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Abstract

Drug discovery for disease-modifying therapies for Alzheimer’s disease and related

dementias (ADRD) based on the traditional paradigm of experimental animal models

has been disappointing.We describe the rationale and design of theDrug Repurposing

for Effective Alzheimer’s Medicines (DREAM) study, an innovative multidisciplinary

alternative to traditional drug discovery. First, we use a systems biology perspective in

the "hypothesis generation" phase to identify metabolic abnormalities that may either

precede or interact with the accumulation of ADRD neuropathology, accelerating the

expression of clinical symptoms of the disease. Second, in the "hypothesis refinement"

phase we propose use of large patient cohorts to test whether drugs approved for

other indications that also target metabolic drivers of ADRD pathogenesis might

alter the trajectory of the disease. We emphasize key challenges in population-

based pharmacoepidemiologic studies aimed at quantifying the association between

medication use and ADRD onset and outline robust causal inference principles to

safeguard against common pitfalls. Candidate ADRD treatments emerging from this

approach will hold promise as plausible disease-modifying therapies for evaluation in

randomized controlled trials.
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1 INTRODUCTION

Although rapid strides have beenmade in understanding the basic biol-

ogy of Alzheimer’s disease and related dementias (ADRD), this knowl-

edge has not translated into effective treatments. The failures of phase

III clinical trials1,2 of disease-modifying therapies for ADRD under-

score the need to identify novel therapeutic targets for this neurode-

generative disease that currently affects> 5million older Americans.3

The current paradigm for drugdiscovery inADRDrelies predominantly

on experimental animalmodels that recapitulate the features of ADRD

pathology.4 However, treatments targeting the amyloid plaque and/or

neurofibrillary tangle pathologies identified in these model systems

have not improved clinical outcomes for patients.5,6 The high preva-

lence of plaque and tangles in cognitively normal older individuals sug-

gests that targeting ADRD pathology rather than the early molecular

triggers preceding accumulation of pathology and clinical symptoms

may be ineffective.7,8

An alternative approach to drug discovery in ADRD is hypothesis

generation based on identifying existing treatments that target genetic

or environmental regulators of early molecular determinants of ADRD

pathology for therapeutic repurposing.9 Pathways of interest may

either trigger or enhance earlyADRDneuropathology, accelerating the

expression of clinical symptoms of disease.10 The primary objectives of

this review are to provide an overview of our "omics"-based approach

to identify dysregulatedmetabolic pathways that present plausible tar-

gets for drug repurposing in ADRD, review threats to validity in exist-

ing patient-level pharmacoepidemiologic analyses of drugs for ADRD

prevention or treatment, and propose solutions to overcome these

threats. Collectively, the steps and principles described in this review

form the rationale for the Drug Repurposing for Effective Alzheimer’s

Medicines (DREAM) study, which is an ongoing multidisciplinary col-

laborative study aimed at identifying drug repurposing candidates for

ADRD (Figure 1).

2 HYPOTHESIS GENERATION BASED ON THE
ALZHEIMER’S DISEASE ABERRANT METABOLISM
(ADAM) NETWORK

Studies of cohorts of older individuals, such as the Baltimore Longitu-

dinal Study of Aging, have identified dysregulation in several metabolic

pathways that are related to severity of ADRD neuropathology as well

as symptomatic expression of the disease.11–14 These studies suggest

that ADRD is a pervasive metabolic disorder characterized by pertur-

bations in multiple interacting biochemical pathways. Using quantita-

tive metabolomic, proteomic, and transcriptomic analyses of brain tis-

sue samples, we previously reported on dysregulation of glycolysis11

and intermediate pathways linked to glycolytic substrates in ADRD.

These biochemical pathways include phospholipid14 and unsaturated

fatty acid metabolism13 as well as polyamine synthesis, transmethy-

lation reactions,12 and cholesterol catabolism through its conversion

to oxysterols and bile acids. These findings have allowed us to define

a broad spectrum of abnormal biochemical pathways originating from

HIGHLIGHTS

∙ The failures of phase III clinical trials of disease-modifying

therapies for Alzheimer’s disease and related dementias

(ADRD) underscore the need for exploring non-traditional

drug discovery approaches.

∙ We propose an innovative approach for drug discov-

ery focused on therapeutic repurposing in ADRD that

integrates hypothesis generation based on metabolomics

and transcriptomics analyses and hypothesis refinement

based on pharmacoepidemiologic analyses.

∙ We review threats to validity in existing patient-level

pharmacoepidemiologic analyses of drugs for ADRD pre-

vention or treatment including immortal time bias, con-

founding, reverse causation, prevalent user bias, exposure,

and outcomemisclassification.

∙ We further outline robust causal inference principles to

safeguard against common pitfalls in non-interventional

studies of treatment effects on ADRD.

