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Sepsis is extremely heterogeneous pathology characterized by complex metabolic changes. Fibroblast growth factor 19 (FGF19) is a
well-known intestine-derived inhibitor of bile acid biosynthesis. However, it is largely unknown about the roles of FGF19 in
improving sepsis-associated metabolic disorder and organ injury. In the present study, mice were intravenously injected
recombinant human FGF19 daily for 7 days followed by lipopolysaccharide (LPS) administration. At 24 hours after LPS stimuli,
sera were collected for metabolomic analysis. Ingenuity pathway analysis (IPA) network based on differential metabolites (DMs)
was conducted. Here, metabolomic analysis revealed that FGF19 pretreatment reversed the increase of LPS-induced fatty acids.
IPA network indicated that altered linoleic acid (LA) and gamma-linolenic acid (GLA) were involved in the regulation of oxidative
stress and mitochondrial function and were closely related to reactive oxygen species (ROS) generation. Further investigation
proved that FGF19 pretreatment decreased serum malondialdehyde (MDA) levels and increased serum catalase (CAT) levels. In
livers, FGF19 suppressed the expression of inducible NO synthase (iNOS) and enhanced the expression of nuclear factor erythroid
2-related factor 2 (NRF2) and hemeoxygenase-1 (HO-1). Finally, FGF19 pretreatment protected mice against LPS-induced liver,
ileum, and kidney injury. Taken together, FGF19 alleviates LPS-induced organ injury associated with improved serum LA and
GLA levels and oxidative stress, suggesting that FGF19 might be a promising target for metabolic therapy for sepsis.

1. Introduction

Sepsis is defined as life-threatening organ dysfunction
caused by a dysregulated host response to infection [1].
Sepsis-induced dysregulated lipid metabolism is character-
ized by decreased serum high-density lipoprotein, total cho-

lesterol, and low-density lipoprotein and elevated
triacylglycerols [2]. As the main site for lipid metabolism,
the liver suffers from excess free fatty acids (FFAs) resulting
in lipotoxicity and sepsis-associated liver injury (SALI) [3].
Therefore, we speculated that improving the lipid metabolic
disorder could be a novel therapeutic strategy for SALI.
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Fibroblast growth factor 19 (FGF19), as an intestine-
derived hormone, enters the liver through the portal vein
and suppresses bile acid (BA) and FA synthesis in hepato-
cytes [4–6]. Given its roles in metabolic regulation, FGF19
is a potential molecular target for type 2 diabetes and non-
alcoholic fatty liver disease [7, 8]. Recently, FGF19 ana-
logues or mimics are entering phase 3 clinical research
in nonalcoholic steatohepatitis (NASH) [9]. Mechanically,
FGF19 binds to FGF receptor 4 (FGFR4) to inhibit choles-
terol 7α-hydroxylase activity resulting in BA synthesis sup-
pression, and mammalian target of rapamycin complex 1
(mTORC1) is an essential mediator of FGF19 involved
in metabolic effects [10, 11]. Moreover, FGF19 promotes
FA oxidation and improves mitochondrial dysfunction in
skeletal muscle partially through AMP-activated protein
kinase (AMPK) signaling pathway [12, 13]. Importantly,
recent study proved that lipopolysaccharide (LPS) inhib-
ited the expression of FGFR4 in the livers of mice [14],
and our previous study elucidated the association between
serum FGF19 level and sepsis-associated gastrointestinal
dysfunction [15]. Therefore, we speculated that FGF19
could be a key regulator of metabolism homeostasis and
plays a protective role in sepsis-associated metabolic disor-
der and organ injury.

Metabolomics has been paid more attention in critically
ill due to its comprehensive analysis for metabolic alteration
[16]. Serum or plasma is usually used for metabolic profile
analysis to identify metabolic biomarkers [17–19]. Besides,
machine learning method based on integrated pathway anal-
ysis (IPA) generating metabolites-related regulatory net-
works provides a more effective and intuitive way to
acquire potential pathological mechanisms [20–22]. In the
present study, we aimed to explore the role of FGF19 in
LPS-induced serum metabolic profile disturbance in mice
using targeted liquid chromatography coupled with mass
spectrometry (LC-MS) (Figure 1).

