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Computational modeling demonstrates that
glioblastoma cells can survive spatial
environmental challenges through exploratory
adaptation

Orieta Celiku® !, Mark R. Gilbert! & Orit Lavi?*

Glioblastoma (GBM) is an aggressive type of brain cancer with remarkable cell migration and
adaptation capabilities. Exploratory adaptation—utilization of random changes in gene reg-
ulation for adaptive benefits—was recently proposed as the process enabling organisms to
survive unforeseen conditions. We investigate whether exploratory adaption explains how
GBM cells from different anatomic regions of the tumor cope with micro-environmental
pressures. We introduce new notions of phenotype and phenotype distance, and determine
probable spatial-phenotypic trajectories based on patient data. While some cell phenotypes
are inherently plastic, others are intrinsically rigid with respect to phenotypic transitions. We
demonstrate that stochastic exploration of the regulatory network structure confers benefits
through enhanced adaptive capacity in new environments. Interestingly, even with explora-
tory capacity, phenotypic paths are constrained to pass through specific, spatial-phenotypic
ranges. This work has important implications for understanding how such adaptation con-
tributes to the recurrence dynamics of GBM and other solid tumors.
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lioblastoma (GBM) is the most lethal adult primary brain

cancer and remains incurable despite decades of

research!2. Despite the use of multi-modality therapeutic
approaches, most GBM patients experience recurrence within
6-9 months of primary treatment; over 80% of the first recur-
rences occur at the original tumor site3. Recurrence requires three
main steps: (1) existence of remnant tumor cells capable of sur-
viving outside of the resected tumor area, 2) migration to distant
locations or adaptation to new environments, and (3) formation
of a new tumor by transitioning back to a phenotype with similar
features to the primary tumor (such as increased growth rate and
reduced motility). The ability of GBM cells to quickly undergo
such transformation in the complex brain environment implies
that these cells can adapt to conditions and stresses that they have
not been pre-programed to handle; it is, therefore, reasonable to
hypothesize that GBM cells could follow a collective process of
adaptation regardless of their initial molecular state or physical
location. An understanding of the fundamental processes of such
biological adaptation and disruption of any of the involved steps
may lead to a robust treatment approach that reduces the like-
lihood of patient relapse. In this work, we study these funda-
mental components of recurrence by studying the critical
processes of phenotype trajectory, adaptation, phenotype transi-
tion, and reversal from one phenotype to another.

Two recent research developments encouraged us to consider
the question of adaptation of spreading GBM cells. First, the
Braun and Brenner groups®® proposed an intriguing theory of
exploratory adaption, which addresses the fundamental question
of how organisms deal with unforeseen environments as a generic
process. Braun et al.>% subjected yeast and fruit flies to a series of
novel challenges and observed a wide spectrum of adaptive
responses, demonstrating that there is no pre-evolved mechanism
to handling novel challenges; by comparison, known challenges
were met with more uniform responses. They concluded that
surviving novel challenges requires exploratory changes in gene
regulation of individual organisms®. Brenner et al.# recently
developed a theoretical model of exploratory adaptation that
prescribes how small random perturbations to the gene-
regulatory network could be propagated to changes in the cel-
lular phenotype, and demonstrated the feasibility of this process
for networks with certain topological characteristics. Second, the
Ivy Glioblastoma Atlas Project (Ivy GAP) has recently con-
structed a transcriptional atlas of GBM that aligns tumor ana-
tomical regions with histopathologic features!?.

We sought to understand how and when GBM cells use their
intrinsic versus exploratory capacity to adapt to their environ-
ment, and how these processes can explain the fundamental
dynamics of recurrence. We extended the exploratory adaptation
model, including with notions of gradual adaptation. We studied
exploratory adaptation in GBM using patient-derived tran-
scriptomic profiles of spatially separated anatomical tumor
structures from Ivy GAP. We introduced new notions of phe-
notype based on functional pathway activity (which reflects the
degree of coordinated up or downregulation of the member
genes’ expression), and defined a measure of phenotype differ-
ences which we call phenotype distance. We identified three
spatial trajectories that dominate the phenotypic diversity of the
GBM locations. We investigated whether stochastic changes to
the regulatory expression network could explain the cells’ ability
to adapt from the phenotype of one location to that of another
along the identified trajectories. For example, we examined how
cells from the tumor core (CT) can adapt to resemble those of the
leading edge (LE) (Fig. la). We developed an optimization
approach that models how exploratory cells approaching a target
phenotype adapted to its environment may reduce their
exploration and thus converge to that phenotype. We simulated

the GBM cellular responses to familiar and new environmental
stimuli and showed, for example, that several possible continuous
phenotype trajectories could be used by cells to spread from CT
to LE. We estimated the distributions of the pathway activity over
time, as well as a coordinated global measure of the cell’s phe-
notype changes. This enabled us to observe instances of con-
vergence: for example, we observed pathways whose activity
distributions transitioned from multimodal to unimodal dis-
tributions overlapping with target distributions. We next inves-
tigated whether the process of adaptation is reversible (for
example, whether LE cells can revert to resembling those of CT),
and whether phenotypically-distinct spatially intermediate states
(such as infiltrating tumor (IT) cells) are necessary during this
transition. Finally, we propose hindering the adaptation process
through targeting of intermediate phenotypes as a treatment
roadmap.