RESEARCH INCONTEXT

1. Systematic review: We reviewed the literature using tra-

ditional (e.g., PubMed) sources to identify pharmacoepi-

demiologic studies and outlined common threats to valid-

ity including immortal time bias, confounding, reverse

causation, prevalent user bias, exposure, and outcome

misclassification in existing analyses focused on thera-

peutic repurposing of drugs for Alzheimer’s disease and

related dementias (ADRD) prevention or treatment.

2. Interpretation: We describe the rationale and design

of the Drug Repurposing for Effective Alzheimer’s

Medicines (DREAM) study, an innovative multidis-

ciplinary alternative to traditional drug discovery

involving integration of hypothesis generation based

on metabolomics and transcriptomics analyses and

hypothesis refinement based on pharmacoepidemiologic

analyses.

3. Future research: Repurposing candidates emerging from

theDREAMstudywill merit confirmation in futuremech-

anistic studies to elucidate potential mechanism of action

and eventually in prospective randomized controlled tri-

als of ADRD patients.

a primary defect in brain glycolysis during preclinical ADRD. In this

paradigm, we hypothesize that abnormal glycolysis is a pivotal and

"progenitor" metabolic perturbation that leads to secondary dysreg-

ulation within a diverse array of other biochemical pathways. This
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F IGURE 1 Drug Repurposing for Effective Alzheimer’sMedicines
(DREAM) study design. Schematic workflow of the DREAM study.
Step 1: Alzheimer’s disease (AD) is a pervasivemetabolic disorder of
the brain. Targetedmetabolomics and transcriptomic analyses of brain
tissue samples reveals dysregulation inmultiple metabolic pathways
related to abnormal glycolysis in AD. These pathways are proposed to
be components of the Alzheimer’s Disease AberrantMetabolism
(ADAM) network (see Figure 2a) and are associated with severity of
AD pathology. Step 2: Hypotheses generation: identifying candidate
drugs for Alzheimer’s disease and related disorders (ADRD).
Chemi-informatics databases such as GeneCards andDRUGBANK are
used to determine whether genetic regulators of biochemical
reactions within the ADAMnetwork (see Figure 2b) are targeted by
approved drugs for non–ADRD-related indications. Step 3:
Hypotheses testing: in silico validation of candidate ADRD drugs.
Pharmacoepidemiologic analyses in complementary population-based
clinical datasets (Centers forMedicare andMedicad Services, United
States; Clinical Practice Research Datalink, United Kingdom) are used
to test efficacy of candidate ADRD treatments

hypothesis has strong biologic plausibility given that intermediate

metabolites of glycolysis enter many other biochemical pathways that

have been well characterized and extensively studied in AD.15 Thus,

based on abnormal glycolysis as a primary progenitor pathway, we

hypothesize that there may be > 20 related and distinct biochemical

pathways that are dysregulated in the ADRD brain. We characterize

these biochemical pathways as key components of the ADAMnetwork

(Figure 2a), defined by their relationship to abnormal brain glycolysis.

To further test the validity of our hypotheses about the role of per-

turbations in thesemetabolic pathways inADRD,we generated a list of

≈ 250 genes that are known to regulate individual reactions within the

component pathways of the ADAM network. Using two Gene Expres-

sion Omnibus (GEO) collections of autopsy-confirmed AD (N = 29)

and control brains (N = 56), we examined differential expression of

these geneswithin thehippocampusandentorhinal cortex, two regions

vulnerable to neurodegeneration where accumulation of pathology is

believed to trigger onset of AD symptoms. We confirmed that 104

genes were differentially expressed in the AD hippocampus and/or

entorhinal cortex (false discovery rate< 0.05) relative to controls, with

several genes also validatedwith protein-level data in brain tissue sam-

ples from theBaltimore Longitudinal Study of Aging.16,17 This supports

our conceptualization of ADRD as a pervasive metabolic disorder and

allows us to undertake in silico drug repurposing studies in which the

goal is to identify approved drugs that are known to target genetic reg-

ulators of biochemical reactions within abnormal metabolic pathways

in the ADAMnetwork.

3 IDENTIFYING FDA-APPROVED DRUGS
TARGETING ABNORMAL METABOLISM IN ADRD
AS REPURPOSING CANDIDATES

We first categorized genetic regulators of biochemical reactions in the

ADAM network as those involved in maintaining physiological levels

of specific metabolites (ie, “metabolic pathway regulators”) and those

participating in signaling cascades (ie, “signaling pathway regulators”;

Figure 2b). Next, we queried two publicly available cheminformat-

ics databases, DrugBank (https://www.drugbank.ca/) and GeneCards

(https://www.genecards.org/), to identify U.S. Food and Drug Admin-

istration (FDA)-approved drugs for non-ADRD indications that target

metabolic/signaling pathway regulators in the ADAM network. Using

the ≈ 250 genetic regulators within the 20 dysregulated pathways in

the ADAMnetwork, we identified 35 FDA-approved drugs as potential

repurposing candidates.

