networks. The first seeks to relate coarse (large) and fine (small)
modules to one another through a hierarchy ( Jeub et al., 2018; http://github.com/LJeub/
HierarchicalConsensus). This procedure takes advantage of the resolution parameter, γ, which
can be tuned to detect modules of different sizes. Briefly, we sampled 10,000 partitions at
various values of γ, which results in modules of different sizes. We then summarized those
modules using a coassignment matrix whose elements indicated the fraction of all samples in
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which pairs of nodes were assigned to the same module. To generate a hierarchy, this coas-
signment matrix was recursively clustered, with larger modules divided into smaller modules
according to a statistical criterion. This procedure resulted is a series of hierarchically related
modules.

Multilayer modules. We also used a second variant of modularity maximization, in which
the Q heuristic is extended to “multilayer” networks (Mucha et al., 2010). Here, layers repre-
sented connectivity matrices estimated under different stimulus conditions. For each layer, s,
we calculated its corresponding modularity matrix, Bs = As − γ · Ps. Node i in layer s was
then linked to itself in all other layers by an interlayer connection of weight ω. Next, modules
were detected for all layers simultaneously by submitting the entire multilayer ensemble—all
layer-specific modularity matrices and interlayer connections—to the modularity maximiza-
tion algorithm (see Supporting Information Figure S6 for a schematic). The corresponding Q
heuristic can be written as follows:

Q(γ, ω, {gis}) = ∑
ijsr

[Bijs]δ(gis, gjs) + δ(i, j) · ω]δ(gis, gjr). (2)

This multilayer formulation has the distinct advantage over single-layer formulations, in that by
detecting modules in all layers simultaneously, module labels are preserved across layers. That
is, the observation of the same module label in layers s and t �= s indicates a recurrence of a
module. This fact facilitates straightforward module comparisons and enables the computation
of a multilayer flexibility measure, fi, whose value indicates the fraction of times that a node
i’s module assignment differs across pairs of layers.

fi = 1 − 2
T(T − 1) ∑

r,s>r
δ(gi,r, gi,s). (3)

In the context of the current study, high-flexibility nodes represent nodes whose community
assignment varies from one stimulus condition to another. Low-flexibility nodes, on the other
hand, refer to nodes whose community assignment is invariant across conditions.

Louvain algorithm. For both the hierarchical and multilayer variants of modularity maximiza-
tion, we used the generalized Louvain toolbox to optimize Q (Jutla, Jeub, & Mucha, 2011).
In both cases, we sampled 10,000 values of γ within the range [−0.05, 1.285]. The value of
γ = −0.05 was determined by experimentation and represented the approximate smallest
value of γ for which the network was partitioned into two or more communities. The second
value of γ = 1.285 represented a theoretical upper limit, above which the optimal partition
was always to assign each node to a singleton community. Therefore, this range bounds all “in-
teresting” partitions—below which all nodes were assigned to one big community and above
which all nodes were assigned to singleton communities. We sampled γ values within this
range to approximate the distribution of connection weights in the network. Specifically, we
sampled 10,000 times with replacement from the set of connection weights that fell within
the acceptable range. We relied on a similar approach for sampling γ values when we used
multilayer modularity maximization.

The ω parameter enters into modularity maximization only in the multilayer case and con-
trols the heterogeneity of communities across layers (conditions). When ω is small, commu-
nities reflect organization unique to each layer; when ω is large, they reflect organization that
is shared across layers. Here, we sampled ω from logarithmic distribution. That is, we first
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selected 10,000 exponents between the values of [−3, 1] and obtained ωs by raising the value
of 10 to the power of each sample. Accordingly, the smallest and largest possible values of ω

were 0.001 and 10.

As described in a recent paper (Betzel, Bertolero, Gordon, et al., 2018), we found that
variation in ω effectively changed the baseline level of community variability (flexibility) but
had little influence on the overall pattern of flexibility. So when we remove the effect of baseline
differences in flexibility by rank transforming flexibility (as we do in Figure 4), the flexibility
patterns over which we average tend to be homogeneous.

Comparing modular structure. To compare two modular partitions, we used the z-score of the
Rand index (Traud et al., 2011), a similarity measure that, intuitively, corrects the more com-
mon Rand index for the number and size of communities in the partitions. For two partitions,
X and Y, we calculate their similarity as

Zr(X, Y) =
1

σwXY

wXY − WXWY
W

. (4)

Here, W is the total number of node pairs in the network, WX and WY are the number of pairs
in the same modules in partitions X and Y, respectively, wXY is the number of pairs assigned
to the same module in both X and Y, and σwXY is the standard deviation of wXY. The value
of Zr(X, Y) can be interpreted as how great, beyond chance, is the similarity of partitions X
and Y.

Defining Network Hubs

Hubs are considered nodes of disproportional importance to a network. We use three mea-
sures to identify hubs. The first measure is the flexibility metric. Nodes with high flexibility are
those whose module affiliation changes across stimulus conditions and are therefore able to
reconfigure in response to different stimuli or tasks.

The second metric used for hub classification is a node’s absolute strength—that is, the total
weight of all of its connections:

si = ∑
j
|Aij|. (5)

Intuitively, nodes with stronger connection weights, either positive or negative, may occupy
positions of influence within the network.

Finally, we also defined hubs to be nodes with large participation coefficient (Guimera &
Amaral, 2005). A participation coefficient measures how uniformly a node’s connections (pos-
itive, in this case) are distributed across modules. A node that makes positive connections to
many different modules will have a high participation coefficient, while a node whose con-
nections are restricted to a small number of modules will have a low participation coefficient.
More specifically, participation is calculated as

p+
i = 1 −

Nc

∑
c=1

(
κ+

ic
k+

i
)2. (6)

Here, Nc is the number of modules, κ+
ic is the total weight of positive connections from node i

to module c, and k+
i is the total weight of positive connections incident upon node i. Intuitively,

nodes whose connections are distributed uniformly across modules have values of p+
i close

to 1, while nodes whose connections are concentrated within a small number modules have
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values of p+
i closer to 0. Participation coefficient was computed using functions from the Brain

Connectivity Toolbox (Rubinov & Sporns, 2010).
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