Results

Framing the problem of exploratory adaptation in GBM cells.
We framed this research effort by addressing the following
questions. Can GBM cells follow the exploratory adaptation
process? What are the circumstances under which such
exploration might happen? To what extent can phenotypic
diversity of distinct tumoral regions be the result of such adap-
tation process? To address these questions, we introduced our
definitions of phenotype, phenotype distance, and a dynamical
model that simulates the changes a GBM cell may undergo to
adapt from an initial phenotype to target phenotypes. Using this
framework and patient-derived GBM data we carried out the
following steps. First, we estimated a set of genes relevant to
GBM, which were used to calculate location-specific phenotypes,
and to estimate the distances between the phenotypes. We con-
structed a phenotype network with spatial locations as nodes and
edges weighted by the estimated phenotype distances (Fig. la—c).
Second, we inferred a set of important spatial phenotypic tra-
jectories based on the shortest phenotype distance between the
nodes of the network (Fig. 1d-i). Third, we developed a dynamic
model to simulate the process of exploratory adaptation in GBM
along the spatial trajectories (Fig. 2). Fourth, we used this model
to estimate the intrinsic ability of each location to undergo
spontaneous phenotypic changes over time. This serves as our
control or expected behavior when no novel environment chal-
lenges are present (Fig. 3a). Fifth, we simulated how exploratory
adaptation, through its effect on the regulatory network, impacts
location phenotypes and their convergence to new phenotypes
(Fig. 3b). Sixth, we explored whether phenotypic changes
achieved through exploratory adaption are reversible (Fig. 4a).
Seventh, we estimated possible intermediate phenotypes that such
reversal might take (Fig. 4b-d). Eighth, we proposed a treatment
roadmap that could mitigate the acquired plasticity (see Supple-
mentary Data 2). Finally, we assessed the location-based pheno-
types in terms of their immune signatures.

Initial data exploration. Directly addressing questions related to
spatial adaptation processes would require time-series molecular
profiles of GBM, but to our knowledge no such data are publicly
available. Instead, we propose using data sampled from distinct
regions within the same tumor to represent different snapshots of
adaptation. The Ivy GAP!? dataset contains transcriptomic pro-
files of distinct anatomic regions within the same patient tumor
samples and is thus well suited to our task. First, we extracted a
focused list of GBM-related genes by selecting the genes differ-
entially expressed between low-grade gliomas (LGG) and GBM
and high expression variability in the combined glioma cohort
(selecting the top 10 percentile of variation) profiled by The
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Fig. 1 GBM spatial phenotypic trajectories. Initial analysis of the static data was conducted to assess spatial phenotypic trajectories. Pathways and global
distances were calculated for every pair of locations based on population distributions. a lllustration of sampled locations from lvy GAP datasets, including
gene expression data from 41 patients taken from the following anatomic regions: cellular tumor (CT), leading edge (LE), infiltrating tumor (IT),
pseudopalisading region around necrosis (CTpan), and microvascular proliferation (CTmvp). Arrows demonstrate the potential spatial tumor spread
patterns that we focused on throughout this study. b For each sample, a molecular network was constructed based on our GBM focused gene list, relevant
TFs, gene expression, and pathway activities. € A sample's phenotype is defined to be its vector of pathway activities. For each location, a pathway activity
distribution was created based on the pathway activities of all samples from that location. The location’s phenotype was thus defined as a vector of
pathway activities distributions. d-g Differences between phenotypes were estimated in several ways: d clustering groups of samples based on their
pathway activity patterns (see Supplementary Fig. 1 for more details), e data reduction of pathway activities using BGA. The plot visualizes the spatial
trajectories using patterns of pathway activities of all samples, f pathway distributions distances were calculated between every pair of locations.

g integrating all those pathway distributions distances between every pair of locations gives a reduced value of global distances, plotted as histogram.
h, i Resulting phenotype distances and phenotype spatial trajectories. This complex information can be depicted as a network, where nodes are location’s
phenotypes, and edges are distances between phenotypes. The edges’ weights can be estimated in three ways: first (section H), mean of the pathways
distribution distances (PD), given as the first value. Second (section |), number of differential pathway activities (DA), given as the second value in
brackets, and third, global distances, given in Supplementary Data 1. Based on these three values, shortest paths are as follow: (CT, CTpan), (CT,IT), (CT,
CTmvp), (CTpan,IT), and (IT, LE), are marked with dashed lines. All other larger distances are marked with solid lines. PD and DA are strongly correlated

across all locations (see Supplementary Data 1 and Supplementary Fig. 1 for a complete list of p-values and correlation coefficients).

Cancer Genome Atlas (TCGA)!1-12, The list was expanded to
include any transcription factors (TFs) that regulate these GBM-
focused genes. This list contains ~1/3 of the genes that are suf-
ficiently expressed in the Ivy-GAP cohort. We assessed the
overlap of our gene list with other glioma related sets by selecting
the (25) glioma related gene sets curated as part of the Molecular
Signatures Database (MSigDB)!3. For each of these MSigDB gene
sets we examined the percentage of expressed genes that overlap
with our selected gene list. The majority of the glioma relevant
gene sets are well represented in our selected list (see Supple-
mentary Data 1).

Using TF-gene regulatory information from RegNetwork!4 we
constructed a network with 4121 nodes (our focused genes) and

78,686 directed edges (average degree of 19.09). We then used the
Ivy GAP dataset to assess the exploratory adaptation hypothesis
of GBM cells spreading along different spatial trajectories. The
dataset includes gene expression data from 41 patients taken from
the following anatomic regions (with well-characterized histo-
pathologic features) present in GBM: cellular tumor (CT), leading
edge (LE), infiltrating tumor (IT), pseudopalisading region
around necrosis (CTpan), and microvascular proliferation
(CTmvp) (see Fig. la-b, Supplementary Data 1). All patients
received standard therapy: resection, radiation, and chemother-
apy. In agreement with the analysis of Puchalski et al.lo,
clustering of the samples based on their gene expression profiles
reveals location-specific differences (see Supplementary Fig. 1).
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Exploratory adaptation model for GBM
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Fig. 2 Flow chart of single-sample dynamics model. At every time step
t, the model performs the following steps: (1) the vector of gene expression
(x(1)) is updated based using the gene regulatory network, with edges
weighted by correlations between the expression of the nodes genes;

(2) the phenotype (y(t)) is calculated as the pathway activity vector based
on the gene expressions x(1); (3) the minimum distance between the
current sample’s phenotype and the 10-90th percentile interval of target's
phenotype distribution is estimated for each pathway; (4) If the distance is
0, that is, the sample’s phenotype is within the target's phenotype
distribution, the exploratory capacity, D(t), decreases relative to its
previous time value. This process is repeated until the phenotype converges
to its target, or the simulation is stopped at t =1000.

