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Abstract

Background: Therapeutic antibody development is one of the fastest growing areas of the pharmaceutical industry.
Generating high-quality monoclonal antibodies against a given therapeutic target is crucial for successful drug
development. However, due to immune tolerance, making it difficult to generate antibodies using conventional
approaches.

Methodology/Findings: Mixed four human gastric cancer (GC) cell lines were used as the immunogen in A/J mice;
sixteen highly positive hybridoma colonies were selected via fluorescence-activated cell sorting-high throughput
screening (FACS-HTS) using a total of 20,000 colonies in sixty-seven 96-well plates against live cells (mixed human
GC cells versus human PBMC controls). MS17-57 and control commercial Alkaline Phosphatase (ALP) mAbs were
used to confirm the target antigens (Ags), which were identified as ALPs expressed on the GC cell surface through a
combination of western blot, immunoprecipitation and mass spectrometry (MS).

MS identified the Ags recognized by MS17-57 to be two variants of a secreted ALP, PALP and IALP (Placental and
intestinal ALP). These proteins belong to a hydrolase enzyme family responsible for removing phosphate groups
from many types of molecules. Immunofluorescence staining using MS17-57 demonstrated higher staining of
gastrointestinal (Gl) cancer tissues compared to normal Gl tissues (P<0.03), and confirmed binding of MS17-57 to be
restricted to a functional epitope expressed on the cancer cell surface. Proliferation assays using the PALP/IALP-
expressing GC cell lines demonstrated that MS17-57 inhibited cell growth by 32+8%. Transwell cell migration assays
documented that MS17-57 can inhibit PALP/IALP-expressing Gl cancer cell migration by 25+5%. MS17-57 mAb
inhibited tumor growth in nude mice.

Conclusions: Our findings indicate that PALP and IALP can be ectopically expressed on extracellular matrix of Gl
cancers, and that MS17-57 directed against PALP/IALP can inhibit GI cancer cells growth and migration in vitro and
in vivo. This investigation provides an example of identification of cancer biomarkers representing promising
therapeutic targets using mAb generated through a novel HTS technology.
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Introduction

Gastrointestinal (Gl) cancer is one of the most common
malignant tumors in humans with a high risk of mortality
worldwide [1]. The development of therapeutic antibodies to
investigate, evaluate, prevent and treat cancer is one of the
fastest growing areas of research in both the academic arena
and the pharmaceutical industry [2]. The generation of high-
quality monoclonal antibodies (mAbs) against cancer markers
as therapeutic targets is an important avenue for clinical drug
development. Some cancer markers are known (e.g., human
epidermal growth factor receptor 2 and vascular endothelial
growth factor) or are well developed, but most are still unknown
or undeveloped [3]. There is therefore great interest in
generating mAb against novel and unknown cancer targets.
mAb against specific tumor targets can be developed and
identified using a variety of approaches, including enzyme-
linked immunosorbent assay (ELISA)-high throughput
screening (HTS), fluorescence-activated cell sorting (FACS)-
HTS, and in vitro and in vivo screening.

Identification of novel cancer biomarkers involved in
tumorigenesis, cancer development, or cancer prevention
continues to be of great interest worldwide [4,5]. Due to
advances in proteomics and other aspects of molecular
biology, such investigations are increasingly more feasible in
current era than in the past. Cutting-edge HTS technology is
relatively well developed and is very popular in many academic
fields [6,7].

We therefore have investigated the generation of mAbs
against potentially novel Ags on the cancer cell surface using a
FACS-HTS method. In this study, we found that MS17-57
mAbs could identify placental and intestinal alkaline
phosphatases (PALP and IALP, respectively) as targets
expressed on the cancer cell membrane. Our strategy was to
exploit a novel method of FACS-HTS and hybridoma
technology using a mixture of 4 live Gl cancer cell lines as
immunogen [8], hypothesizing that at least some of the mAb
produced would be likely to bind to conformational epitope(s)
on the cell surface of Gl cancer cells. The data demonstrated
that MS17-57 could bind to PALP and IALP that were
ectopically expressed on cell surface, and could neutralize ALP
activity both in vitro and in vivo. These results suggest that
PALP and IALP expressed on the GI tumor surface with
aberrant cancer cell metabolism and signaling pathway in
which they may promote cancer cell growth and metastasis.
MS17-57 is a mAb with high affinity and specificity, potentially
representing a useful reagent and a potential basis for a novel
therapeutic strategy in cancer drug development.

Our future studies will focus on the molecular mechanism of
MS17-57 inhibition of cancer cells proliferation and migration
via binding to PALP/IALP on the cancer cell surface, and on
clarifying intracellular signaling pathways affected by the action
of this antibody. Presuming additional investigations confirm
the promising results described in these preliminary
investigations, antibody engineering of MS17-57 as a chimeric
or humanized antibody for therapeutic application could be
pursued.
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Materials and Methods

Cell Cultures

Gl cancer cell lines MKN45, BGC823, SGC7901, MKN28,
AGS and GES-1 were purchased from the Institute of
Biochemistry and Cell Biology, Shanghai Institutes for Life
Science, Chinese Academy of Science (Shanghai, China) and
the Riken BioResource Center (Tsukuba, Japan). The Gl
cancer cell lines MKN-74 [9] and TMK-1 [9] were the courtesy
of Dr. Gary K. Schwartz (Memorial Sloan-Kettering Cancer
Center, New York, NY, USA), and KKLS cells [10] were
obtained from Dr. Yukuta Takahashi (Cancer Research
Institute, Kanazawa University, Kanazawa, Japan). The gastric
cancer cell lines ST-8 and ST-9 [11] were the courtesy of Drs.
Bradley Mcintyre and Paul F. Mansfield, the University of
Texas MD Anderson Cancer Center (Houston, TX, USA). All
other cell lines (SP2/0, etc.) were obtained from the American
Type Culture Collection (Manassas, VA, USA). Peripheral
blood mononuclear cells (PBMCs) were obtained from a
healthy volunteer with informed consent.

