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Abstract

Background: Vascular endothelial growth factor A (VEGFA) can induce endothelial cell proliferation, promote cell
migration, and inhibit apoptosis. These processes play key roles in physiological blood vessel formation and
pathological angiogenesis.

Methods: In this study, we examined VEGFA gene expression in the heart, liver, and kidney of Tibetan pigs
(TP), Yorkshire pigs that migrated to high altitudes (YH), and Yorkshire pigs that lived at low altitudes (YL).

expression levels and PCR products were sequenced.

Diannan small-ear (DN) pig populations.

We used PCR and Sanger sequencing to screen for single nucleotide polymorphisms (SNPs) in 5'-flanking
DNA and exons of the VEGFA gene. Quantitative real-time PCR and western blots were used to measure

Results: Results showed that the VEGFA mRNA and protein expression in heart, liver and kidney of TP was
higher than that in YH and YL. In addition, the mRNA sequence of the pig VEGFA gene was conserved
among pig breeds, and only five SNPs were found in the 5'-flanking region of the VEGFA gene, the allele
frequency distributions of the 5 SNPs were not significantly different between the TP, Yorkshire (YL), and

Conclusion: In conclusion, the Tibetan pig showed high levels of VEGFA gene expression in several hypoxic
tissues, which suggests that the VEGFA gene may play a major functional role in hypoxic adaptation.
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Background

VEGFA (also known as VEGF) is a major growth factor
for endothelial cells. It promotes vascular permeability
and angiogenesis by stimulating proliferation, migration,
and survival of endothelial cells, as well as inhibiting
apoptosis [1-3]. VEGFA ligand binding to VEGFRs
upregulates expression of endothelial nitric oxide syn-
thase (eNOS) and increases prostacyclin production in
endothelial cells [4], and is strongly expressed in anti-
proliferative lesions from patients with severe primary
idiopathic and secondary forms of pulmonary hyper-
tension [5, 6]. In pig, the VEGFA gene maps to
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chromosome seven, comprises seven exons, and has
one transcript.

Tibetan pig (TP) is indigenous to China and live
primarily in semi-agricultural and semi-pastoral areas
(average elevation: 25004300 m) in the Qinghai-Tibet
Plateau of southwest China. The TP have adapted to
harsh conditions such as hypoxia [7-9], which makes
this species a good model for investigating molecular
mechanisms of hypoxic adaptation.

Hypoxia is a potent inducer of VEGFA through regula-
tion of hypoxia-inducible factors (HIFs). However, the
function and mechanism for hypoxic adaptation in TP
remain unclear. The objective of the present study was
to detect expression of the VEGFA gene in different
tissues including the heart, liver, and kidney from three
groups of pigs living at different altitudes. This study
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should help elucidate the function of the VEGFA gene in
hypoxic adaptation of Tibetan pig.

Methods

The experimental processes were approved by the ani-
mal welfare committee of the State Key Laboratory for
Agro-biotechnology of China Agricultural University
(Approval number XK257), and pig farming at Linzhi of
Tibet is permitted and the field study does not involve
endangered or protected species.

Experimental materials

Experiments were performed using pigs from three
different populations: Tibetan pig from highlands
(Linzhi, 3,000 m) (TP), Yorkshire pig that migrated to
high altitude (Linzhi, 3,000 m) (YH), and Yorkshire
pig raised at lowland (Beijing, 100 m) (YL). Animals
in the YH group were descended from a population
of Yorkshire pigs that migrated from lowland to highland
approximately 3 yr ago. Ten castrated boars from each
population were slaughtered when they were 6 mo of age.
Tissue samples were collected from the liver, heart, and
kidney and were immediately frozen in liquid nitrogen.
Samples were then stored at -80 °C.

Ear tissue samples were collected from three pig popu-
lations: YL from the Beijing Shunxinlong Farm (# = 30),
TP from Linzhi, Tibet of China (# = 60), and Diannan
small-ear (DN) from Xishuang Banna, Yunnan of China
(n=40). The samples were immediately frozen and
stored at -20 °C.

DNA, RNA, and protein extraction and cDNA preparation
Genomic DNA was isolated from ear tissue as previ-
ously described [10], dissolved in TE solution, and
stored at -20 °C.