4 PHARMACOEPIDEMIOLOGIC ANALYSES FOR
HYPOTHESIS REFINEMENT USING ELECTRONIC
PATIENT-LEVEL HEALTH-CARE DATA

Electronic patient-level data collected during routine care are fre-

quently used to generate actionable evidence regarding effectiveness,

harm, use, and value of medications that supplements evidence

https://www.drugbank.ca/
https://www.genecards.org/
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F IGURE 2 A, The Alzheimer’s Disease AberrantMetabolism (ADAM)Network. A network of dysregulatedmetabolic pathways related to
glycolysis and identified by targetedmetabolomics and transcriptomics analyses in autopsy-confirmed Alzheimer’s disease and control brain
samples. B, Drug targets in the ADAMNetwork. Genetic regulators of metabolic and signaling reactions in the ADAMnetwork. Commonly
prescribed approved drugs targeting these pathways will be tested by pharmacoepidemiologic analyses in the Drug Repurposing for Effective
Alzheimer’sMedicines study

generated in randomized controlled trials (RCTs), which are typically

limited in scope owing to a relatively modest sample size, compara-

tively short follow-up time, and underrepresentation of often themost

relevant populations.18 The unique strengths of routine health-care

data that make them ideal for evaluating hypotheses generated by

molecular level predictions include their provision of large patient

populations useful for detecting small differences, and the availability

of a large number of patient factors recorded without recall bias,

including demographics, comorbid conditions, and co-medication use,

that allow for high-dimensional covariate adjustment to minimize

confounding.19–21 The DREAM study leverages two large population-

based data sources for pharmacoepidemiologic analyses: One is the

insurance claims data from theMedicare program, a federal program in

the United States that provides health insurance to people 65 years of

age and older or disabled; and second is the Clinical Practice Research

Datalink (CPRD) GOLD, which is a large UK primary care database

containing de-identified data on nearly 15 million people registered

with >700 general practices from across the UK. 22,23 Separate imple-

mentation in complementary population-based databases facilitates

assessment of the robustness of the findings to differences in the

underlying data structure (Medicare claims, CPRD electronic health

records [EHRs]) and use patterns between different countries and

health-care systems (ie, United States vs UK). Of the 35 medications

identified in the “hypothesis generation” phase, we selected 15 repur-

posing candidatemedications (Table 1) for the pharmacoepidemiology-

based “hypothesis refinement” phase conditional on two key factors:

(1) availability of sufficient patient data for meaningful evaluation

(ie, exclusion of infrequently used medications), and (2) availability

of an appropriate comparator treatment (as the reference group)

that is used for the same underlying (non-ADRD) indication as the

repurposing candidate but not thought to be associated with ADRD.

5 THREATS TO VALIDITY IN
PHARMACOEPIDEMIOLOGIC STUDIES
EVALUATING RISK OF ADRD

In pharmacoepidemiologic studies conducted with existing data

recorded in electronic sources, selection of patients for comparison

may seem straightforward (eg, whether or not individuals receive a

given treatment); however, many commonly observed biases can be

traced back to specific design decisions at the outset of the study. To

conceptualize these potential biases, it is most helpful to consider a

RCT one would conduct to answer whether prescription medications
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F IGURE 2 Continued

prevent the occurrence of ADRD. People free of ADRD would be

randomized to a treatment or a placebo; they would be encouraged

to adhere well to their treatment assignment; and would be followed

for many years until the onset of ADRD, death, or exit from the study

for other reasons. Envisioning this target trial24 helps us to anticipate

how deviations from this ideal design will lead to biases as described

below.

5.1 Immortal time bias

Immortal time bias, also referred to as immune person-time bias when

studying outcomes other thanmortality,25,26 is introducedwhenmem-

bership in a treatment exposure group at study index (follow-up begin-

ning date) is defined based on exposure occurring at a future time point

during follow-up. This makes it impossible to observe the outcome

between the follow-up start date and the actual exposure date among

the exposed. A recent study27 compared the risk of ADRD between

patients who were prescribed a tumor necrosis factor (TNF) inhibitor

any time in the study period prior to ADRDdiagnosis versus thosewho

were never prescribed these drugs in the study period. These “ever

user” versus “never user” comparisons may be affected by immortal

time bias because patients who are diagnosed with ADRD early on

in the follow-up period have less opportunity to be classified into the

treatment group and thus, more cases end up in the “never user” group

(Figure 3). Misclassifying immortal person-time as exposed time can

lead to estimates suggesting an exaggerated beneficial effect.25

5.2 Confounding

To generate valid inferences about treatment effects in the absence of

baseline randomization, onemust account for the differences between

treated patients and reference patients in the distributions of pre-

exposure confounding variables; that is, those variables that are risk

factors for ADRD and affect the likelihood of treatment or treat-

ment choice.28 While confounding is a universal concern for all non-

interventional studies, comparisons of users of a particular treatment
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TABLE 1 Repurposing candidates in the Drug Repurposing for Effective Alzheimer’sMedicines (DREAM) study