Q

Intrinsic model (dJ = 0) Exploratory model (dJ>0)

B CELL B CELL

RECEPTOR RECEPTOR

SIGNALING SIGNALING
PATHWAY PATHWAY

DNA DNA
REPLICATION REPLICATION

. : " RGN AR

Gene expression
per sample (x(t))

50
0 250 500 750 10000 250 500 750 1000 o

250 500

750 10000 250 500 750 1000

Pathway activity
per sample (y(t))

Location

|
oo

Time

A\ A\

A
=
Lt

>

Pathway activity per population (distribution)

GBM spatial phenotypic trajectories. We constructed a set of
possible spatial trajectories using the shortest phenotype distance.
We define a phenotype at the functional activity level. We define
a sample’s phenotype to be the vector of its pathway activities; we
use KEGG ontology!®> for pathway definitions (n=182) and
compute the pathway activities based on the expression of the
focused gene list (Fig. 1c). We define a location’s phenotype to be
the vector of pathway activity distributions of all the samples
from that location (Fig. 1d-g).

Comparison of gene-expression based clustering to pathway-
activity based clustering (see Supplementary Fig. 1) reveals that
location-specific differences are robustly captured at the pathway-
activity level: distinct patterns of activity can be observed for each
location. These differences are, however, more muted than at the
gene-level, reflecting that pathway activities are less sensitive to
perturbation of individual genes and the redundancy and
compensatory capabilities of cells. Distinct patterns of variation
in location phenotypes are also apparent: CT and IT show higher
variance in the activity distributions of a number of pathways,
and similar patterns of variations compared to the other locations
(see Supplementary Fig. 1).

To quantify phenotypic changes due to adaptation we defined
two measures of phenotype distance: Pathway Distribution
Distance (PDD) (defined as the vector of distances between
individual pathway distributions and measured using Euclidean
distance), and a coordinated Global Distribution Distance (GDD)
(defined as the summation of PDD between a pair of phenotypes)
(Fig. 1d-g, Supplementary Data 1). We assessed the statistical
significance of GDD wusing permutation tests (see methods,
Supplementary Data 1). We also estimated the significance of
pathway activity variations between two locations using unpaired,
two-sided ¢-test (BH-adjusted p-values) and found good correla-
tion with the PDD values (Pearson’s coefficient 0.5-0.7, see
Supplementary Data 1 and Supplementary Fig. 1).
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Fig. 3 Cellular response to known and new environmental stimuli. a An example depicting the phenotype transition CT—CTmvp: first, for a given sample
changes for two example pathways (DNA replication and B cell receptor signaling pathways) and their corresponding genes were plotted over time. The
lower panel show the activity distributions of the two example pathways obtained from the set of samples from each location. Simulation showed that
the exploratory behaviors of both pathways differ from the intrinsic behaviors, therefore indicating that new adaptive pathway activities are due to the
exploratory ability. b Following the calculations in sub-plot A, global distance per sample, together with the number of converged pathways were calculated
over time. Light blue color represents individual samples' temporal phenotype distances, and the dark blue line represents the mean value of that global
distance. Initial D (t = 0) was set to 0.1, and the distance (t =1000) reached 13.83, while number of converged pathways was reached to 33.4% on that
time step. ¢ Simulation results of the updated location-based phenotypes were re-calculated to include exploratory capacity (dJ > 0). Black color with a plus
sign denote weights that are different from those of the intrinsic behaviors (dJ = 0) (intrinsic behavior is marked with gray lines).
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Fig. 4 Properties of the simulated phenotype dynamics. a The reverse process of transitioning between phenotypes was simulated for each edge of the
location-based phenotype network from Fig. 3 (as seen by the reversal of the directions of the edges of the network in Fig. 4 compared to those of the
network in Fig. 3). The ratio of global distance differences, and the ratio of number of converged pathways in square brackets, between the two directions
are shown as weights. b-d The importance of spatially intermediate phenotype states. Focusing on the trajectory of CT—IT—LE, and the reverse trajectory,
we examined three characteristics of the resulting intermediate phenotypes and the reversal process: b the ratios of the global distances between the two
paths show that cells reverting their trajectory need smaller changes in phenotype to get back from LE to CT, compared to reaching LE from CT using the
original path: they are closer to the target phenotype when reverting (11.88 distance) compared to the original end point (19.92); ¢ vector fields of the
simulated phenotype dynamics were plotted using PCA; the arrow origins are the starting phenotypes (t = 0) and the end points are the simulated

phenotypes (t =1000). The color of the dots corresponds to the starting phenotype location, whereas the colors of the arrows depict the target phenotype;
for example, red arrows that start from a yellow dot are simulation results of a case where the initial condition is LE, and the target phenotype is CT; D) the

angles between the original paths of CT— LE and CT—IT, and angles between the reversal paths LE-CT and LE—=IT are narrow, which indicates a

constrained sphenotype exploration space.