2. Materials and Methods

2.1. Animal. A total of 48 male C57BL/6 J mice (8-10 weeks
old) were purchased from Shanghai Southern Model Animal
Experimental Center (Shanghai, China). Mice were caged on
a 12-h light/dark cycle at 25°C and were allowed free access
to tap water and a standard rodent chow ad libitum. Mice
were randomly divided into four groups including control,
LPS, only FGF19 treatment (FGF19), and FGF19 pretreat-
ment followed by LPS administration (FGF19+LPS). To
construct endotoxemia model to mimic sepsis and sepsis-
associated organ dysfunction, mice were intraperitoneally
injected with LPS (5mg/kg, E. coli 0111: B4, Sigma-Aldrich
Co.) for 24h [23]. Recombinant human FGF19 (Novopro-
tein, China) was intravenously injected via tail vein at a dose
of 0.1mg/kg body weight daily for 7 days before LPS treat-
ment. The management and experimental care of mice were
conducted in accordance with the protocol that was
approved by the Ethics Committee of Shanghai Children’s
Hospital, Shanghai Jiao Tong University School of Medicine
(Shanghai, China).

Mice were sacrificed at 24h after LPS administration.
Blood samples were collected and centrifuged at 3000 rpm
for 15min to separate serum. The serum samples from a
batch of animals (6 mice per group) were sent for metabolo-
mic experiments. The liver, ileum, kidney tissues, and serum
samples of the other batch of animals (6 mice per group)
were collected and performed to molecular biological exper-
iments. In addition, liver tissues were flash frozen in liquid
nitrogen for further analysis.

2.2. Sample Preparation and LC/MS Analysis. Metabolomic
analysis was conducted using Q300 Kit (Metabo-Profile Bio-
technology, Shanghai, China). Due to quality control (QC)
test, 20 QC-passed serum samples (5 mice per group) were
further analyzed by targeted metabolomics. Detailed
methods and statistical analysis for metabolomic data are
available in the Supplementary Materials (available here).

2.3. Integrated Analysis of Metabolomics. IPA software (IPA
China, provided by Shanghai Jiao Tong University School of
Medicine) was used to analyze differential metabolites
(DMs) based on metabolomics to construct molecular inter-
action network models (comparison analysis).

2.4. Histological Examination. Liver, ileum, and kidney tis-
sues were harvested and fixed in 4% paraformaldehyde over-
night and next embedded in paraffin. 4-μm thickness tissue
sections were stained with hematoxylin and eosin (H&E),
and images were captured randomly under light microscopy.
Liver, ileum, and kidney injury scores were determined as
described before [24–26]. All injury assessments were per-
formed by two observers who were unaware of the treat-
ment. The final score was expressed as an average grade.

2.5. Liver Immunohistochemical (IHC) and Immunofluorescence
(IF) Staining. Liver tissue sections were incubated with pri-
mary and then secondary antibodies following the routine
protocols of IHC and IF. For IHC staining, anti-inducible
NO synthase (iNOS) antibody was purchased from Abcam
(ab3523, UK). For IF staining, anti-hemeoxygenase-1 (HO-
1) antibody was purchased from CST (#43966, USA). Horse
radish peroxidase-conjugated or fluorescence-conjugated sec-
ondary antibody (Rabbit) was purchased from eBioscience
(Shanghai, China).

2.6. Biochemical Analysis for Oxidative Stress. Serum levels
of catalase (CAT) and malondialdehyde (MDA) were mea-
sured using corresponding commercial assay kits according
to the manufacturer’s instructions (Nanjing Jiancheng Bio-
engineering Institute, China).