Except for SP2/0 myeloma cells and mAb hybridoma cells,
all cells were cultured in MD6, a homemade, serum-free
medium derived from Dubecco’s modified Eagle’s medium
(Gibco BRL, Rockville, MD, USA) with 5% heat-inactivated fetal
bovine serum (FBS) (Sigma, St. Louis, MO, USA), 100
units/mL penicillin, and 100 ug/mL streptomycin (Invitrogen,
Carlsbad, CA, USA). The myeloma and hybridoma cells were
cultured similarly but without fetal bovine serum. Myeloma and
hybridoma cells were grown in suspension. Gl cancer cells
were grown to adhere to tissue culture flasks with 5%
FBS/MD6 medium.

Patient Tissues

Fresh tumor specimens and adjacent noncancerous tissues
(mucosa) of seven GC patients undergoing surgery were
obtained from the Department of Surgery of Shanghai Ruijing
Hospital at Shanghai, China. These patients had not received
cytotoxic chemotherapy or radiotherapy prior to surgery.
Institutional Review Board protocols were observed, and
ethical approval for the study was granted by the Research
Ethics Committee of Ruijing Hospital, Shanghai Jiaotong
University School of Medicine. Informed written consent had
been obtained from all participants (including voluntary donors)
involved in the study.

Fresh tissues were stained with MS17-57 as well as isotype
control mAb. The binding signals were amplified, labeled with
fluorescein isothiocyanate, and counted by FACS-HTS.

Mice

Male A/J mice (The Jackson Laboratory, Bar Harbor, ME,
USA) 6-8 weeks old were purchased from the Nanjing
Experimental Model Animal Center, Nanjing University,
Nanjing, China, and maintained at the animal facility of
Shanghai MabStar, Shanghai, China. The maintenance of A/J
mice and experimental procedures were approved by Shanghai
Animal Welfare and Research Ethics Committee, Science and
Technology Committee of Shanghai Municipal Government,
China and the license number is SYXK(Hu)2009-0087.
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Male JAX nude mice aged 4-8 weeks were purchased from
the Shanghai Experimental Model Animal Center and
maintained at the Experimental Animal Center of Shanghai
Ruijing Hospital. These nude mice were used for experiments
with xenografts of human gastric cancer (GC) and the methods
are similar to Sela group previously described [12]. The
maintenance of JAX nude mice and experimental procedures
were approved by Shanghai Animal Welfare and Research
Ethics Committee, Science and Technology Committee of
Shanghai Municipal Government, China and the license
number is SYXK(Hu)2011-0113.

Live Cancer Cell Immunization

Each A/J mice was injected subcutaneously at 5-10 sites as
well as once intraperitoneally (i.p.) with about 5-10x10° cells
(equal amounts of MKN45, BGC823, SGC7901, and MKN28
cells) in phosphate-buffered saline (PBS; pH7.4). Three mice
were assigned per experimental batch. Two weeks later, the
mice were injected again, for a total of three immunizations,
plus one i.p. booster three days before the fusion experiment.

Three days after the booster, spleen cells were collected by
surgery from an immunized mouse sacrificed by CO, inhalation
and all efforts were taken to reduce animal suffering; the
spleen cells were then fused with myeloma SP2/0 cells [13,14]
in 50% polyethylene glycol (pH7.4) fusion solution to generate
mAb hybridomas. The fused hybridoma cells were maintained
in  hypoxanthine-aminopterin-thymidine  medium (Sigma-
Aldrich, St. Louis, MO, USA), and 280 uL/well fused cells
(about 1-2 x 10* spleen cells/well) were aliquoted into sixty
seven 96-well flat-bottomed tissue culture plates and incubated
at 37°C in an incubator with 5% CO, for 10 days. At the same
time, the four GI cancer cell lines were grown in bulk in multiple
flasks.

Fluorescence-Activated Cell Sorting with High-
Throughput Screening (FACS-HTS)

The FACSCalibur-HTS system (Becton Dickinson, San Jose,
CA, USA) was used to screen the selective hybridomas from
large amounts of fusion cells/colonies in the fusion plates. Up
to 200 screening and counter screening (cancer cells versus
normal cells) plates could be used in such a screening assay.
Cells from all four GC lines were harvested, mixed, and
aliquoted (about 1x10° cells/well)into 96-well U-bottom plates
(67 plates).The same number of human peripheral blood
mononuclear cells (PBMCs) from a healthy volunteer were
separated by using the human lymphocyte-separating solution
Ficoll-Plaque Plus(GE Healthcare Biosciences, Pittsburgh, PA,
USA) and aliquoted into 96-well U-bottom plates (another 67
plates for counter screening). The supernatant (80 yL/well)from
each of the 67 fusion plates was transferred to GC cell plates
labeled from 1 to 67 after these cells had been blocked by
2.0% bovine serum albumin (BSA)/PBS blocking buffer in the
plates. Supernatant from the same fusion plates were similarly
transferred to PBMC plates. After the GC cell and PBMC plates
were washed three times with blocking buffer, the secondary
antibody [goat anti-mouse immunoglobulin G (IgG) Fc
conjugated with fluorescein isothiocyanate] was aliquoted into
both GC cell plates and PBMC plates (100 pL/well) and
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incubated on ice or in a refrigerator at 4°C for 30 minutes, and
washed again three times with blocking buffer. The fluorescent
stained cells were fixed in 1.5% paraformaldehyde/PBS. The
percentage of stained cell peak shift and mean fluorescence
intensity (MFI) were continuously monitored by the FACS-HTS
system for 134 screening and counter-screening 96-well U-
bottom plates. Hybridoma colonies exhibiting strong binding
and specificity for GC cells (and no binding to PBMCs) were
selected for expansive growth, weaned from conditioned
medium, and subcloned.