The GDD, PDD, and differential pathway activity reveal a
spatial pattern with CT in its center, and LE as the farthest
phenotype. CT’s heterogeneous pathway activities partially over-
lap with those of IT, CTpan, and CTmvp. The spatial
organization is also apparent in a Between Group Analysis
(BGA) plot (Fig. 1d-g). The shortest phenotype distance (using
GDD, PDD, and number of differentially active pathways)
exposes three well-defined spatial trajectories, two of which relate
to oxygen supply (Fig. 1h-i): (1) CT— CTpan (moving toward
hypoxic regions), (2) CT— CTmvp (moving toward oxygen-rich
regions), and (3) CT— IT— LE (spreading throughout the
brain). The pathway activity BGA plot displays overlap between
locations, suggesting a continuous transition along the spatial
trajectories; the overlap is less visible in the gene-level BGA (see
Supplementary Fig. 1). Lastly, we observed that the span of
trajectory of CT— IT— LE is the largest (in both values)
compared to the oxygen related trajectories (CT— CTpan and
CT— CTmvp). Moreover, locations CT, IT, and LE are closer to
CTpan than to CTmvp.

The static snapshot of the system shows that smaller
phenotypic changes are required for CT cells to adapt to the
conditions in the locations of CTpan (hypoxic regions) or IT
(infiltrating) whereas adapting to CTmvp area (oxygen-rich
regions) requires larger changes. CT cells that have adapted to an
IT area require smaller additional changes to further adapt to the

LE area. Yet, such additional changes create a larger step between
CT and LE; similarly, for CTpan and LE or CTmvp and LE.

Exploratory adaptation model for GBM. We next studied the
dynamical process of adaptation along the identified spatial tra-
jectories by building on the theoretical model proposed by
Brenner et al.%. The theory of exploratory adaption stipulates that
adaptation is achieved through small random changes in the gene
regulatory network that eventually give rise to a range of new
steady phenotype states. We investigated how these concepts
apply to GBM.

Microenvironment stimuli are well characterized to be non-
uniformly distributed and gradient-based!®!”. In a 3D tumor
mass, a gradient of oxygen or hypoxia is established by the
combined effects of cellular metabolism and oxygen diffusion;
this gradient-based nature of the microenvironment stimuli, is in
fact, a major barrier to recapitulating the in vivo conditions in
in vitro models!8-20, The Blood Brain Barrier (BBB)/Blood
Tumor Barrier (BTB) introduce further osmotic gradients.
Therefore, uniform response may not be a biologically-relevant
assumption for GBM. Moreover, different stressors (nutrient
depletion/hypoxia/osmotic pressure) may perturb different
mechanisms and pathways, making it impossible to fully capture
phenotypic changes with a single global compression value. We
therefore coupled global measurements with more detailed
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pathway activity level changes. We incorporated our definition of
pathway-driven phenotype and introduced a notion of steady
state convergence-a sustained phenotypic state that the cells may
reach through exploration (Fig. 2).

We developed a biased exploratory adaptation approach that
models how reaching phenotypic states that are compatible with
the novel environment may reduce the biological pressure to
continue exploration. We model a sample’s exploratory process as
being driven by stochastic changes in the regulatory network with
a scale parameter (D ~ N(0, D_max)); the magnitude of the
change may decrease over time (D_max > D(t)) as a function of
the pathway vector distance and associated convergence criteria.
At each time step, an exploring sample’s phenotype is computed
as the vector of its pathway activities; a pathway whose activity is
in the 10-90% interval of the target pathway distribution is
considered to have converged. The magnitude of the stochastic
perturbation to the regulatory edges targeting genes belonging
only to converged pathways is from then on decreased (which is
achieved by reducing D(t)). See methods for details.

Established responses to familiar environmental stimuli. Before
considering adaptation to novel challenges we asked how cells
behave in a familiar local environment. Establishing this baseline
behavior enables estimating how responses to new stimuli differ
from this pre-evolved, intrinsic behavior, which we consider the
control behavior. Starting from the static location-based pheno-
types and our GBM model, we estimated the expected cellular
phenotype over time in a fixed homogeneous environment, in
which the strength of regulatory edges (J) is constant (dj = 0). In
this setting, the cell acts based on a pre-evolved molecular system
with conserved feedback loops to execute a set of behaviors under
no external stress conditions, which is modeled as lack of sto-
chastic perturbations to the regulatory network. The simulation
predicts that cells in all locations can intrinsically evolve their
phenotypes over time to phenotypes with similar expected global
distance from their initial phenotypes. The location phenotypes
can be ordered from the most intrinsically rigid to the most
intrinsically-plastic as follows: CTpan, IT, CT, LE, and CTmvp
(we represent the degree of plasticity as the width of the aura in
Supplementary Data 2, Supplementary Fig. 2, and illustration in
Fig. 3¢c). Thus, CTpan displays the smallest phenotypic changes
from its initial phenotype until reaching a stable phenotype,
whereas CTmvp displays the largest intrinsic changes. All dif-
ferences between initial and final time point intrinsic phenotypes
are statistically significant (p-values were estimated using per-
mutation tests of GDD; see methods and Supplementary Data 2).
By embedding and visualizing these simulated data over time
using Principal Component Analysis (PCA) and BGA we
observed that the three main trajectories are preserved under
familiar conditions (Supplementary Fig. 1). We also analyzed the
differential activation of the pathways due to the intrinsic beha-
viors (by calculating PDD and unpaired, two-sided ¢-test, with
strong agreement between the two Pearson’s coefficients ~0.7)
(see Supplementary Data 2, Supplementary Fig. 2). For example,
pathways that undergo changes in activity due to intrinsic net-
work dynamics are: TGF-beta signaling for all locations except
LE, JAK-STAT signaling for LE and CTmvp, T cell receptor
signaling for all locations except CT, and WNT signaling for all
locations.

Additionally, by simulating the intrinsic phenotype at con-
vergence (with the phenotype remaining sData after 1000 time
points), we estimated the phenotype distance from the simulated
phenotype to other location phenotypes as targets. Our results
(see weighted network in Supplementary Data 2) show that
several directions are intrinsically closer in phenotype compared

to others (from closest to farthest): CT— IT, CT— CTpan, and
CTpan— IT, whereas the largest intrinsic distance is that between
CTmvp— LE.