Repurposing candidate Target Comparator drug Original indications

Efavirenza CYP46A1 Dolutegravir or

nevirapine

Human

immunodeficiency

virus

Deferiprone/deferoxaminea Iron Deferasirox Iron overload in

thalassemia,

myelodysplasia, sickle

cell disease

Tofacitiniba JAK3 Abatacept Rheumatoid arthritis

Tocilizumaba IL-6 Abatacept Rheumatoid arthritis

TNF-inhibitorsa TNF Abatacept Rheumatoid arthritis

Dipyridamoleb ADA2 Aspirin Valve disorders for

stroke prevention

Anastrozole CYP27A1 Exemestane and

letrozole

Postmenopausal

estrogen

receptor-positive

breast cancer

PDE-5 inhibitors ABCC4 Endothelin receptor

antagonist

Pulmonary arterial

hypertension

Valproic acid HDAC Lamotrigine Epilepsy

Dihydropyridine calcium

channel blockers

CACNA1C Hydrochlorothiazide Hypertension

Amiloride PLAU Triamterene Hypertension

Salbutamol DUSP1 Long-actingmuscarinic

antagonists

Chronic obstructive

pulmonary disease

Probenecida PANX1 Allopurinol Gout

Montelukast CYSLTR1 Fluticasone Asthma

Pentoxifylline NT5C3B Cilostazol Peripheral arterial

disease

aCPRD does not contain information on specialty medications and medications not approved by NHS; therefore, these analyses will only be conducted in

Medicare claims.
bMedicare claims do not capture over-the-countermedications (aspirin); therefore, this analysis will only be conducted in CPRD.

Abbreviations: CPRD, Clinical Practice Research Datalink; NHS, National Health Service.

versus non-users, which has been a common approach for estimat-

ing treatment effects on ADRD risk in previous studies,27,29–37 are

especially vulnerable because patient characteristicsmay substantially

differ between treated and untreated patients. For instance, biologic

disease-modifying treatments for rheumatoid arthritis arehighly effec-

tive but are also associated with serious adverse events such as infec-

tions; therefore, it is possible that in older age, these treatments are

selectively used in “healthier” patients with longer life expectancy

and withheld from patients with greater frailty or higher comorbidity

burden.38 Systematic differences resulting from such designs are likely

to distort the association between treatment and ADRD risk.

5.3 Reverse causation

Reverse causation is an important consideration when studying ADRD

because of a potentially prolonged preclinical phase of disease before

diagnosis.39,40 In research on treatments and ADRD risk, cognitive

decline is plausibly accompanied by a decline in medication adher-

ence. Therefore, comparisons of periods of medication use versus

non-use for the risk of ADRD could produce a misleading protective

association.41 In a case-control study, Chou et al.32 compared the risk

of ADRD between individuals who received TNF-inhibitor treatment

versus those who did not in a 3-month exposure assessment window

before an AD diagnosis. This design is prone to substantial bias from

reverse causation leading to spurious protective effect estimates due

to reverse causation (Figure 3).

5.4 Prevalent user bias because of left-truncated
data

Prevalent users of a medication are often defined as those individuals

who have been receiving treatment for some length of time before

the start of follow-up.42 Including prevalent users in a study aimed

at evaluating the association between a treatment and ADRD is
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F IGURE 3 Immortal time bias (left) and reverse causation bias (right) in recent pharmacoepidemiologic studies evaluating associations
between tumor necrosis factor (TNF)-inhibitor use and the risk of Alzheimer’s disease and related dementia (ADRD). Zhou et al. (left) compared
the risk of ADRD between patients whowere prescribed a TNF-inhibitor any time in the study period prior to ADRD diagnosis versus those who
were never prescribed these drugs in the study period. This “ever user” versus “never user” comparison is affected by immortal time bias because
patients who are diagnosedwith ADRD early on in the follow-up period have less opportunity to be classified into the treatment group and thus,
more cases end up in the “never user” group. Chou et al. (right) compared the risk of ADRD between individuals who received TNF-inhibitor
treatment versus those who did not in a 3-month exposure assessment window before an AD diagnosis. This design is prone to substantial bias
from reverse causation leading to spurious protective effect estimates because cognitive decline is plausibly accompanied by a decline in
medication adherence

similar to excluding the first few years of follow-up after the start

of randomization in an RCT of treatment initiators. It poses several

threats to accurate effect estimation. First, if the treatment effect on

the outcome of ADRD varies over time, any early effect—beneficial

or harmful—shortly after starting the drug would be missed and the

net overall treatment effect would be biased.43 Second, confounding

adjustment for risk factorsmeasured at the beginning of the studymay

already be influenced by the patients’ treatment history and as such

introducebias in treatment effect estimation.42 Thedirection andmag-

nitude of bias due to inclusion of prevalent users vary depending on the

context.