mAb Generation

Supernatants were collected from the selected hybridoma
clones and purified using Protein-A Sepharose columns
(Sigma-Aldrich, St. Louis, MO, USA). We chose the purified
MS17-57 mAb for additional analysis, which was filtered
through a 0.2-ym membrane, sterilized, and aliquoted into
cryotubes kept at 4°C for use in cell cultures or in vivo studies
(described below). The mixture of mAb in PBS and 50%
glycerol was frozen at —20°C for long-term storage.

Mouse IgG Isotyping

We used a mouse mAb isotyping kit (IsoStrip, RochePharma
AG, Reinach, Switzerland) to characterize the isotype of the
mouse MS17-57 mADb (IgG).

cDNA Sequencing of the Variable Region of MS17-57

We used an RNeasy kit (Qiagen, Valencia, CA, USA) to
isolate total RNA from MS17-57 hybridoma cells. The MS17-57
cDNA library was created from mRNA in reverse transcription
reactions with a SuperScript Il first-strand kit (Invitrogen,
Grand Island, NY, USA). The MS17-57 IgG Fab fragment Ag-
binding variable regions were amplified by polymerase chain
reaction (PCR) with 21 pairs of heavy-chain and light-chain
primers, which were obtained from the Mouse IgG Library
Primer Set (Progen Biotechnik, Heidelberg, Germany). PCR
products were used for DNA sequencing, which was performed
by the Lee & Lu lab at the MD Anderson Cancer Center,
Houston, TX, USA. Complementarity-determining regions
(CDRs) and framework regions (FWRs) of MS17-57 were
identified using resources available at the National Center for
Biotechnology Information websites and determining the
alignments of cDNA and amino acid sequences [15-18].

Indirect ELISA

Ag (protein) (0.2 pg/mL in PBS) was coated onto Immulon-II
HB 96-well ELISA plates (Thermo Fisher Scientific, Waltham,
MA, USA) and incubated in a wet-box overnight at room
temperature (RT). Ag-coated plates were washed and blocked
by 1.0% BSA/PBS-Tween 20 (PBST) buffer, and 100 pL of
primary antibodies individually diluted in 1.0% BSA/PBST were
added to each well. The plates were incubated for 1 hour at RT
and washed with PBST. After washing, 100 pL of diluted
(1:2,500) horseradish peroxidase (HRP)-conjugated goat anti-
mouse IgG Fc polyclonal secondary antibody (Jackson
ImmunoResearch Laboratories, West Grove, PA, USA) was
added to each well and incubated for 1 hour at RT. After an
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additional wash with PBST, 150 pL of peroxidase substrate
(tetramethylbenzidine in 0.02M [pH6.0]citrate/acetate buffer
and 0.003% H,0,) was added to each well to develop the color
of binding signals; development was stopped by adding 50 yL
of 0.2M H,SO, to each well. The absorbance (optical density;
OD) of the reaction plates was read at 450 nm with the turbidity
reference set at 620nm.

Immuocytochemical Analysis with Cytospin Slides

To make 1x10% GC cells in 50 pL/each, cytospin chamber
holes were spun onto slides and fixed with 4%
paraformaldehyde/PBS solution, dehydrated with 70% ethanol
and air dried. Slides were rehydrated in PBST in a flat position
for 5 minutes and then incubated in 10% goat serum/PBS.
Slides were incubated with primary antibodies at an
appropriate dilution for 1 hour at RT or overnight at 4°C, rinsed
in PBST twice for 5 minutes/each in a horizontal position.
Slides were then incubated with the HRP-labeled secondary
antibody (goat anti-mouse IgG Fc-HRP, Jackson
ImmunoResearch Laboratories) at 1:500 dilution in PBS for 30
minutes at RT. Detection the mAb staining on cancer cells was
performed with 0.125% aminoethylcarbazole chromogenic
substrate for 5-10 minutes at RT, and the mAb stained
cytospin slides were counterstained with Gill's hematoxylin
(Dako, Carpinteria, CA, USA). Anti-fade mounting medium
(Vector Labs, Burlingame, CA, USA) was used to mount the
slides.

Cancer Cell Proliferation Inhibition Assay

The cancer cell proliferation inhibition assay was conducted
using Cell Counting Kit-8 (Dojindo Molecular Technologies,
Santa Clara, CA, USA) and was based on the detection of
dehydrogenase activity in viable cells. A total of 5,000 cells/150
uL of selected BGC823, MKN45, or both types of cells from 4
GC cell lines used in immunization, was dispensed in each well
of 96-well plates for each of quadruplicated test conditions.
Plates were pre-incubated for 24 hours in a humidified
incubator at 37°C with 5% CO,. 50 pL/well of MS17-57 (8 and 2
pg/mL), an irrelevant (isotype control) mAbs (30 and 8 pg/mL)
and one medium alone (blank control) was added to the test
plates in quadruplicate to reduce variation. The test plates were
incubated using the same conditions as the pre-incubation.
CCK-8 solution was added to the plates (10 yL/well), taken as
one plate per each test condition per day from days 1 to 7. The
plates were incubated for 3 hours and the absorbance at 450
nm was measured using a VERSAmax microplate reader
(Molecular Devices, Sunnyvale, CA, USA).