Novel responses to new environmental stimuli. The physical
distance and the differences in environmental stress between
locations subject cells to both known and unforeseen stimuli. We
investigated whether our model could explain the dynamical
process of transitioning between two phenotypes along the spatial
trajectories. For a given location pair, for example CT—CTmvp,
we simulated for each sample s from CT, the phenotypes that can
be obtained through exploratory adaption over a given time
interval [initial, final]. We computed the distance of s’s phenotype
at time point final from CTmvp (as the sum of the distances of
the pathway activities of s from the 10-90% percentile of the
target CTmpv pathway distributions; see methods). The degree to
which the samples of a location reduced their distance to their
target phenotype measures the degree to which exploratory
adaption is responsible for the differences in phenotypes. We
compared these distances with those obtained from simulation of
intrinsic behavior (dj=0), and when these distances were not
smaller than those obtained in the intrinsic case, we concluded
that exploratory adaption is not necessary to explain those phe-
notype differences.

These results are depicted in Fig. 3c. Transitions that require
some degree of exploratory adaption include: CT—LE,
CT—CTpan, CTpan—LE, CT—CTmvp, CTmvp—LE,
CTmvp—IT. Focusing on the CT—CTmvp case, we examined
in detail two GBM relevant pathways, DNA replication and B cell
receptor signaling; these are illustrated in Fig. 3a-b and in
animations in Supplementary Movie 1 (intrinsic animation) and
Supplementary Movie 2 (exploratory adaptation animation).
Simulation results showed that both pathways behave differently
due to exploratory adaption compared to the intrinsic, control
case. For example, DNA replication activity transitions from a
multimodal distribution to a unimodal distribution, which
converges to the target pathway distribution. There is no
difference in the distances of CTpan—IT between the exploratory
and intrinsic behaviors. Interestingly, the phenotypic differences
between the simulated CT—IT and IT—LE are close enough; in
fact, added exploratory abilities increase the final distances
compared to the system with no noise. In all these cases, a cell
does not need the exploratory part in the adaptation process to
explain its phenotypic differences but rather uses its intrinsic
system. In summary, microenvironmental pressures primarily
destabilize the source node CT and drive exploratory phenotypic
changes to the more stable or sink node LE. We performed
permutation tests to estimate the significance of the GDD
between the intrinsic simulated behavior of the starting location
at t = 1000 compared with the EA simulated behavior at t = 1000.
All p-values were significant (see methods and Supplementary
Data 2).

Recognizing that distinct stimuli characterize the environment
of distinct locations we also explored whether location-specific
levels of stochasticity may be affecting the cell’s decision-making
and impacting its regulatory network. We tested a range of such
exploratory variabilities (D= 0.01, 0.1, 0.5) and found that the
resulting phenotypes, while slightly noisier for larger values of D,
are on average similarly affected (see Supplementary Data 2).

Reverse adaption. We next investigated the ability of cells that
have succeeded to adapt to novel environmental challenges to
revert their phenotypes: could LE cells, for example, revert their
phenotypes to the original CT phenotype? Would exploratory
adaption be necessary to achieve these phenotypic changes? To
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address this question, for each original exploration (for example,
starting from CT with target CTmvp, with resulting
GD (CTth rvp) = 13.83) we simulated the reverse exploration
(starting from CTmvp with target CT, with resulting
GD (CT « CTmvp) = 9.15) (see Fig. 4a, Supplementary
Data 2). We found that the reverse distances of all locations back
to CT were smaller than the distances of phenotypes leaving CT
toward other locations. This suggests that the initial adaption of a
cell leaving the CT phenotypic state requires more changes than
relapsing back. LE is the phenotype that is most capable of
reverting to any of the other phenotypes. Altogether, in this
mirror directed adaptation network, CT emerges as a sink (having
global minimal distance) more readily reachable by all the other
phenotypes; IT and CTpan act as secondary sinks, and LE and
CTmvp as sources. We also assessed whether exploratory adap-
tion is necessary for this reversal by simulating process reversal
without stochastic perturbations of the regulatory network. We
found that this process is more efficient, leading to states that are
closer to the target phenotypes regardless of the start location.
We concluded that reverting cells utilize the plasticity that they
have internalized, rather than exploratory adaption. Permutation
tests were performed to estimate the significance of the GDD
between the intrinsic simulated behavior of the starting location
at t=1000 compared with the reversal EA simulated behavior at
t=1000. All p-values except for LE—CT were significant (see
methods section, Supplementary Data 2).

The importance of spatially intermediate states. We showed
that some degree of exploratory adaptation could explain the
changes in several location-based phenotypes. When the gene-
regulatory network is affected by stochastic perturbations we
anticipate that multiple possible evolutionary paths could lead to
new adapted states. We next asked whether the process of
exploration is constrained by the environment. For example, are
cells starting from CT and moving toward the targeted distant
location of LE constrained to phenotypes similar to the inter-
mediate IT? To address this question, we estimated the distance
of phenotypes reachable by CT cells transitioning toward an LE
phenotype. At each time point, we also calculated the distance to
the intermediate phenotype IT (Fig. 4b, blue arrows). We com-
pared the final distance resulting from moving from CT with
target IT (that is, GD (CT isr = 9.01) at time point ¢= 1000)
with the final distance of the phenotype obtained from moving
from CT  toward LE  with respect to IT
(GD (CT — LE) — CT — = 8.51 at time point t = 1000).