5.5 Exposure misclassification

Use of electronic health-care data from routine clinical care to evalu-

ate the risk of ADRD after exposure to a certain treatment has gained

widespread use because of availability of medication dispensing or

prescribing data, which eliminates the threat of recall bias. However,

adherence to chronic medication is often suboptimal due to barriers

such as costs, complexity of the regimen, and limited health literacy.44

Therefore, studies in which follow-up is continued indefinitely after

treatment initiation has the potential to introduce substantial misclas-

sification of non-exposed person-time as exposed time, which could

dilute the treatment effect estimates. For example, in a study compar-

ing the use of angiotensin receptor blockers (ARBs) versus non-use,

Chiu et al.29 followed ARB initiators for an average of 9.4 years for the

outcome of dementia; however, the average time on ARB treatment

during follow-up was only 2.9 years. This approach assumes that the

purported benefit of ARB use on the risk of dementia is preserved long

after treatment is discontinued.

5.6 Outcome misclassification

Electronic health-care data such as insurance claims or electronic

medical records capture ADRD diagnosis with varying degrees of

accuracy. Clinically, it is often difficult to pinpoint the precise time of

ADRD onset, which manifests slowly with gradually increasing extent

and may not get coded as ADRD by physicians until long into the dis-

ease course. Therefore, all pharmacoepidemiologic studies evaluating

association between treatment use and ADRD risk are subject to bias

to varying degrees due to outcome misclassification. For example,

in studies comparing treatment users versus non-users, this mis-

classification is likely differential between exposure groups because

treated patients conceivably have greater contact with the health-
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care system and, hence, greater probability of their symptoms being

noted and recorded sooner by physicians than untreated patients. In

studies comparing two active treatments, misclassification may still be

present, but it is less likely differential between exposure groups. In the

presence of differential misclassification, both absolute and relative

measures of treatment effects are biased. Many previously published

studies,27,29,31–33,35,45 have taken ADRD recording in insurance

claims or electronic medical records at face value without recog-

nizing these limitations or varying outcome definitions in sensitivity

analyses to investigate the impact of this misclassification on study

results.

6 APPROACHES TO REDUCE BIAS IN
NON-INTERVENTIONAL STUDIES OF TREATMENT
EFFECTS ON ADRD

The threats to validity described above have the potential to substan-

tially distort study results. When multiple threats are present, it is

impossible to gauge the magnitude of their impact on study results

because they may bias the estimates in different directions (toward

the null or away from the null). Therefore, adherence to robust causal

inference principles is critically important for generating reliable and

actionable evidence from pharmacoepidemiologic studies investigat-

ing the complex relationship between drug treatments and ADRD risk.

In this section, we describe features of the DREAM study designed to

mitigate bias threats. While most of these features are well described

in general pharmacoepidemiology literature, we outline how each of

these feature addresses challenges that are unique to ADRD drug

repurposing research. Another key strength of the DREAM study is

pre-registration of study protocols on clinicaltrials.gov prior to data

analysis for each comparison.46–48 Pre-registration of detailed study

protocols, including hypotheses being tested and operational defini-

tions of variablemeasurement, safeguards against publication bias and

“data dredging” until a significant association is obtained,49,50 both

of which can undermine the credibility of non-interventional studies

of drug repurposing candidates conducted using existing health-care

data.

6.1 Basic study design

Wewill implement a new-user, active-comparator, cohort study design

for all analyses.51 This general study design framework can be con-

ceptualized as emulating principles of a clinical trial comparing two

treatments with observational data and is well suited for health-care

database analyses.24,52 Focusing on new users allows evaluation of

the effect of drug exposure on ADRD risk throughout the treatment

course and precludes the threat from prevalent user bias.42 By begin-

ning follow-up at treatment initiation and using an active compari-

son design, this design also safeguards against immortal-time bias.53,54

Further, appropriately selected active comparators minimize concerns

related to confounding as well as differential outcome misclassifica-

tion.

Figure 4 graphically summarizes the general study design. We will

design a series of non-interventional cohort studies using this design

to assess the comparative risk of ADRD after exposure to medications

of interest versus a pre-specified reference treatment (unique to each

analysis; Table 1). Patients will enter the cohort on a date of recorded

use of either the treatment of interest or the reference treatment iden-

tified from Medicare claims or CPRD records and this date will be

defined as the “cohort entry date.” Exposure tomedications of interest

will be defined based on dispensing records fromMedicare claims and

prescription orders recorded in CPRD.23 Both data sources provide

information regarding the date of prescription and quantity of medi-

cations, which will allow us to identify switching of treatments as well

as discontinuation.

Patients not continuously contributing data to Medicare or CPRD

over the 365 days before cohort entry will be excluded. This exclusion

will ensure availability of sufficient data regarding health-care use to

assess other inclusion and exclusion criteria as well as covariate infor-

mation for all included patients. Next, we will focus on new users of

the treatments of interest or the reference treatments by excluding

patients with any record of these treatments in the 365 days before

the cohort entry date. Further, we will also exclude patients with diag-

nosis codes indicating ADRD or medications for treatment of ADRD

any time prior to the cohort entry date so as to solely enroll patients

at risk of new-onset ADRD. Finally, we will use analysis-specific inclu-

sion criteria based on the primary indication for the treatment of inter-

est and the reference treatment. For instance, if the treatment of inter-

est and reference treatment are used for rheumatoid arthritis, we will

only include patients with recorded rheumatoid arthritis diagnoses in

the 365 days before the cohort entry date. Covariates of interest will

also bemeasured in the 365 days before the cohort entry date.