Cancer Cell Migration Inhibition Assay

The inhibition of chemotaxic cancer cell migration was
assessed using the QCM 24-well colorimetric cell migration
assay (EMD Millipore, Billerica, MA, USA). At RT, 300 uL of the
cell suspension (1.0 x 10° cells/mL in MD6), with or without
each 5, 10, and 20 pyg/mL MS17-57 plus irrelevant mAbs added
to each insert, was added to each of the 24 wells of the
migration chamber, and 500 yL of MD6 with 5% fetal bovine
serum was added to each well of the lower chamber. The test
plates were incubated in a tissue culture incubator at 37°C with
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5% CO, for 24 hours, and non-migrating cells were gently
removed from the interior of the inserts with a cotton-tipped
swab. Cells on the lower surface of the membrane were
stained by dipping the inserts in crystal violet (a nucleic dye)
staining solution (500 uL/well)for 20 minutes. The inserts were
rinsed in water several times, allowed to air dry, and
photographed. The dyed cells were aliquoted into 96-well plate
and counted by VERSAmax microplate reader (Molecular
Devices, Sunnyvale, CA, USA).

Tumor Growth in Balb/C Nude Mice

The antitumor activity of the MS17-57 was studied with
xenografts of human GC in Balb/C nude mice as previously
described [12]. Briefly, 1 x 10° selected BGC823 or MKN45
cells in MD6 with or without MS17-57 plus irrelevant mAbs
were injected i.p. into each mouse. This injection produced
tumors in all the mice by 6 weeks after cell implantation, and
the weight of the tumor nodule of each was about 0.3—1.0
gram, which depends on how many initial cells were
inoculated. Treatment with MS17-57, irrelevant mAbs, and PBS
(as medium blank controls) (all i.p.) started the day after cancer
cell injection (i.e., at day 1) and was repeated at days 15 and
29. Each treatment group consisted of at least four animals.
The number of tumor nodules was counted, and the nodule
diameter was measured once. The mice were sacrificed by
CO2 inhalation at day 48 and all efforts were made to
ameliorate animal suffering.

Immunoprecipitation (IP) and Mass Spectrometry (MS)
Analysis

For indirect IP, magnetic Dynabeads coated with protein-A
(Invitrogen, Grand Island, NY, USA) were incubated with 50 pg
of MS17-57 for 30 minutes at RT with constant shaking. The
beads were then washed and incubated with lysate of selected
BGC823 or MKN45 GC cells, which the lysates were diluted
appropriately. Incubation occurred in the presence of 0.1%
TritonX-100 in radioimmunoprecipitation assay extracts
(Sigma-Aldrich, St. Louis, MO, USA). mAb against anti-B-actin
(about 42 kDa in sodium dodecyl sulfate-polyacrylamide gel
electrophoresis [SDS-PAGE] gel) was used as an internal
calibration standard. The lysate was successively exposed to
MS17-57—coated beads for 30 minutes with rotation. Bound
beads were washed with 0.5% TritonX-100 followed by water.
The samples were eluted by heating in boiled water with 50 pL/
each eluate of Laemmli denaturing sample buffer (Bio-Rad,
Hercules, CA, USA). Then the samples were loaded and
separated on 10% Bis-Tris gel (Bio-Rad) in 1x 2-(N-
morpholino)ethanesulfonic acid running buffer and SDS-PAGE.
The gel was stained with a silver stain kit (Invitrogen, Grand
Island, NY, USA). The stained target bands were cut and
analyzed with a ProteinChip system series 4000 (Enterprise
Edition) mass spectrometer (Bio-Rad).

Direct IP was performed using the Dynabeads antibody
coupling kit (Invitrogen, Grand Island, NY, USA) to directly
couple the beads with MS17-57. The remaining steps were the
same as described for indirect IP.
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mRNA Expression by Quantitative Reverse
Transcription (qRT)-PCR Analysis

Extraction of total RNA from 10 GI cancer cell lines was
performed with TRIzol reagent (Invitrogen, Grand Island, NY,
USA) [19]. RNA was quantified using the A260/A280-nm
absorption ratio. To convert RNA into cDNA, a 1 uL of the total
RNA sample was used in a reverse transcription reaction with
RNase inhibitor (Invitrogen), SuperScript Il  reverse
transcriptase (Invitrogen), dithiothreitol, and first-strand buffer.
The mixtures of the samples were incubated at RT for 10
minutes and then at 42°C for 50 minutes. The reaction was
deactivated at 70°C for 15 minutes.

The forward and backward primers of IALP, PALP, and

glyceraldehyde-3-phosphate dehydrogenase(5'-
TCCATCTTCGGGTTGGCCCCC-3' and 5'-
TCCGTGGGTCTCGGACGACAG-3 5'-
CCTGGGTGCTGCTCCTGCTGGG-3' and 5'-
CGTAGACACCCCCATCCCGTCAC-3' and 5'-
GGACCTGACCTGCCGTCTAG-3' and 5"
GTAGCCCAGGATGCCCTTGA-3, respectively)were

synthesized and used in a real-time PCR reaction with SYBR
green reagents (Life Science, Hercules, CA, USA) and loaded
onto a 96-well plate. The mixture of samples was run in a
CFX96 Touch real-time PCR detection system (Bio-Rad) under
the following conditions: 93°C for 2 minutes for pre-
denaturation, 93°C for 1 min for denaturation, 55°C for 1 min
for annealing, 72°C for 1 min for extension in 40 cycles, and
72°C for 7 min for the final incubation. Data were analyzed
using Opticon Monitor software (Life Science, Hercules, CA,
USA).

Statistical Analysis

Statistical analysis was conducted using SPSS software
(IBM). Data were expressed as means * standard error of the
means. Differences were analyzed by Student’s t-test; P values
<0.05 were considered as significant.