We depicted the resulting simulations in a 3D PCA plot
(Fig. 4c) where red, orange, and yellow dots represent phenotypes
of samples from CT, IT, and LE, respectively. Arrows represent
the trajectories of individual samples and connect the starting
phenotype to the simulated phenotypes. Both the population of
arrows CT—IT and IT—LE, as well as the population of arrows
LE—IT and IT—CT reveal alignments that suggest that
transition along CT<LE is constrained to phenotypic ranges
approaching the intermediate phenotype IT. To quantify the
degree of such alignment we computed the angles between the
arrows from the same origin for all arrows starting from CT:
CT—LE and CT—IT, and the angles of the arrow pairs LE:
LE—IT and LE—CT. First, we found that the mean angles are
narrow, confirming the alignment observed from the PCA.
Second, we found that the distribution of LE—IT and LE—CT
pair angles (Fig. 4d) has a smaller mean and range than that of
the CT—LE and CT—IT distribution. Therefore, process reversal
along LE—CT is more constrained, and less exploratory than
CT—LE; this is in line with our previous finding that intrinsic
plasticity suffices for phenotype reversal.

Interestingly, while at the population level the alignment of the
arrows is along the main CT<IT trajectory, at the individual
arrow level (which represent the individual sample behavior) we
observe orientation toward the nearest samples of the target
distribution. That is, rather than being driven to resemble the
mean of the target population, the individual samples seek to
resemble the nearest samples from the target distribution.

A therapeutic roadmap. The intermediate phenotype IT, better
characterized as a continuum of phenotypes, has emerged as a
critical and necessary step while transitioning along the CT<LE
axis. We next asked whether discretizing the continuous pheno-
type could serve as a therapeutic roadmap. We asked whether
isolating and decreasing the variability of this phenotype (through
removal of some IT samples from that population) would slow
the phenotypic flow along the trajectories of CT«<LE, and thus
impact the ability of CT to transition to LE and back. We focused
on the IT&LE portion of the trajectory, and compared the
transition capabilities between IT and LE by performing simu-
lations on sub-populations of IT and LE constructed as follows:
(1) removed 3 (from IT) + 2 (from LE) closest samples to the
other phenotype, (2) removed 4 (from IT) + 3 (from LE) closest
samples to the other phenotype, and (3) removed 4 (from IT) + 3
(from LE) randomly selected samples. From our analysis (see
Supplementary Data 2) we observed that the more homogenous
and distant the subpopulations are (the sub-populations with 3-+4
closest samples taken out being the extreme) the largest the final
(post-adaptation) phenotypic distance remains. By comparison,
randomly removing the same number of samples from the sub-
populations, or removing fewer of the closest samples, results in
smaller final differences.

Immune signatures of the phenotypes. We considered the
question of how location-specific immune signatures, as opposed
to functional pathway activities, would respond to micro-
environmental challenges, and whether intrinsic and exploratory
adaptation could bridge any differences in such signatures. We
used xCell?! to deconvolute the (whole genome) bulk expression
profiles of the different Ivy-GAP locations, and obtained the
immune signatures plotted in Fig. 5. The most enriched micro-
environment appears to be around microvascular proliferation,
which suggests that the BBB/BTB is leaky: we see endothelial
signatures, but also fibroblasts, pericytes, and some enrichment of
immune signatures. This suggests that there is trafficking of
immune cells in the microenvironment, but the paucity of these
cells in other regions of the tumor (as seen by the weak signal
from other locations) suggests that few resident or trafficked
immune cells are present in the other regions. We, therefore, did
not pursue the question of adaptation of immune signatures
further. However, the results are in agreement with GBMs’ being
mostly immunologically cold tumors: they arise in the immu-
nologically privileged BBB-protected environment of the brain,
and secrete factors that inhibit both the innate and adaptive
immune systems. Nevertheless, due to the poorly-formed neo-
vasculature of GBMs, the BBB and BTB can often be leaky, which
leads to the level of immune cell infiltration reflected in Fig. 5.

Discussion

Obtaining large scale time series molecular profiles of patient
tumors is next to impossible in the GBM context as this would
require repeated invasive procedures within a typically short
period of time; on the other hand, animal models do not reca-
pitulate the patient profiles due to significant differences in space
scale. Here, we offer a unique modeling approach that enables
inferring temporal aspects of the processes from sparse but
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Fig. 5 Immune signatures of the phenotypes. xCell'3 was used to deconvolute the (whole genome) bulk expression profiles of the different lvy-GAP

locations, and obtain the plotted signatures.

obtainable patient spatial information. This work has clear
implications for understanding the GBM recurrence dynamics,
and broader translational impact for heterogenous solid tumors.
The question of how to effectively target heterogeneous tumors is
crucial for most cancer therapies: adequately sampling, modeling,
and predicting response to therapy are especially challenging for
such cancers. These challenges are multiplied for cancers capable
of invading and adapting to new environmental stressors, as these
processes include not just complex dynamic systems, but also
incorporate stochasticity and uncertainty. In this study, we
addressed the question of predicting varying tumor heterogeneity
over spatial trajectories by translating each location’s tran-
scriptomic profile to a phenotype, and examined the transfor-
mation between the location-based phenotypes. We proposed
several extensions to the exploratory adaptation model that
enabled us to infer temporal behavior starting from the Ivy-GAP
spatial information. We introduced new notions of phenotype,
and phenotype trajectory, and proposed a model of gradual
adaptation. We demonstrated that exploratory adaptation can
explain some extent of the transformation of several locations’
phenotypes to others: CT—CTpan, CTpan—LE, CT—CTmvp,
CTmvp—LE, CTmvp—IT, CT—LE. Cells that gain sufficient
plasticity no longer need such exploration to transform their
phenotypes, or revert them to the original ones.