Total RNA was extracted from the heart, liver, and
kidney with TRIZOL Reagent (Invitrogen, San Diego,
CA, USA), checked for concentration and purity
using a NanoDrop 2000 Biophotometer (Thermo
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Fisher Scientific Inc.,, West Palm Beach, FL, USA),
and separated by electrophoresis in a 1 % agarose gel
to verify integrity. After treatment with DNase [, 2 ug
of RNA in a 20 pL reaction volume was reversely
transcribed into cDNA using a SuperRT c¢DNA Kit
(CWBIO Ltd., Beijing, China).

Total protein was isolated from the heart, liver, and
kidney using SDS Lysis Buffer (P0013B, Beyotime
Ltd., China). Protein content was measured with the
enhanced BCA protein assay kit (P0010, Beyotime,
Ltd., China).

SNP screening and genotyping

Primers for identification of SNPs in the VEGFA gene
(NM_214084) were based on DNA sequence obtained
using the UCSC BLAT Search Genome tool (http://gen-
ome.ucsc.edu/). We used the amplified pig mRNA se-
quence and Primer Premier 5.0 software to design
primers that amplified the coding regions (exons 1 to 7)
and 5 -flanking sequences of the gene. The targeted re-
gions, primer sequences, and amplicon sizes are shown
in Table 1. PCR products amplified from 10 pigs in each
group were pooled and sequenced to identify SNPs.
Chromas Pro and DNAMANG6.0 were used to analyze
the sequencing data. Genotypes of SNPs found by
pooling sequencing were determined with individual
PCR and sequencing.

Quantitative analysis of VEGFA mRNA expression

To avoid genomic DNA contamination, we used Primer
Premier 5.0 software to design VEGFA gene
(NM_214084) primers that amplified products spanning
an intron. The primers were 5-GAGGAGTTCAAC
ATCGCCAT-3' and 5-GAGGAGTTCAACATCGCCA-
3'. We used the housekeeping gene glyceraldehyde-3-
phosphate dehydrogenase (GAPDH, NM_001206359) as
the internal standard and the primers were 5-GGTCA
CCAGGGCTGCTTTTA-3' and 5-CCTTGACTGT
GCCGTGGAAT-3". Quantitative real-time PCR (qRT-

Table 1 Target region, sequence, and amplicon size of the primers used for SNP identification

Primer Target region Forward primer sequence (5 to 3') Reverse primer sequence (5' to 3') Amplicon size, bp
5'- FR1 —1902/-2693 AGTGACTGGCTCCTGTTCTC CCTGGGTAGAAGTATTTGGC 791
5'- FR2 —2193/-1902 CGTTCCTTAGTGCTGGTGAG AAAGTGAGGTTATGTGCGGC 843
5'- FR3 —1546/-631 GTGTGTCTGGGTGTGTGTGG TCCCTCTCGTTTCTTGCTTGC 915
5'- FR4 —654/+53 GGGCAAGCAAGAAACGAGA AGGTAGAGCAGCAAGGCAA 707
VEGFA-P1 Exon1 GAGGAGGAAGAAGAGAAGGAAG CATGTACGAGGATAGAGGGGAA 472
VEGFA-P2 Exon2 CCATTCTTCCCTCTTTGTTITGTC TTTGTTTTCCCAGTCTGTGCTCA 367
VEGFA-P3 Exon3 GGCCGGCCCCCTCTACAG AACGGGCTTTTTAAACTCTCCACA 630
VEGFA-P4 Exon4-5 CCTGGTCTGTGGAGAGTTTA AGTGGGTAGAGAAAGAGAAA 872
VEGFA-P5 Exon6 CTGCCGCTCTCTCTTGTCTTCTGC AGCCACGCCTGCCACCTG 564
VEGFA-P6 Exon7 CGTAGGGACTCTTCTTTGGT CTCGGCTTGTCACATCTGC 313
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PCR) was conducted on the Bio-Rad CFX96 System
(Bio-Rad, USA). Each reaction mixture contained
10.0 pL 2x SYBR Green qPCR SuperMix (Transgen,
Beijing, China), 1.0 pL cDNA, 0.5 pL of each primer
(10.0 nmol/pL), and ddH,O water to adjust the volume
to 20.0 pL. The real-time PCR program started with de-
naturation at 95 °C for 20 s. This was followed by 40 cy-
cles of denaturation at 95 °C for 5 s and annealing/
elongation at 60 °C for 15 s, during which fluorescence
was measured. Next, a melting curve was constructed by
increasing the temperature from 65 °C to 95 °C in se-
quential steps of 0.5 °C for 5 s, during which fluores-
cence was measured. The real-time PCR efficiency of
each pair of primers was calculated using 5 points in a
5-fold dilution series of cDNA, which was used to con-
struct a standard curve. A cDNA pool of all samples was
used as a calibration and three replications of each
sample were performed. Gene expression levels were
calculated using the 27 method (42Ct = 4Ct target gene -
ACt housekeeping gene) S previously described [11].