Results

MS17-57 Hybridoma Was Generated by Immunization
with Live GC Cells

Following the principles of mAb generation [10], we used a
mix of live MKN45, BGC823, SGC7901, and MKN28 GC cells
as the immunogen to immunize A/J mice three times. Before
the final boost, the serum from a tail-bleed of each immunized
mouse was collected. SGC7901 and BGC823 cells were
randomly selected from the four GC cell lines that were used in
live cell immunization. Human PBMCs isolated from whole
blood of a healthy donor were used as a noncancer control.
Human GC cells and PBMCs were bound with serum from
each immunized mice and with nonimmunized mouse serum
for control (Figure 1). All three mice in each cell line group
exhibited binding signals to GC cell lines and PBMCs, although
PBMCs had relatively weaker signals.

Spleen cells from four human GC cell lines immunized mice
were fused with mouse myeloma SP2/0 cells to generate the
antibody hybridoma. FACS-HTS was used to screen for
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stronger Ag binding from a large pool of binders (i.e., mAbs) in
the hybridoma repertoire. The mAbs bound mainly to the
conformational epitopes on the surface of live cancer cells.
Using FACS-HTS, we selected hybridoma colonies with strong
binding signals using a total of 20,000 colonies in sixty-seven
96-well plates against the mixed live GC cells and normal
human PBMCs (counter screening cells). After these
hybridoma cells were weaned from the selection medium, the
five hybridomas with the highest binding signals were selected
for subcloning and antibody affinity purification. We chose the
MS17-57 clone for further study. (The four other mAbs will be
assessed at a later date.)

MS17-57 Characterization

We characterized MS17-57 mAb with a variety of methods.
Information on IgG1 for the heavy chain and k for the light
chain was obtained from mouse antibody isotyping [20]. The
variable regions (light chain and heavy chain) in the Fab
fragment of MS17-57 were sequenced for DNA and amino
acids (Figure 2). The unique Ag-binding regions demonstrated
that the CDRs between the FWRs of the heavy and light chains
were present in the variable region of Fab fragment as the
MS17-57 identity.

MS17-57 Binding to the Lysates of Gl Cancer Cells

To define some biological features of MS17-57 mAb, lysates
of MKN45, BGC823, and GES-1 cell lines (the latter generated
and immortalized from normal stomach mucosal cells and
transformed with Simian virus 40) [21] were individually coated
onto ELISA plates. The purified MS17-57 added on the plate
plus secondary antibody-HRP amplified the binding signals
(Figure 3). This indirect ELISA showed that MS17-57 could still
bind specifically to the denatured target(s) of cell membrane
protein from the cancer cell lysates. MKN45 cells expressed
the MS17-57 target at a higher level than BGC823 or GES-1
cells did, indicating that target expression levels might differ
between cell lines.

Localization of MS17-57 Targets on Cancer Cells

MS17-57 bound to all four GC cell lines used for
immunization, although the binding signals were not of equal
intensity (Figure 4A). The expression level of MS17-57 target
was highest in MKN45 cells and lowest in SGC7901 cells.
Similar to the counter-screening results, MS17-57 mAb did not
bind to human PBMCs. It did bind to some other types of GC
cells (Figure 4B), but not to Gl cells (Figure 4C). Thus, the
target(s) of MS17-57 are not universally expressed, although
they appear to be more common in GC cells than Gl cells.

Fresh tumor tissues and adjacent noncancerous tissues from
six GC patients were stained for MS17-57 and isotype control
mAb and then quantified with dose dependent binding in
FACS-HTS. Overall, the binding signal of MS17-57 was
stronger in tumor tissues than in noncancerous tissues
(P<0.03) (Table 1 and Figure 5). This experiment demonstrated
that MS17-57 can bind to its targets in their native form on the
surface of fresh tumor samples.

Another MS17-57 binding analysis was performed to purified
proteins (some Gl cancer markers, lysates of fresh tissues, and
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Figure 1.
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Figure 1. Titration analysis of live GC cells used to immunize mice and bound to mouse serum. Human PBMCs were
isolated from whole blood of a selected healthy donor for normal cell control. MKN45, BGC823, SGC7901, and MKN28 cells were
used in experiments, but SGC7901 and BGC823 cell lines were randomly selected as examples in this figure. The MFI were higher
in these cells than in PBMCs. All three mice exhibited strong immune responses to the human GC cell lines.

doi: 10.1371/journal.pone.0077398.g001

cells in ELISA), which demonstrated that this mAb binds
specifically to target(s) on GC cells (Figure 6). The MS17-57
target(s) might have different features than those of Gl tumor-
associated Ags [22,23] or other proteins (e.g., CEA [24],
CA15-3 [25], PG-1 (pepsinogen-1), PG-2 [26], and
Helicobacter pylori lysates [27]). The MS17-57 targets are at
least highly expressed on the cell surface of MKN45 and
BGC823 GC cells and GES-1 gastric transformed cells (Figure
7).

PLOS ONE | www.plosone.org

MS17-57 Functionality against GC Cancers in vitro and
in vivo

In a variety binding assays MS17-57 specifically binds to Gl
cancer cell lines and does not bind to human PBMCs (normal
control), which suggests that this mAb binds to GI tumor cell
surface biomarkers. A cancer biomarker binder is a useful
agent for detecting cancer, but it remains to be seen whether
MS17-57 could be useful as a therapeutic agent. Compared
with irrelevant mAb (isotype control), MS17-57 inhibited the
proliferation of BGC823 cells (Figure 8A) and MKN45 cells
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Figure 2. cDNA and amino acid sequences of the variable regions of the MS17-57 light chain (A) and heavy chain

(B). FWRs are located between CDRs.
doi: 10.1371/journal.pone.0077398.9g002

(Figure 8B) (GC cell lines from the 4 cell lines used in live cell
immunization), in tissue culture by approximately 32 + 8% after
7 days of cell growth. Although the variations in some
experiments were large, especially between 5 and 7 days, the
assay was performed 5 times with qualitatively similar results.
Thus there was an overall trend in cell inhibition by MS17-57
compared with irrelevant mAb. Inhibition of MKN45 cell growth
by MS17-57 required just one dose on the first day, while late
regrowth of BGC823 cell suggests that a second administration
of MS17-57 at day 4 may be necessary to maintain growth
inhibition for this cell line (data not shown).