The outcome of ADRD will be defined in this study based on one

inpatient or two outpatient claims using International Classification

of Diseases (ICD) codes from Medicare claims and corresponding

Read codes from CPRD. When validated against a structured in-home

dementia assessment, Medicare claims-based dementia identification

is reported to have a positive predictive value (PPV) in the range of

65%to78%.55 CorrespondingReadcode-baseddefinitions fromCPRD

that have been validated against information obtained from general

practitioner questionnaireswithPPVs ranging from74% to100%.56–59

Of note, these measurement characteristics are for defining prevalent

ADRD; their performance in identifying new-onset ADRD, which is the

outcome of interest in most pharmacoepidemiologic investigations, is

unknown and presumably weaker.

6.2 Special design modifications to address
specific bias threats

To accommodate various uncertainties involved in pharmacoepidemio-

logic investigations focused on ADRD risk, we will use four alternative

analyses (Figure 5) with equal priority:
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F IGURE 4 General study design for pharmacoepidemiologic analyses. Non-interventional active comparator new-user cohort study design is
pictured. Patients enter the cohort on a date ("cohort entry date") of recorded use of either the treatment of interest or the reference treatment
without previous use of thesemedications in a year prior. Patients with diagnosis codes indicating Alzheimer’s disease and related dementia
(ADRD) or medications for treatment of ADRD any time prior to the cohort entry date are excluded to solely enroll patients at risk of new-onset
ADRD. Finally, analysis-specific inclusion criteria based on the primary indication for the treatment of interest and the reference treatment are
implemented. For instance, if the treatment of interest and reference treatment are used for rheumatoid arthritis, wewill only include patients
with recorded rheumatoid arthritis diagnoses in the 365 days before the cohort entry date. Covariates of interest will also bemeasured in the 365
days before the cohort entry date. Outcome assessment is conducted after cohort entry date

6.2.1 Analysis 1: “As-treated” follow-up approach

In the first analysis, follow-up will start on the day after the cohort

entry date and censoring at follow-up will occur at treatment discon-

tinuation or switch (to comparator treatment) to provide estimates

of “on treatment” risk of newly occurring ADRD for patients initiat-

ing the exposure of interest.51 This approach minimizes the potential

bias due to exposed person-timemisclassification.Wewill incorporate

a 90-day “grace period” after the end of the expected days-supply of

the most recently filled prescription to define the treatment discon-

tinuation date to accommodate the possibility that patients may not

immediately re-fill their prescriptions due to availability of leftover
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F IGURE 5 Specific design considerations to address unique challenges in using observational health-care data sources to evaluate
associations betweenmedication use and the risk of Alzheimer’s disease and related dementia (ADRD). Analysis 1 uses an “As-treated” follow-up
approach, in which follow-up will start on the day after the cohort entry date and censoring at follow-upwill occur at treatment discontinuation or
switch (to comparator treatment) to provide estimates of “on treatment” risk of newly occurring ADRD for patients initiating the exposure of
interest. Analysis 2 uses an “As-started” follow-up approach incorporating a 6-month “induction” period, in which patients will be followed for a
maximum of 3 years regardless of subsequent treatment changes or discontinuation, similar to an intent-to-treat approach in randomized trials.
Analysis 3 incorporates a 6-month “symptoms to diagnosis” period in which outcome date assigned is 6months before the first recorded ADRD
date to incorporate a “symptoms to diagnosis” period to address the potential bias due tomisclassification of ADRD onset. Analysis 4 uses an
alternative outcome definition including at least one diagnosis code combinedwith a prescription for a symptomatic treatment (donepezil,
galantamine, rivastigmine, andmemantine) to improve the specificity of outcome definition

medications from prior prescriptions as a result of suboptimal adher-

ence.

6.2.2 Analysis 2: “As-started” follow-up approach
incorporating a 6-month “induction” period

While the “as treated” approach described in Analysis 1 addresses

the issue of potential misclassification of exposed person-time, it is

vulnerable to bias due to reverse causation. Reverse causation can

manifest in two ways in “as-treated” analyses. First, if a treatment

is preferentially started after problems with memory occurred, but

before an ADRD diagnosis is recorded in the EHRs, then beginning

follow-up immediately after treatment initiation can lead to bias due

to reverse causation. Second, if patients discontinue or if physicians

de-prescribe the treatments under consideration because of memory

problems associated with ADRD, but the diagnosis is not recorded in

the EHRs until after the end of follow-up due to treatment-related

censoring, this informative censoring may also introduce bias due

to reverse causation because events occurring in the period after

censoring are not attributed to the treatment.