Western blotting

Approximately 30 mg of each tissue used in quantita-
tive real-time PCR was homogenized in lysis buffer
(10 mmol/L NaH,PO,4, 1 mmol/L EDTA, 10 mmol/L B-
mercaptoethanol, 0.25 % Triton X-100, and 0.02 % NaNj3,
adjusted to pH 6.8). Tissues were homogenized using a
Mixer Mill MM400 (Retsch, Germany) for 5 min and then
centrifuged at 10,000 x g for 10 min at 4 °C. Protein con-
centrations were determined using a Protein Assay Kit
(Bio-Rad). Proteins (40 pg) were separated by sodium do-
decyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) using a 5 % stacking gel and a 10 % separating gel.
Following electrophoresis, proteins were transferred to
Immobilon-P Transfer Membranes (IPVH00010) for 2 h
at 300 mA using a Bio-Rad Criterion Blotter. Membranes
were blocked overnight in blocking buffer (P0023B,
Beyotime Ltd., China) and then incubated with pri-
mary mouse monoclonal GAPDH (1:1,000 dilution,
AGO019, Beyotime Ltd., China), and VEGFA (1:500 di-
lution, LS-C2929, LifeSpan BioSciences, Seattle, WA)
antibodies diluted in primary antibody dilution buffer
(P0023A, Beyotime Ltd., China) at 4 °C for 2 h. After
3 washes with PBST(phosphate buffer saline contain-
ing 0.1 % Tween 20), membranes were incubated with
secondary HRP-labeled goat anti-mouse IgG (H+L)
(1:1,000 dilution, A0216, Beyotime Ltd., China) anti-
body diluted in secondary antibody dilution buffer
(P0023D, Beyotime Ltd., China) for 1 h. After the
membranes were washed 3 times in Tris-buffered saline
with Tween for 30 min, immune complexes were visual-
ized using an eECL Western Blot Kit (CW0049A, CWBIO
Ltd., China) according to the manufacturer’s instructions.
To determine expression ratios of VEGFA and GAPDH,
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western blots were analyzed using Image ] 1.44 software
(NIH, USA).

Cell culture

Cell culture reagents were obtained from GIBCO (Life
Technologies, Lofer, Austria). PIEC (KG302, KeyGEN
BioTECH, China) were cultured according to the manu-
facturer’s instructions. Experiments were performed
using two incubators. For normoxia treatments, one in-
cubator (Thermo Fisher Scientific Inc., West Palm
Beach, FL, USA) was set at 37 °C and 5 % CO,; the incu-
bator oxygen sensor indicated approximately 21 % O,.
Cells were cultured under normoxic conditions for 2, 4,
8, 12, 24, or 36 h. For hypoxia treatments, an incubator
(3 gas incubator, Changsha Hua Xi Electronics Techne-
tronic Co., Ltd., China) was set at 37 °C, 5 % CO,, and
94 % N; the oxygen sensor indicated approximately 1 %
O,. Cells were cultured under hypoxic conditions for 2,
4, 8, 12, 24, or 36 h. Cells were collected after the indi-
cated durations in culture and total RNA extraction,
c¢DNA synthesis and qTR-PCR were performed as de-
scribed above.

Statistical analyses

Expression levels were analyzed by one-way ANOVA
using SAS9.1 Software (SAS Inst. Inc, Cary, NC).
Graphs were prepared using SigmaPlot 10.0 (Systat Soft-
ware, San Jose, CA) and data are presented as mean +
standard error. Significant and extreme differences were
set at < 0.05 (*) and P < 0.01 (**), respectively.

Results

SNPs and genotype frequencies

The structure of the pig VEGFA gene and the positions
of the primers used for SNP identification are shown in
Fig. 1. Using the primers listed in Table 1, the PCR
amplicons covered 2,693 bp of the 5 -flanking and full-
coding regions (all 7 exons). No SNPs were detected in
the coding region of the VEGFA gene among the TP, YL,
and DN populations. Sanger sequencing revealed 5 SNPs
at upstream 2,435, 2,442, 2,745, 1,010, and 1,773 bp
from the initiation codon of the VEGFA gene that were
named G-2745C, G-2442A, G-2435deletion, T-1010C
and C-1773 T respectively (Fig. 2).