PLOS ONE | www.plosone.org

A migration assay was conducted to determine whether
MS17-57 could inhibit migration of BGC823 cells (Figure 9) or
MKN45 cells (data not shown) from moving down a transwell
membrane. Comparison of the medium control and two doses
of 5 and 20 pg/mL irrelevant mAb, 5, 10, or 20 ug/mL MS17-57
demonstrated migration inhibition for BGC823 cells (Figure
9A). Another migration data were plotted from a separate
experiment (Figure 9B). Using blank control as 100% cell
migration, MS17-57 inhibited cell migration by about 25 + 5%.

In a preliminary in vivo study, MS17-57 inhibited tumor
growth from MKN45 cells and BGC823 cells that were selected
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Figure 3.
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Figure 3. Binding of MS17-57 to lysates of MKN45, BGC823 and GES-1 cell lines in indirect ELISA. MKN45, BGC823,
SGC7901, and MKN28 cells were used in experiments, but MKN45 and BGC823 cell lines were randomly selected as examples in
this figure. MS17-57 expressed strong binding signals to MKN45 cells and moderate binding signals to BGC823 cells and GES-1
cells. Cell lysates were coated with 1.0 pyg/mL PBS onto Immulon-Il HB 96-well ELISA plates (100 pL/well). The protein
concentrations of these cell lysates were balanced, but not for the binding targets (Ags) that could be a big variation. Irrelevant mAb

was used as an isotype control.
doi: 10.1371/journal.pone.0077398.g003

from 4 GC cell lines in inoculated JAX nude mice (Figure 10).
The experimental design was the same as that of the in vitro
studies using medium control and irrelevant mAb controls. The
average size of tumor nodules was not significantly difference
between the control groups and MS17-57 group, but the
average number of tumor nodules were 7.75 versus 1.25
(irrelevant mAb versus MS17-57) that have the significant
differences.

PLOS ONE | www.plosone.org

PALP and IALP are MS17-57 Targets

Western blotting was used to determine the molecular
weights of the MS17-57 targets (data not shown), which
demonstrated one band from BGC823 lysates (about 58 kDa)
and two bands from MKN45 lysates (about 58 kDa and 56.5
kDa). Pull-down assays with indirect IP (Figure 11A) and direct
IP (Figure 11B) were conducted to define the targets of
MS17-57. Many combinations of labeling, conjugation and
eluting conditions, buffer systems, cell lysates, and processing
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Figure 4. MS17-57 mAb binding to GC cells, Gl cells, and human PBMCs. A.MS17-57 bound to all four GC cell lines that were
used for live cell immunization. B. MS17-57 exhibited strong binding signals in GES-1 and AGS cells but no binding signal in human
PBMCs. C. MS17-57 did not bind to human PBMCs nor any of the five GI tumor cells. Irrelevant mAb was used as the mAb isotype

control.
doi: 10.1371/journal.pone.0077398.9g004

procedures were used (description of these conditions not
shown). Direct IP revealed two target bands of about 58 kDa
and 56.5 kDa on MKN45 cell lysates and one band of about 58
kDa on BGC823 cell lysates (Figure 11B). Other bands on
these images were the heavy and light chains of denatured
MS17-57.The bands on direct IP SDS-PAGE gels (Figure 11B)
were cut and sent for mass spectrometry (MS) analysis. The
MS analytic results of MS17-57 binding targets revealed scores
of above 95% (determined by MS software) for both PALP and
IALP in MKN45 lysates and for PALP in BGC823 lysates (data
not shown). ELISA experiments confirmed that MS17-57 was
binding to purified PALP and IALP proteins (R&D Systems,
Minneapolis, MN, USA) (data not shown).

We used gRT-PCR to analyze the mRNA expression levels
of PALP and IALP from lysates of 10 GI tumor cell lines.
Expression levels varied greatly. IALP was most strongly

PLOS ONE | www.plosone.org

expressed in MKN45 cell lysate (Figure 12A), and PALP in
BGC823 and MKN45 cell lysates (Figure 12B). The expression
level of PALP was more than 100 times higher in BGC823 cells
than MKN45 cells. These data are in line with results from our
IP and MS analysis.

Discussion

We developed and described the mAb MS17-57 and
identified PALP and IALP as its targets. These targets were
ectopically expressed on the surface of GC cells. The functions
of MS17-57 on Gl cancer were confirmed both in vitro and in
vivo studies [8].

A potential therapeutic lead for Gl cancer therapy, MS17-57
was generated by immunization with live GC cells and the
unique use of FACS-HTS. The immune responses in sera of
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Table 1. Results of immunofluorescence cell staining, as
measured with FACS, of fresh tumor and adjacent
noncancerous tissues from GC patients with MS17-57 and
isotype control antibody".