To address these challenges, we will conduct an “as-started” anal-

ysis, in which patients will be followed for a maximum of 3 years

regardless of subsequent treatment changes or discontinuation, sim-

ilar to an intent-to-treat approach in RCTs. By not censoring on

treatment changes, this design avoids reverse causation bias due to

informative censoring. We will also incorporate a 6-month induction

period after the cohort entry date before beginning the follow-up

for ADRD. Incorporating a 6-month induction period achieves two

objectives. First, by excluding outcome events occurring in this period,

this design avoids potential reverse causation bias due to preferen-

tial treatment initiation related to unrecorded cognitive impairment.

Second, incorporating such an induction period in an “as-started”

analysis requires patients to be on treatment for at least 6 months

before follow-up begins, which limits misclassification of unexposed

person-time as exposed because patients who discontinue treat-

ment after just one or two prescriptions do not contribute to the

analysis.

6.2.3 Analysis 3: Incorporating a 6-month
“symptoms to diagnosis” period

In Analysis 3, we will assign an outcome date that is 6 months before

the first recordedADRDdate to incorporate a “symptoms to diagnosis”

period to address the potential bias due to misclassification of ADRD

onset. For those who are censored without an event, we will move

the censoring date 6 months prior to incorporate the possibility that

these patients may have symptoms of ADRD but no diagnosis in this

period.
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TABLE 2 General covariates for confounding adjustment in pharmacoepidemiologic investigations of Alzheimer’s disease and related
dementias

Category Potential confounders

Demographics Age, sex, race, region, calendar year of index date

Dementia risk factorsa61–63 Diabetes, obesity, hyperlipidemia, hypertension, stroke, coronary artery disease, depression,

anxiety, bipolar disorder, schizophrenia

Lifestyle factors andmarkers for

healthy behavior

Smoking, drug abuse, alcohol abuse, mammography, colonoscopy, fecal occult blood test,

influenza vaccination, pneumococcal vaccination, herpes zoster vaccination, BMD test

Health-care usemeasures Number of distinct generic agents used, number of emergency room visits, number of

hospitalizations, number of physician office visits

Frailty markers A composite frailty score,67,68 cancer, osteoporosis, fractures, falls, use of supplemental oxygen,

comorbidity score81,82

Socioeconomic status (SES) Area-level SES information covering occupation, income, wealth, education, and housing based

on linking U.S. Census data with claims on zip-code level inMedicare70; Medicare-Medicaid

dual eligibility; English Index ofMultiple Deprivation for CPRD

aDiagnosis codes andmedications commonly used for these conditionswill be identified (eg, benzodiazepine for anxiety, insulin and oral hypoglycemic agents

for diabetes).

Abbreviations: BMD, bonemineral density; CPRD, Clinical Practice Research Datalink.

6.2.4 Analysis 4: Alternative outcome definition

To reduce the possibility of bias due to outcome misclassification, in

Analysis 4, we will use an alternative definition for incident ADRD

including at least one diagnosis code combined with a prescription for

a symptomatic treatment (donepezil, galantamine, rivastigmine, and

memantine). Use of medication records to identify dementia has been

reported to result in>95%PPV in a previous validation study.60

6.3 Rigorous confounding adjustment

We will identify a large number of covariates for confounding adjust-

ment as summarized in Table 2. This will include patient demographic

factors such as age, sex, and race. Pre-exposure risk factors for

dementia identified in previous studies such as diabetes, stroke, and

depression,61–63 will be included in the risk adjustment to ensure a

similar baseline risk for dementia between the treatment and refer-

ence groups. We will also adjust for lifestyle factors such as smoking

as well as use of preventive services, including screening mammogra-

phy and vaccinations, to account for healthy-user effects.64 We would

expect certain lifestyle factors to be more completely recorded within

CPRD.65 Further, we will create measures for use of various health-

care servicesbefore cohort entry includingnumberofdistinct prescrip-

tions filled, number of emergency department visits, hospitalizations,

and number of physician office visits to account for patients’ general

health and contact with the health-care system to minimize the possi-

bility of differential surveillance.66 Frailty indicators based on compos-

ite scoring schemes67,68 as well as factors such as falls and fractures

will be considered for inclusion to address potential confounding by

frailty.