Individual sequencing analysis indicated genotype and
allele frequencies of the 5 SNPs in the 3 pig populations
(Table 2). No significant differences in genotypes distri-
butions at loci G-2745C, G-2442A, and G-2435deletion
were seen comparing TP with YL or DN (P> 0.05). Al-
though the TP had a different genotype distribution in
T-1010C with the DN, the difference between TP and
YL was not significant (P >0.05). At locus C-1773 T,
there were significant differences in genotype frequency
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Fig. 1 Structure of the pig VEGFA gene and the positions of primers used for SNP identification. The thick black lines represent flanking regions
and introns; the grey blocks represent exons of the VEGFA gene; the thin black lines represent positions of amplicons. Pig total DNA was used as
PCR templates for the 5'-FR1, 5'-FR2, 5'-FR3, 5'-FR4, VEGFA-P1, VEGFA-P2, VEGFA-P3, VEGFA-P4, and VEGFA-PS5 primers
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comparing TP with YL or DN; however, the allele C fre-
quency of TP was between YL and DN.

VEGFA mRNA expression

PCR efficiencies of VEGFA and GAPDH genes were
within 95 to 105 % that was satisfied for qRT-PCR. Ex-
pression of VEGFA mRNA is shown in Fig. 3. We found
that expression of VEGFA mRNA was relatively high in
the liver and kidney, but low in the heart. Moreover,
under hypoxic conditions, expression of VEGFA mRNA
in all three tissues was significantly higher in TP than in
YH and YL (P<0.01). Following migration of Yorkshire
pigs from lowland to highland, expression of VEGFA
mRNA increased in the kidney (P <0.05), but trended
downward in the liver.

VEGFA protein expression

Results western blot showed that the VEGFA protein
expression had same difference trends in heart, liver
and kidney with mRNA expression between the three
groups (Fig. 4). The protein expression was signifi-
cantly higher in heart and liver of TP than that of
YH and YL (P<0.05). While in kidney tissue, the TP
had higher VEGFA protein expression than YL (P < 0.05)
and YH, although the difference between TP and YH was
not significant (P > 0.05).

VEGFA gene expression in PIEC cells

Expression of VEGFA mRNA in endothelial cells is
shown in Fig. 5. At all time points, expression of VEGFA
mRNA in vitro was higher under hypoxic condition than
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Fig. 2 Sequencing chromatograms of 5 SNPs: G-2442A, G-2435 deletion, G-2745C, T -1010C, and C-1773 T. Chromatogram of the PCR product
amplified using the 5-FR1 primer set (Table 1) shows the 3 identified SNPs G-2442A, G-2435 deletion, and G-2745 C. The 5'-FR2 primer set
(Table 1) shows SNP C-1773 T. The 5'-FR3 primer set (Table 1) shows SNP T-1010C. YL = Yorkshire pig (n =30), DN = Diannan small-ear pig
(n=40), TP =Tibetan pig (n=60)
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Table 2 Gene and genotype frequency of the 5 SNPs in different pig breeds
Loci Breed Genotype (number/percentage) Allele
GG GC CcC P value* (Fisher's exact test) G C
G-2745C YL 101 0/0 0/0 0.237 1 0
DN 10/1 0/0 0/0 0.237 1 0
TP 8/0.800 2/0.200 0/0 0.900 0.100
GG GA AA G A
G-2442A YL 10/1 0/0 0/0 0.500 1 0
DN 9/0.900 1/0.1 0/0 0.763 0.950 0.050
P 9/0.900 1/0.1 0/0 0.950 0.050
GG G-deletion Deletion G Deletion
G-2435 deletion YL 8/0.889 170011 0/0 0474 0.940 0.060
DN 7/0.700 0/0 3/0.300 0.105 0.700 0.300
TP 101 0/0 0/0 1 0
T TC CcC T C
T-1010C YL 35/0.875 5/0.125 0/0 0.342 0.938 0.062
DN 40/1 0/0 0/0 0.010 1 0
TP 16/0.8 4/0.2 0/0 0.900 0.100
CcC cT T C T
C1773 T YL 1/0.034 7/0.233 22/0.733 0.000 0.150 0.850
DN 36/1 0/0 0/0 0.001 1 0
TP 14//0.700 4/0.200 2/0.100 0.800 0.200

Note: *P value was significance of the exact test for genotype frequency distribution compared with TP. YL = Yorkshire pig (n = 30), DN = Diannan small-ear pig

(n =40), TP =Tibetan pig (n = 60)

under normoxic condition (P < 0.05). Under both nor-
moxic and hypoxic conditions, expression of VEGFA
mRNA had an increased trend after 4 h over time.