2.7. Quantitative Real-Time Polymerase Chain Reaction (RT-
qPCR). The total RNA from liver tissue was prepared with
TRIzol reagent (Invitrogen Life Technologies, Carlsbad,
CA, USA). qPCR was performed on an ABI 7500 system
(Applied Biosystem, Foster, CA, USA). The relative mRNA
expressions for targeted genes were normalized by reference
gene Gapdh and were calculated by 2−ΔΔCT method. The
sequences of primers used for RT-qPCR were showed in
Supplementary Materials.
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2.8. Western Blotting. Liver tissues were homogenized in
RIPA lysis buffer (Beyotime Biotechnology). The following
antibodies were used in this study: anti-β-Actin (1: 1000,
#3700, CST), anti-Cytochrome c (1 : 1000, #3700, CST),
anti-Cleaved Caspase-3 (1 : 1000, #9664, CST), anti-HO-1
(1 : 1000, #10701, Proteintech), anti-NRF2 (1 : 1000, #16396,
Proteintech), and the secondary anti-Rabbit antibody
(eBioscience, Shanghai, China). Relative protein levels were
obtained by normalized to β-Actin. The intensities of pro-
tein band were analyzed by ImageJ software.

2.9. Statistical Analysis. Normally distributed continuous
variables are presented as mean ± SEM, and Student t -test
was used to compare the difference between two groups.
GraphPad Prism version 8 (GraphPad Software, La Jolla,
CA, USA) was used for comparison analysis. P < 0:05 was
considered statistically significant.

3. Results

3.1. Serum Overall Metabolic Profiles in Mice. There were
207 DMs in sera among four groups, which were divided
into 16 classes, including carbohydrates, amino acids,
organic acids, FAs, short-chain fatty acids (SCFAs), carni-
tines, BAs, nucleotides, phenols, peptides, benzenoids, pyri-
dines, phenylpropanoic acids, benzoic acids, indoles, and
phenylpropanoids. Among them, carbohydrates, amino
acids, organic acids, and FAs were the major metabolite
components. LPS remarkably increased the levels of FAs,
and FGF19 reversed LPS-induced effect in mice
(Figures 2(a) and 2(b)). Furthermore, FGF19 decreased the
mRNA levels of fatty acid synthase (Fasn), ATP-citrate lyase
(Acly), and increased the mRNA levels of fatty acid transport
protein 1 (Fatp1) and carnitine palmitoyltransferase 1α
(Cpt1α) in the livers in response to LPS (Figure S1).
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Figure 1: Flowchart illustrating the experimental design of this study.
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However, there were not significantly differences in serum
carbohydrates levels, amino acids levels, organic acids
levels, or others in the FGF19+LPS group compared with
LPS group (Figures 2(c)–2(f)).

3.2. Multidimensional Statistics Analysis of Serum Metabolic
Profile. In the PCA model, QC samples were successfully
separated from the tested samples and clustered together
(Figure 3(a)). The metabolites in sera of mice in the LPS

group or FGF19+LPS group were well separated from the
control or LPS group in the 2D PCA plot, respectively
(Figures 3(b) and 3(c)). However, there was no significantly
separation between FGF19 group and control group
(Figure 3(d)). Moreover, OPLS-DA score plots displayed
similar results as shown in the 2D PCA plot (Figures 3(e)
and 3(g)). Further permutation test proved that the OPLS-
DA model have good robustness without overfitting
(Figures 3(f) and 3(h)).
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Figure 2: The relative abundance and concentration of 16 metabolite classes in different groups. Mice were divided into four groups
including control, LPS, only FGF19 treatment (FGF19), and pretreatment with FGF19 followed by LPS administration (FGF19 + LPS)
(n = 5). (a) The relative abundance of 16 metabolite classes. The abscissa of stacked bar chart indicates groups, and the ordinate indicates
the relative abundance. Different colors indicate different metabolite classes. ∗ indicates P < 0:05 using analysis of variance (ANOVA).
(b–f) The concentration of special metabolite class including fatty acids (b), carbohydrates (c), amino acids (d), organic acids (e), and
others (f). ∗ indicates P < 0:05 for LPS vs. control, # indicates P < 0:05 for FGF19 + LPS vs. LPS, using Student’s t -test.
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Figure 3: Continued.
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3.3. Differential Metabolites and Potential Biomarkers
Screened from Serum Metabolomics in Mice. According to
variable importance in projection (VIP)>1 and P < 0:05,
based on OPLS-DA multivariate data analysis and univariate
statistics, a total of 82 DMs were found in the LPS
group compared with control group, including 58 upregu-
lated metabolites and 24 downregulated metabolites
(Figure 4(a)). There were 33 DMs in the FGF19+LPS group
compared with LPS group, including 6 upregulated metabo-
lites and 27 downregulated metabolites (Figure 4(b)). There
were 25 DMs appeared in both LPS vs. control and FGF19
+LPS vs. LPS group at the same time. Potential metabolites
affected by FGF19 in response to LPS included 6 kinds of
amino acids (histidine, β-alanine, methylcysteine, α-amino-
butyric acid, acetylglycine, and N-acetylglutamine), 12 kinds