% StainedSubtracted Normalized

GC Patient Tissue mAb MFI  Peak MFI2 MFI3
Patient-1  Tumor Isotype Ctrl 6.15 0.51 13.06 11.56
MS17-57 19.21 18.23
Normal Isotype Ctrl 11.62 0.32 15.89 8.76
MS17-57  27.51 11.58
Patient-2  Tumor Isotype Ctrl 10.96 2.83 6.15 5.78
MS817-57 1711 11.94
Normal Isotype Ctrl 28.31 10.48 -12.59 2.06
MS17-57 15.72 8.26
Patient-3* Tumor Isotype Ctrl - - - -
MS17-57 - -
Normal Isotype Ctrl - - - -
MS817-57 - -
Patient-4 Tumor Isotype Ctrl 3.76 0.1 8.27 11.83
MS17-57 12.03 13
Normal Isotype Ctrl 4.9 0.86 1.29 4.67
MS17-57  6.19 3.82
Patient-5 Tumor Isotype Ctrl 8.58 3.2 -0.5 3.48
MS17-57  8.08 4.02
Normal Isotype Ctrl 9.51 5.32 -4.65 1.89
MS17-57 486 1.08
Patient-6  Tumor Isotype Ctrl 7.9 5.48 8.31 7.59
MS17-57 16.21 7.63
Normal Isotype Ctrl 10.33 10.21 3.84 5.08
MS817-57 14.17 13.89
Patient-7 Tumor Isotype Ctrl 9.74 4.2 2.2 4.54
MS17-57 11.94 8.16
Normal Isotype Ctrl 5.45 1.81 117 4.49
MS17-57 6.62 1.5

1 Overall, normalized MFI was significantly higher in tumor tissues than in adjacent
noncancerous tissues (P<0.03);

2 Calculated as (MFlums17-57 = MFlisotype Control mAb)-

3 Calculated as ([parameterX / MFlisotype Control mAb] % MFlvs17.57). Here
parameter X= 3.7.

* Data from patient 3 were omitted for analyses because the tissue had not been
properly prepared.)

doi: 10.1371/journal.pone.0077398.t001

immunized mice were determined using titration ELISA. The
binding signals of GC cells and human PBMCs from sera were
of similar strength, but one of these sera was absorbed [28] by
the lysates of human PBMC, then the binding signals in ELISA
were much higher to the lysates of GC cells than it to PBMCs
(data not shown). We are not sure whether MS17-57 binds to
the targets (PALP and IALP) as a linear epitope or a
conformational epitope, since the mAb could bind to the protein
in both lysates and live cells. The mAb was captured by live
cell screening with FACS-HTS rather than by screening with

PLOS ONE | www.plosone.org
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ELISA-HTS or other assays [29,30] using proteins in cell or
tissue lysates. One planned future investigation will involve
binding of MS17-57 to ALPs, including PALP and IALP, in
protein modeling and crystal structure experiments; the results
should reveal the binding motif and features of protein-protein
interactions.

ALP is a hydrolase that cleavages phosphate groups from
primary or secondary metabolites in vivo [31,32], including
nucleotides, proteins, and alkaloids. Researchers have studied
the role of ALP in inflammation and metabolic disease [33-35].
Hypophosphatasia features selective deficiency of activity of
the tissue-nonspecific (liver, bone, or kidney) ALP isoenzyme;
PALP and IALP isoenzyme activities are not reduced [36].
Hypophosphatasia is a hereditary disease characterized by low
activity of total serum ALP accompanied by a range of skeletal
diseases. The main circulating ALP isoenzymes (bone ALP,
liver ALP, IALP, and PALP) are in six families with
hypophosphatasia [37]. Six ALP families are known, including
PALP and IALP (a version of PALP that lacks the last 24 amino
acids at the C terminal and is encoded by the /ALP gene). Most
ALP isoenzymes, including PALP and IALP, are secreted from
many types of cells. Yohsinaru et al. reported that the
expression of glycosylphosphatidylinositol-anchored
carcinoembryonic Ag (CEA) and ALP on the cell surface of a
variety of cancer cell lines and a lung diploid cell line (WI38)
upon exposure of the cell lines to a cell differentiation agent
(sodium butyrate) to induce cell differentiation and expression
of the two tumor-associated Ags [38]. The mechanism and
function of ALP expressed on the cell surface are not clear,
although it is ectopically expressed in cancer cell lines.

The fact that MS17-57 inhibited the growth, proliferation, and
migration of GC cells suggests that this mAb could be the basis
for a therapeutic agent for cancer treatment and prevention of
metastasis. MS17-57 bound to not only GI tumor tissues and
cells but also to transformed Gl cells (i.e., GES-1), which
means the mAb could bind to the target(s) expressed at a
relatively early stage of cancer development. The levels of
PALP and IALP ectopically expressed on the cell surface were
not balanced among these GI cancer cells. Because the level
of ALPs expressed may or may not affect the development of
cancer, to help define the targets of MS17-57, we will conduct
functional proteomics reverse-phase protein assay for ALPs in
the intracellular signaling pathways.

In a preliminary study, MS17-57 mAb inhibited tumor growth
in a mouse model. We will follow up these promising results by
investigating the in vivo function of MS17-57 using additional
approaches including other strains of mice, the tumor
inoculation methods, and alternative metastatic models.