Another insight obtained from our study is that exploratory
cells may search and settle for the nearest sufficiently adapted
phenotypes (reaching local optima of semi-stable phenotypes)
rather than the best fit for that location (the mean phenotype
distribution of that location). This results in intermediate phe-
notypic continua that are readily capable of surviving new chal-
lenges. Blocking formation of intermediate semi-stable
phenotypes and in effect isolating each location-driven phenotype
may disrupt the cells’ ability to survive through exploratory
adaptation. Gradual adaption as modeled by our phenotype
search and convergence procedure has also been observed
experimentally: Carmona-Fontaine et al.?? showed that altera-
tions in metabolism of cancer cells create predictable gradients of

extracellular metabolites in response to gradients of hypoxia in
the microenvironment, which, in turn, further orchestrate the
phenotypic diversity of tumor cells. In addition, the analysis of
reverse trajectories could imply that while learning a novel phe-
notype, the previous phenotype remains an attractor. Thus,
adaptation could occur along focused functional pathways,
necessary for coping with the stimuli, rather than globally.

How could our findings be used to hinder the ability of LE
tumor cells to reform a new CT? Reducing the likelihood of
relapse necessitates better understanding and disabling of the
steps involved in recurrence: how isolated tumor cells survive and
adapt to new microenvironments, as well as how they reacquire
phenotypic features that enable formation and growth of new
tumors (for example, as in LE—CT). We addressed these fun-
damental questions and showed that GBM cells can change
phenotypes under environment pressures using intrinsic or
exploratory adaption depending on their initial molecular state,
and physical location. We demonstrated that intrinsic adaptation
is sufficient to bridge short phenotypic distances as in the case of
CT—IT, IT—LE; by contrast, bridging larger phenotypic dis-
tances such as CT—LE necessitates exploratory adaption. We also
showed that exploratory adaption imbues phenotypes with suf-
ficient plasticity to revert to the original phenotypes. However,
when transitioning along the CT«<LE trajectory, the intermediate
phenotypes are constrained to resemble the IT phenotype.
Therefore, we propose to target new tumor formation (after GBM
resection and standard therapy) by targeting the IT-phenotype
distribution; we hypothesize that this approach of targeting cri-
tical points in phenotype trajectories would reduce the likelihood
of LE tumor cells to reform new CT tumors.

Methods

Reproducibility. Throughout the study we attempt to use standard, well-
established bioinformatics approaches in an effort to increase the reproducibility of
the results and the generality of our framework.

Preprocessing and differential gene expression analysis. We selected genes
relevant to gliomas by analyzing expression of low-grade gliomas (LGG) and GBMs
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from TCGA patient cohorts. RNA-Seq mRNA expression data were downloaded in
08/03/2018 using R’s?3, TCGAbiolinks library?*. In all, 672 primary glioma samples
(516 LGGs, 156 GBMs) were preprocessed, normalized, and filtered as recom-
mended in R's TCGAWorkflow?> and submitted to differential gene expression
analysis. In all, 2975 genes passed the filtering criteria of Fold Change >2 and
—logl0 False Discovery Rate >5. 1441 genes from the upper 10% quartile of
variation in the combined glioma cohort were also added to the selection.

Regulatory network. Human Transcription Factor (TF) -Gene regulatory network
data were downloaded from RegNetwork!# (http://regnetworkweb.org/) on 06/
2017. RegNetwork integrates the curated regulations in various databases and the
potential regulations inferred based on the transcription factor binding sites. We
augmented our glioma focused gene list with any TFs that target them, resulting in
a list of 4121 genes. The resulting GBM TF-Gene regulatory network consists of
4121 nodes and 78,686 edges, and average degree 19.09.

Ivy-GAP data. RNA-Seq profiles for 270 laser-microdissected samples from 41
GBM tumors and sampled from different anatomical regions of the tumor were
downloaded from the Allen Institute’s Ivy Glioblastoma Atlas Project (Ivy-GAP)
(http://glioblastoma.alleninstitute.org/, GSE107559)!0. These are given as frag-
ments per kilobase per million (FPKM), and further adjusted with TbT normal-
ization (by scaling each sample based on the summed expression of all genes that
are not differentially expressed). In all, 122 samples from the Anatomic Structures
(AS) study, obtained from 10 tumors were further selected for analysis. The
locations (L) and number of samples are as follow: cellular tumor (CT, 30 samples),
leading edge (LE, 19), infiltrating tumor (IT, 24), microvascular proliferation
(CTmvp, 25), pseudopalisading cells around necrosis (CTpan, 24). The samples per
tumor and their locations are summarized in the Supplementary Data 1.

Gene-to-pathway map. Annotations for (186) KEGG!> pathways were down-
loaded from Molecular Signature Database 7 V6.1 (collection c2.cp.kegg.v6.1.
symbols)13.

Pathway activity per sample. Gene set enrichment (GSE) analysis enables con-
densing information from gene expression level to functional pathways or sig-
natures summary, thereby reducing the noise and dimensions of the data. Such
functional pathway summary, also known as pathway activity or pathway
enrichment score, captures the degree to which the genes involved in a pathway are
coordinately up or down regulated. Many GSE methods are supervised and
population based, in that they compute enrichment scores as comparisons between
two groups of the population (for example, case/control). However, our simulation
approach, tracking changes at a single-sample level, necessitates the use of an
enrichment approach that can be applied at the single-sample level, and without
regard to the class labeling. ssGSEA is a non-parametric, unsupervised method,
which starts by evaluating the rank of each gene per sample; for each pathway/gene
set a Kolmogorov-Smirnov-like rank statistic is calculated, giving an estimate of the
overall rank of the genes belonging to that pathway compared to the rank of the
rest of the genes?¢. Hinzelmann et al.?” compare several competing GSE methods,
including ssGSEA and GSVA, and find that these two outperform the others both
with respect to sensitivity and accuracy of the methods to identify differential
pathway activity. R's GSVA?” library was used to compute the pathway activity for
each sample using method ssGSEA, from Ivy-GAP data or simulated data.
Activities for 182 of the pathways could be computed, based on the expression of
the GBM focused genes.