of fatty acids (sebacic acid, tridecanoic acid, myristoleic acid,
myristic acid, pentadecanoic acid, gamma-linolenic acid,
linoleic acid, linoelaidic acid, dihomo-gamma-linolenic acid,
DHA, oleic acid, and petroselinic acid), 1 kind of carbohy-
drate (N-acetyl-D-glucosamine), 4 kinds of carnitines (lino-
leyl carnitine, dodecanoylcarnitine, palmitoylcarnitine, and
tetradecanoylcarnitine), and 2 kinds of organic acids (glyco-
lic acid and pyruvic acid). Among these metabolites, amino
acids, FAs, carbohydrate, and carnitines were increased,
while organic acids were decreased in response to LPS.
Intriguingly, FGF19 almost totally reversed these changed
induced by LPS (Figures 4(c)–4(e)).

3.4. Metabolic Enrichment and Pathway Analysis of
Differential Metabolites. Pathway enrichment analysis

2

−2

−1

1

0

Z−score

Amino acids

Carbohydrates

Carnitines

Fatty acids

Acetyglycine
Alpha-aminobutyric acid
Beta–alanine
Citrulline
Histridine
Methylcysteine
N–acetylglutamine
Pyroglutamic acid
Tryptophan
N–acetyl–D–glucosarnine
Dodecanoylcarnitine
Linoleylernitine
Palmitoylcarnitine
Tetradecanoylcarnitine
DHA
Dihomo–gamma–linolenic acid
DPA
EPA
Gamma-linolenic acid
Linoelaidic acid
Linoleic acid
Myristic acid
Myristoleic acid
Oleic acid
Pentadecanoic acid
Petroselinic acid
Ricinoleic acid
Sebacic acid
Tridecanoic acid
2-hydroxyglutaric acid
Glyeolic acid
Pyruvic acid
Glycylprolein

Organic acids

Peptides

(d)

55 25 8

Control vs. LPS

FGF19+LPS vs. LPS

(e)
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revealed that α-linolenic acid (α-LA) and linoleic acid (LA)
metabolism were significantly enriched in DMs in either
LPS group compared with control group or FGF19+LPS
group compared with LPS group (Figures 5(a) and 5(b)).
Detailed pathway analysis indicated that biosynthesis of
USFAs was the potential pathway contributed to FGF19-
mediated changes of metabolites in response to LPS stimuli
(Figures 5(c) and 5(d)). Furthermore, LA, gamma-linolenic
acid (GLA), dihomo-gamma linolenic acid (DGLA), and
DHA were significantly decreased in sera of FGF19-
pretreated mice (Figures 5(e)–5(h)).

3.5. Network and Comparison Analysis in Integrated
Pathway Analysis. The 82 DMs in response to LPS or 33
DMs related to FGF19 pretreatment in response to LPS were
submitted to IPA. Network function analysis revealed that
82 DMs were involved in “immunological disease, inflam-
matory disease, and inflammatory response” with a score
of 48, and 33 DMs were mainly responsible for “cellular
compromise, lipid metabolism, and small molecule bio-
chemistry” with a score of 33 (Figures 6(a) and 6(b)). Inter-

estingly, we found LA was related to NADPH oxidase (NOS)
and cytochrome-c oxidase (COX) in the LPS group, while
GLA was relevant to superoxide and COX in the FGF19
+LPS group. Next comparison analysis demonstrated that
FGF19 pretreatment inhibited LPS-induced necrosis and
reactive oxygen species (ROS) production (Figure 6(c)).
Moreover, further analysis based on comparison analysis
also enclosed that LA and GLA were involved in generation
of ROS (Figures 6(d) and 6(e)).