Discussion

VEGFA is a pivotal angiogenic factor that binds to spe-
cialized receptors on the surface of endothelial cells
and induces them to generate new vessels [12].
VEGFA expression was modulated by HIF-1 through

binding to promoters of hypoxia response elements
(HREs) [13, 14].

We found 5 SNPs in the VEGFA gene. TP, as well as
the other pig breeds, exhibited relatively large polymor-
phisms at the 5 loci, although the distinction between
frequency distributions was not significant. No SNPs
were detected in the coding region of the VEGFA gene.
The mRNA sequence of VEGFA was highly conserved
among pig breeds, which is consistent with previous
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studies showing that both the mRNA sequence and pro-  signaling interferes with myocardial angiogenesis. This re-
tein domain of human VEGFA gene were conserved sults in local ischemia, which triggers cardiomyocyte dam-
[15]. Thus, the biological function of VEGFA is primarily  age and heart failure [16, 17]. In the present study, VEGFA
regulated by controlling its expression. The results also  expression in heart tissue was significantly higher in TP
indicated that there might be other regulatory mecha- compared with Yorkshire under hypoxia at high altitudes.
nisms (for example of epigenetic regulation) in the re- To adapt to a hypoxic environment, TP increased expres-
gion or functional SNPs in long-distance regions. It was  sion of the VEGFA gene in vivo and changed their cardio-
a pending work what SNPs or what other regulatory vascular response to hypoxia. The increased VEGFA
mechanisms could regulate the gene expression and  expression might increase blood flow and enhance cardiac
have roles on hypoxic adaptation in Tibetan pig. pumping [18, 19].

The heart plays an important role in adaptation to hyp- In the early phase of liver regeneration, proliferating
oxia. It has been reported that decreased cardiac VEGFA  hepatocytes showed hypoxia-induced VEGFA expression,
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Fig. 5 Quantitative expression of VEGFA mRNA in endothelial cells. Each bar represents mean + S.E. * Significant difference (P < 0.05), ** Extreme
significant difference (P <0.01) (n=3)
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which initiates proper blood flow through the liver [20].
Our results consistently showed that expressions of
VEGFA mRNA and protein in liver were significantly
higher in TP than in YH and YL, which indicated that
the TP might improve blood flow in liver tissue to adapt
to hypoxia.

VEGFA plays a crucial role in the kidney, where it is
produced primarily by glomerular epithelial cells (podo-
cytes) and is also found in epithelial cells [21, 22]. In
mice, specific overexpression or deletion of the
VEGFA gene in podocytes results in glomerular
dysfunction [23, 24]. Moreover, VEGFA acts as an
autocrine growth factor on both proliferating and dif-
ferentiating glomerular visceral epithelial cells (podo-
cytes) [24] and has roles in prolonged survival and
resistance to apoptosis [25]. In the present study, TP
showed a high expression level of the VEGFA gene,
suggesting that VEGFA plays a pivotal role in the
maintenance of glomerular integrity under hypoxia in
the kidneys of pigs.

Conclusion

We found that the mRNA sequence of the pig
VEGFA gene was conserved among pig breeds, which
indicated the biological function of the gene was pri-
marily regulated by differential expression. Only five
SNPs (G-2745C, G-2442A, G-2435deletion, C-1773 T
and T-1010C) were found in the 5'-flanking region of
length of 2693 bp upstream from the initiation codon
of the VEGFA gene among the TP, YL, and DN popu-
lations. However, further studies are required to iden-
tify the site that can regulate the gene expression in
pig. The Tibetan pig had considerably high expres-
sions of the VEGFA gene in heart and liver tissues in
high-altitude environment. The increased VEGFA ex-
pression might be one way of genetic adaptation to
hypoxia in high-altitude, through promoting endothe-
lial cells proliferation, angiogenesis and maintaining
vascular permeability. Further research on molecular
mechanisms of the VEGFA for hypoxic adaptation
was a pending work in Tibetan pig.
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