In summary, we generated the mAb MS17-57 by using the
unique FACS-HTS and identified its targets, PALP and IALP,
which were ectopically expressed in the extracellular matrix of
Gl cancers. This mAb inhibited GC cell proliferation and
prevented their migration in preliminary in vitro and in vivo
studies. MS17-57 could be an example of cancer biomarkers
identification leading to promising therapeutic targets through
mAb generation using our unique HTS technology.
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Figure 5. Cells from fresh surgical tissues stained with MS17-57 and isotype control mAb. Immunofluorescence cell staining
with MS17-57 revealed significantly stronger staining of Gl tumor tissues than that of normal (adjacent noncancerous) control
tissues (P<0.03 overall). (Data from patient 3 were omitted for analyses because the tissue had not been properly prepared.).

doi: 10.1371/journal.pone.0077398.9g005
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Figure 6.
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Figure 6. Binding of MS17-57 to purified Gl cancer markers and lysates of fresh tissues and cells. ELISA results showed
that MS17-57 bound to lysates of fresh GC tissues (strong binding in lysate from one patient and moderate binding in lysate from
another patient) and to lysates of GC MKN45 cells, but not to fresh lysates of adjacent noncancerous tissues from the same
patients. MS17-57 bound slightly to the purified CA15-3 protein but not to proteins or lysates of PG-1, PG-2, CEA, or H. pylori.
ELISA used two dose-dependent dilutions of antibodies. Normal mouse serum protein was used as a negative control.

doi: 10.1371/journal.pone.0077398.g006
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Figure 7.
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Figure 7. ICC staining for MS17-57 binding to MKN45, BGC823, and GES-1 cells on cytospin slides. Two ICC assays were
performed; photomicrographs from one are shown at 40x and images from the other at 100x). MS17-57 bound to all three types of
cells. The binding target (marker) was located on the cell surface. Images of blank and negative (isotype) controls were also

obtained but are not shown here.
doi: 10.1371/journal.pone.0077398.g007
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Figure 8.
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Figure 8. MS17-57 inhibits BGC823 and MKN45 cell growth. MS17-57 was added to BGC823 cells (8 pg/mL per well) (A) or
MKN45 cells (2 pg/mL per well) (B) on 96-well tissue culture plates at day0. MS17-57 inhibited BGC823 cell growth by about 27.5%
for up to 5 days and MKN45 cell growth by about 22.5% for up to 7 days. Irrelevant mAb, used for isotype control, was applied at
concentrations about four times higher than that used for MS17-57. There are a significant difference of the percentage of cell
growth between irrelevant mAb group (A) and MS17-57 group (B), and both statistical testing P values from day 3 to day 7 were
0.0065 and 0.0066.

doi: 10.1371/journal.pone.0077398.g008
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Figure 9. MS17-57 inhibits BGC823 cell migration over 3 days. A. Dose-dependent MS17-57 versus isotype mAb (irrelevant
mADb) and medium controls inhibit BGC823 cell migration in a colorimetric cell migration assay. a: Cell culture medium control; b—d:
5, 10, and 20ug/mL MS17-57, respectively; e and f: 5 and 20 ug/mL irrelevant mAb, respectively. Each condition was tested in
triplicate. B. Trypan blue dye was used to stain wells with medium control mAb, 5 pyg/mL irrelevant mAb, or 5 yg/mL MS17-57 in a
separated QCM colorimetric cell migration assay. Note that mean OD and standard deviation (StdEv) for each well were calculated
differently. Each well was tested in triplicate. Black bars: mean OD and standard deviation from each individual well of the stained
cells. White bars: single OD from three mixed wells of the stained cells. There is a significant difference of the migration ODs
between irrelevant and MS17-57 mAbs and P<0.01.

doi: 10.1371/journal.pone.0077398.g009
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Figure 10.

Figure 10. MS17-57 inhibits tumor growth in nude mice. (A) MS17-57 mAb inhibits the growth of MKN45 tumor cell xenografts.
Cells (1x108) mixed with 100 ug of MS17-57 mAb (50 pg/mL in PBS) were injected i.p. into the abdominal cavity of male nude mice
and 4 mice in each group. About 6 weeks later, mice with a palpable tumor were counted for an average of 1.5 node/each nude
mouse and an average tumor diameter 0.3 cm; (B) The same procedures as in (A) using MKN45 cells in nude mice but with
irrelevant mAb and a final count of an average of 8.5 node/each nude mouse and an average tumor diameter of about 0.31 cm; (C)
The same procedures as (A) using MKN45 cells in nude mice but with PBS (buffer) and the final tumor nodes count an average of
9.0 node/each nude mouse and an average tumor diameter of about 0.28 cm; (D) The same procedures as (A) but using BGC823
cells in nude mice with MS17-57 mAb and a final tumor nodes count of an average of 1.0 node/each nude mouse and an average
tumor diameter of about 0.27 cm; (E) The same procedures as (B) but using BGC823 cells in nude mice with irrelevant mAb and a
final tumor nodes count of an average of 7.0 node/each nude mouse and an average tumor diameter of about 0.31 cm; (F) The
same procedures as (C) but using BGC823 cells in nude mice with PBS and a final tumor nodes count of an average of 6.5 node/
each nude mouse and an average tumor diameter of about 0.30 cm.

doi: 10.1371/journal.pone.0077398.g010
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Figure 11.
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Figure 11. Pull-down assay for MS17-57 targets from cellular lysates of BGC823 and MKN45 cell lines. MS17-57 mAb can
pull down the targets from the cellular lysates of both BGC823 and MKN45 cell lines in direct IP (A) and indirect IP (B) assays. a:
PALP (MW = 57.4 kDa); b: IALP (MW = 56.8 kDa); c: heavy chain of denatured MS17-57 (MW = 50 kDa); d: light chain of
denatured MS17-57. Note the scale is different for the direct and indirect IP gels.

doi: 10.1371/journal.pone.0077398.g011
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Figure 12.
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Figure 12. IALP and PALP mRNA expression levels in 10 cell lines by qRT-PCR analysis. mRNA expression of IALP (A) and
PALP (B) was the highest in MKN45, CRL5974, AGS, and GES-1 cell lines. In BGC823 cells, mRNA expression was much higher
for PALP than IALP.*Superelevated values compared with average values with gRT-PCR.

doi: 10.1371/journal.pone.0077398.g012
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