3.6. FGF19 Pretreatment Alleviates LPS-Induced Organ
Injury. Histological analysis indicated that FGF19 pretreat-
ment partially ameliorated LPS-induced liver, ileum, and
kidney injury, displaying significantly lower injury scores
(Figure 7(a)). Furthermore, FGF19 pretreatment signifi-
cantly inhibited LPS-induced expression of Cleaved
Caspase-3 and Cytochrome c in the liver (Figure 7(b)).

3.7. FGF19 Pretreatment Improves LPS-Induced Oxidative
Stress. IPA results suggested that FGF19 pretreatment ame-
liorated LPS-induced organ injury and inflammatory
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Figure 5: Pathway enrichment analysis using pathway-associated metabolite sets (SMPDB) and pathway analysis bubble plot by mmu set.
Mice were divided into four groups including control, LPS, only FGF19 treatment (FGF19), and pretreatment with FGF19 followed by LPS
administration (FGF19 + LPS) (n = 5). (a, b) Pathway enrichment analysis. Different colors represent different P values. The smaller P value,
the redder the color is. The length of line segment in SMPDB represents fold enrichment. (c, d) Pathway analysis bubble plot by mmu set.
The abscissa of pathway analysis bubble plot represents pathway impact, and the ordinate indicates -ln(p). (a, c) LPS vs. control, (b, d)
FGF19 + LPS vs. LPS. The concentration of differentially significant metabolites in common pathway between LPS vs. control and FGF19
+ LPS vs. LPS. (e) Linoleic acid, (f) gamma-linolenic acid, (g) dihomo-gamma-linolenic acid, and (h) (DHA). ∗ indicates P < 0:05 for
LPS vs. control, and # indicates P < 0:05 for FGF19+LPS vs. LPS, using Student’s t-test. Each black point represents a sample.
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response, which might be related to generation of ROS. Thus
far, we run a series of validation tests to verify relationship of
FGF19 and oxidative stress. Interestingly, serum MDA level
was decreased, and serum CAT level was increased in
FGF19-pretreated mice (Figure 8(a)). The mRNA levels of
glutathione peroxidase 1 (Gpx1) and Cat in livers were sig-
nificantly higher in mice pretreated with FGF19 compared

with LPS-treated mice, but not superoxide dismutase (Sod1
and Sod2) (Figure 8(b)). Consistently, both the mRNA and
protein levels of iNOS were significantly decreased in the
FGF19-pretreated group compared with LPS group
(Figures 8(b) and 8(c)). Furthermore, FGF19 pretreatment
promoted the LPS-suppressed expression of NRF2 and
HO-1 in the livers (Figures 8(b) and 8(d)–8(f)).
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Figure 6: Network function analysis and comparison analysis of differential metabolites (DMs) using IPA software. (a, b) Top-ranked
enriched networks based on differential metabolites (DMs). Red, significantly increased; green, significantly decreased. (a) LPS vs.
control; (b) FGF19 + LPS vs. LPS. (c) Disease and biofunction analysis based on comparison analysis (orange, upregulated; blue,
downregulated). Left, LPS vs. control; right, FGF19 + LPS vs. LPS. (d, e) Detailed metabolites related to generation of reactive oxygen
species (ROS) in response to LPS. (d) Only LPS treatment. (e) With FGF19 pretreatment (red, significantly increased; green, significantly
decreased; orange arrow, activated; blue arrow, inhibited).
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4. Discussion