Confounding by socioeconomic status is important in studies

focused on ADRD risk. Detailed information regarding patients’

socioeconomic factors is not recorded in administrative claims or EHR

data. Therefore, neighborhood socioeconomic characteristics will be

identified at the zip code level from the American Community Survey

(ACS) data collected by the U.S. Census Bureau and linked toMedicare

claims.69 We will measure and adjust for the following characteristics:

(1) percentage of unemployment, (2) percentage below the poverty

line, (3) percentage of persons ages >25 years with < 12th-grade edu-

cation, (4) percentage of persons ages >25 years with at least 4 years

of college, (5) median value of owner-occupied homes, and (6) median

household income.70 Additionally, we will also use dual Medicaid-

Medicare eligibility as a proxy for lower socioeconomic status among

the Medicare beneficiaries. For CPRD, neighborhood socioeconomic

characteristics will be identified using the English Index of Multi-

ple Deprivation (IMD).71 IMD is a composite measure derived from

indicators covering several domains of material deprivation, includ-

ing income, employment, education and skills, health, housing, crime,

access to services, and living environment. IMD is available for linkage

to CPRDGOLD.72

In addition to these factors that will be considered for inclusion

in all analyses, to ensure similar disease severity at baseline between

treatment groups, wewill consider additional factors in the adjustment

set for each analysis based on the primary indication of the repurpos-

ing candidate drug and the reference treatment. For instance, when

the repurposing candidate is used for rheumatoid arthritis, rheumatoid

arthritis disease activity-related factors such as steroid use and steroid

dose will be considered.

After defining these covariates, we will use a propensity score

(PS)73–based approach to account for measured confounding in

this study. The PS will be calculated as the predicted probability of

initiating the exposure of interest (ie, the repurposing candidate)

versus the reference drug conditional on baseline covariates using

multivariable logistic regression constructed separately in each data

source. On average, patients with similar PSs have similar distribution

of potential confounders used to estimate the PS. Therefore, analyses

conditioned on the PS provide effect estimates that are free from
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measured confounding. For all our analyses, initiators of each exposure

of interest will be matched with initiators of the reference exposure

based on their PS within each data source.74 Pair matching will be con-

ducted using a nearest-neighbor algorithm, which seeks to minimize

the distance between propensity scores in each pair of treated and

reference patients,75 and a caliper of 0.025 on the natural scale of the

PS will be used to ensure similarity between the matched patients.76

We will use multiple diagnostics for evaluating the adequacy of PS

matching to control for confounding. First, we will evaluate the PS

distributional overlap between two groups to ensure comparability of

these groups.77 In the case of substantial non-overlap, we will seek to

modify the design by either considering a different reference exposure

group or by considering additional exclusion criteria to make the

study populations more homogenous.78 Next, we will assess balance

in each individual covariate between two treatment groups using

standardized differences and will assess the post-matching c-statistic

as a global test of balance.79 In the case of residual imbalances, we

will attempt to reconstruct the PS model with higher-order terms or

interactions involving the imbalanced covariates and achieve balance.

6.4 Outcome analysis

Incidence rates for the outcome of ADRD will be estimated for the

treatment and reference groups for each comparison separately in

each database before and after PS matching. The competing risk of

death could be of concern for the current set of analyses if mortality

is frequent among patients included in the cohort and if differences

in the risk of mortality between treatment and reference groups are

substantial. In the PS-matched sample, we will use cause-specific

hazard models80 to provide hazard ratios averaged over the entire

follow-up period as well as interval specific hazard ratios (1, 2, and 3

years) for the association between the treatment of interest and risk

of ADRD after considering all-cause mortality as a competing event.

Pre-specified subgroup analyses will be conducted based on age, sex,

and baseline cardiovascular disease. Each of these analyses will be

conducted separately in Medicare and CPRD database and will be

pooled using random effects meta-analytic methods. Heterogeneity

in estimates will be evaluated using I2 statistics and pooled estimates

will be reported in the absence of substantial heterogeneity (no

heterogeneity defined as I2<40%).

7 COMMENT

The DREAM study aims to identify drug repurposing candidates for

ADRD based on metabolic abnormalities that may precede or inter-

act with the accumulation of neuropathology leading to the eventual

expression of clinical symptoms. Integration of a hypothesis genera-

tion step based on metabolomics and transcriptomics analyses11–14

and a subsequent hypothesis refinement step based on rigorous

pharmacoepidemiologic analyses of two population-based health-care

databases is a unique strength of this study.

Population-based pharmacoepidemiologic analyses designed with

robust causal inference principles will serve a critical role in priori-

tizing candidates for drug repurposing. The approach described here

addresses key concerns observed in previous studies thatmay have led

to misleading findings. Multiple design variations in the DREAM study

as described above address a range of concerns and will together pro-

vide a robust assessment of the likely treatment effects.Whilewehope

to identify a potential signal of treatment benefit, a convincing demon-

stration of no treatment benefit would be a useful addition to the liter-

ature to preventwasteful resource useon future interventional studies

testing unfounded hypotheses.

In summary, for diseases with a high need for disease modify-

ing pharmacologic treatment such as ADRD, finding potential med-

ication candidates among already marketed drugs for other indica-

tions remains a goal worthy of pursuing. The DREAM study repre-

sents a one-of-a-kind initiative to integrate “omics”-based drug discov-

ery approaches with analyses of patient-level data from large longitu-

dinal health-care databases using state-of-the-art pharmacoepidemi-

ologic methods to facilitate identification of drug repurposing candi-

dates for ADRD.
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