Metabolic disturbance is a critical characteristic of sepsis and
also is a potential entry for developing novel therapeutic

strategy for sepsis. In the present study, we found that
FGF19 pretreatment attenuates LPS-induced organ injury
associated with LA/GLA-ROS generation-NRF2/HO-1 path-
way (Figure 9). To the best of our knowledge, it is the first
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Figure 7: FGF19 alleviates LPS-induced organ injury. Mice were divided into four groups including Control, LPS, only FGF19 treatment
(FGF19), and pretreatment with FGF19 followed by LPS administration (FGF19+LPS) (n = 6). (a) H&E staining for liver, ileum, and
kidney (20 ×) at 24 h after LPS treatment in the indicated groups of mice. Scale bars, 200 μm. Liver, ileum, and kidney injury scores were
determined according to the scoring criteria described in the Methods section. (b) Cleaved Caspase-3 and Cytochrome c protein levels in
the livers. All data are presented as mean ± SEM. ∗ indicates the significant difference compared with control group, & indicates the
significant difference compared with FGF19 group, # indicates the significant difference compared with LPS group.
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report about FGF19 regulating serum LA/GLA levels
involved in sepsis-associated organ injury, which gives a
new sight into the metabolic strategy for sepsis treatment.

Metabolic response to LPS in healthy people is concor-
dant with that of community-acquired sepsis survivor [27].
LPS-induced mice model was reported to be used for inves-
tigating the potential metabolites involved in improving
organ injury [28]. As described in our previous studies [29,
30], LPS-induced mice model was used in this study. We
previously reported that serum FGF19 level was decreased
in patients with sepsis-associated gastrointestinal dysfunc-
tion [15]. The gut barrier failure leads to increased levels of
inflammatory factors and absorption of LPS and decreased
bacteria clearance, aggravating SALI [31]. Moreover,
FGF19 regulates FA metabolism for treatment of NASH
[32]. In this study, we revealed that FGF19 partially sup-
presses LPS-induced FA synthesis and promotes FA trans-
port and β-oxidation in livers and influences FAs levels
including oleic acid, LA, and GLA in serum. This study gave
a new insight into FGF19-mediated changes of FA profiles in
response to LPS. Considering the characteristic of intestine-
derived, FGF19 could be a potential therapeutic target for
sepsis from the view of FA regulation.

Through analyzing the DMs between LPS vs. control
group and LPS vs. FGF19+LPS group, 25 DMs were
screened and potentially involved in the protective roles of
FGF19 in LPS-induced metabolic disorders. Among these,
12 fatty acids were involved. For example, myristic acid is
a saturated FA, whose increasement might be related to the
alteration of lipid metabolism and energy production in sep-
sis [33, 34]. In a cohort of septic patients and patients with
systemic inflammatory response syndrome (SIRS), serum
myristic acid was significantly higher in sepsis and SIRS

group, which indicates myristic acid should be considered
as a new candidate marker for sepsis [35]. In summary,
FGF19 pretreatment mainly improved LPS-induced lipid
metabolism, indicating FGF19 might be closely associated
with improved metabolic disturbance of sepsis. Aldafermin
(NGM282), an FGF19 engineered analogue, is mainly
applied in clinical trial including NASH [36] and primary
sclerosing cholangitis [37]. Currently, NGM282 is applied
in phase 2 clinical trials in NASH showing favorable clinical
effect on reducing liver fat and improving fibrosis (Clinical-
Trials.gov, Number: NCT02443116) [38]. In atherosclerosis,
both FGF19 and NGM282 regulated cholesterol homeostasis
and improved hepatic steatosis in db/db mice [6]. In the
future, the potential therapeutic values of NGM282 or other
FGF19 analogue in sepsis should be conducted in a well-
designed clinical trial.

Our detailed pathway analysis results showed that
FGF19 pretreatment suppressed USFA biosynthesis and LA
and GLA were involved. Peritoneal fluid metabolomics or
serum metabolomics revealed that LA level was increased
in rodent treated by LPS, and biosynthesis of USFA was
influenced [39, 40]. In agreement with these previous study,
LPS increased LA, GLA, DGLA, and DHA. Instead, FGF19
pretreatment reversed the effect. LA is converted to arachi-
donic acid (AA) via GLA and DGLA, and LA is converted
to DHA via α-LA [41, 42]. The levels of AA were increased
by a two-fold in patients with severe sepsis [43]. Moreover,
LPS-induced LA and AA led to increased FFAs and prosta-
glandin E2 in serum resulting in organ injury [44]. We sus-
pected that LPS-induced LA metabolism disturbance is
earlier than organ injury. Accumulated evidences indicated
that USFA are substrates for the synthesis of multiple mole-
cules that are active in inflammatory response [45–48].
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Figure 8: FGF19 improves LPS-induced oxidative stress. Mice were divided into four groups including Control, LPS, only FGF19 treatment
(FGF19), and pretreatment with FGF19 followed by LPS administration (FGF19+LPS) (n = 6). (a) Serum levels of MDA and CAT. (b) The
mRNA level of Sod1, Sod2, Gpx1, Cat, iNos, Nrf2, and Ho-1 in the livers. (c) Immunohistochemical staining against iNOS in the livers. Scale
bars, 200μm. (d) Immunofluorescent staining against HO-1 (green) in livers and DAPI (blue) was used to highlight the cell nucleus (40×).
(e) NRF2 protein levels in the livers. (f) HO-1 protein levels in the livers. All data are presented as mean ± SEM. ∗ indicates the significant
difference compared with control group, & indicates the significant difference compared with FGF19 group, # indicates the significant
difference compared with LPS group.
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Decreased Omega 6/Omega 3 FAs were proved to attenuate
ethanol-induced liver injury [49]. So, we suspected that
FGF19 improves LPS-induced organ injury mainly via
downregulating LA metabolism. However, the detailed
mechanisms underlying FGF19 affecting LA and GLA levels
need further investigation in the future. Serum metabolo-
mics could be affected by diet and gut microbiome, and it
is limited to analyze metabolites produced endogenously
[50]. So, the role of supplement to specific microbial metab-
olites and analysis of tissue metabolomics need further
investigation in the future.

Imbalance of oxygen metabolism was manifested as
increased oxygen demand and aerobic anaerobic respiration
in a sepsis model in rats [40]. Metabolomic data indicated
that FGF19 improved the level of pyruvic acid, suggesting
FGF19 possibly improves LPS-induced mitochondria dys-
function. FFAs overload results in incomplete oxidation in
the mitochondria, peroxisomes, and microsomes, leading
to the generation of ROS [51, 52]. LA could produce more
mitochondria-derived ROS than other FFAs [53]. In the
present study, IPA network showed that FGF19-induced
changes of LA and GLA levels were associated with ROS
generation in response to LPS. Otherwise, FGF19 could pro-
tect oxidative stress-induced diabetic cardiomyopathy via
activation of AMPK/NRF2/HO-1 pathway [54]. In our
study, FGF19 strongly induced NRF2 and HO-1 expression
and suppressed iNOS expression in livers in response to
LPS. Moreover, FGF19 increased serum CAT and hepatic
Cat and Gpx1 mRNA expression. So, we supposed that
FGF19 pretreatment might promote ROS clearance related
to activating antioxidant enzymes.

Generally, the serum metabolomic profile through mice
intraperitoneal-injected LPS with or without FGF19 pre-

treatment, IPA analysis, and our further validation tests
revealed FGF19 improved LPS-induced lipid metabolic dis-
order and organ injury, which was associated with LA/
GLA-generation of ROS pathway. However, the present
study also has several limitations. The sample size for serum
metabolomic analysis (n = 5) was small. LPS-induced mice
model was only model used in this study. Thus, the conclu-
sion should be further assessed in future studies. Moreover,
serum LA and GLA levels in patients with sepsis could be
paid more attention to monitor routinely, and potential rela-
tionship between serum LA and GLA levels and the outcome
of sepsis should be further investigated in the future.

5. Conclusion

FGF19 pretreatment alleviates LPS-induced metabolic disor-
der and organ injury. Integrated pathway analysis implied
that FGF19-reduced serum LA and GLA levels might be cor-
related to improving oxidative stress, and further experi-
mental data confirmed that FGF19 activates NRF2/HO-1
pathway in response to LPS. So, FGF19 could be potential
metabolic regulator during sepsis and therapeutic target for
sepsis treatment.
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