Location-driven phenotype distributions. We assume that there exist phenotype
distributions at the location level across patients for the following reasons. First,
the Ivy-GAP dataset contains multiple samples from the same tumor for some of
the regions, while no samples for others; so multiple possibilities and sometimes
none exist for mapping these samples into initial-final pairs per patient. Second,
GBMs have been shown to exhibit intra-tumoral heterogeneity at the single cell
resolution; Patel et al.28, for example, showed through single cell transcriptomic
profiling that primary GBMs display a mixture of the four established GBM
transcriptomic subtypes, with individual cells from the same tumor displaying one
of the four subtypes®®. Indeed, as seen from the molecular characteristics of the
tumors presented in the summary table above, some of the tumors display a
mixture of transcriptomic subtypes (Classical + Mesenchymal, or Classical +
Neural, for example), confounding the question of which of the samples moved to a
different location. Last, the location-centric distributions capture the location-
specific phenotypes, which as shown both in the Ivy-GAP landmark paper as well
as our Supplementary Figures (pathway heatmaps) are quite distinct.

Pathway Distribution Distance. For each location, and each pathway, a pathway
activity distribution can be computed from the pathway activities of the individual
samples. For a pathway (j € (1..m)) and two locations i, k € Location(L), the

Pathway Distribution Distance (PDD) (PDDL L(,.PL(,()) estimates the distance

between j’s activity distributions for the locations i and k; the distances were

computed as the Minkowski distance with Euclidean option (see Supplementary
Data 1) using R’s HistogramTools?? library.

Global Distribution Distance. The phenotypic differences between any two
locations i, and k are captured using the global distance (GDDy ;1)) between the
two locations computed as the sum of the PDDs over all pathways: GDD, ;) ;) =
eril PDD; ;) _1(k), M = 182 (see Supplementary Data 1). Permutation tests were
used to estimate statistically significances between: (1) initial GDD from data, (2)
simulated results of intrinsic initial versu final time points for all locations, and (3)
between simulated results of intrinsic versus EA in final time points for all loca-
tions. The normalization step was achieved by mean subtraction of each initial
distribution, and the randomization part of the permutation test required to
overlap samples with 0.1-0.9 of their original distributions. All p-value results are
summarized in Supplementary Data 1-2.

Differential activity (DA) analysis. The most significant pathway activity dif-
ferences between any two locations, were estimated using unpaired, two-sided
t-tests; a BH-adjusted p-value cutoff of 1e-06 was used as threshold of significance
(see Supplementary Data 1 and 2).

Model. We introduce our expanded model of exploratory adaptation using patient-
derived GBM data from spatially anatomical structures. In addition to the details of
the original Brenner’s model%, we describe here our expanded model. The intrinsic
model describes the time evolution gene expression based on their gene regulatory
network topology and their interactions strength. The model consist of initial
focused GBM network, X=(x,, x,, tworx, ), n= 4, 121, governed by the following
nonlinear equation: X = (T  J)¢(X) — BX ; where the adjacency matrix T is the
corresponding human TF-Gene network with 78,686 edges in binary values (0/1);
is the Pearson’s correlation matrix specifying the actual interaction strengths based
on the Ivy-GAP samples data per spatial location; * is an element-wise (Hadamrd)
product; ¢(X) = tanh(X) is an element-wise saturating function; time scale was
performed with 7=4t; and = 0.5 the constant vector of relaxation rates.

Our definition of phenotype, Y, is a vector of cell’s functions (KEGG pathways),
Y =f(X), Y= (Y,, Y,, hwY,,), m = 182. The phenotype value (f(X)) depends on
gene-to-pathway map and pathway activities based on gene expressions (from
simulations or data) per sample. Each pathway distance (PD) per sample, is
calculated based on the distance between the actual single-sample pathway activity
compared with the target activity 10-90% distribution percentile. To estimate the
distance in phenotype between a sample and a target phenotype, we define a
phenotype distance (i.e., global distance (GD)), which summarizes the pathway
activity distance (PD) across all pathways. Convergence to specific phenotype was
reached if all simulated pathway activities were within the range of 10-90
percentiles of the target phenotype destination. Note, in simulations, the
phenotype, pathway distance (PD), and phenotype distance (GD) are calculated per
sample, and not between distributions (as calculated before in the data-driven step:
PDD and GDD).

To model the exploration dynamics in phenotype due to new environment
stimuli, the intrinsic model incorporates additional stochastic process. As in
Brenner’s model, we also allowed small random changes in the interaction
strengths of the regulatory network, forming a random walk in the elements of the

correlation matrix J: dJ, = \/D - M(y,, y™t) - dw,, where the w, follows the
Wiener process: w, ~ N(0, 1), M is the phenotype convergence function:
My, gy — L ye €y
Oy 78) = 0, otherwise
Ye = W1esYat» -+ Y1s2s)> and the target distribution vector y™¢ is the interval
[10-90th] percentiles of the target phenotype. However, this process has no longer
uniform scale parameter, D, but may change per interaction strength. As a result, D
and dJ have now the same dimension as the matrix J, that is 4121 x 4121. We
introduce a biased exploratory adaptation model to explore high dimensional
search space with biological and functional relevance. Our approach includes an
exploratory process that starts with an initial stochastic white noise scaled with
parameter D, .., D(t = 0) ~ N(0, D,,,,,), which changes over time (D, > D(t))
as a function of the pathway vector distance. For every given time step, a pathway
distance vector is calculated between the current temporal pathway activity vector
to the 10-90th percentile of the target phenotype distribution. This process is
independently executed for every pathway. In a case where a pathway converges to
its destination (that is, its activity is within the 10-90th percentile of the target
distribution), all member genes of that pathway that do not belong to other
pathways that have not converged yet, will decrease their random exploration from
the next time point on. So if a gene k belongs only to pathways that have
converged, then D(k,:),_;, ;= 0.95 - D(k, :),_;, and the same factorization on the
corresponding columns. In this way, a cell could first change the pathways most
relevant to the present external stimuli, and subsequently, gradually stabilize the
remaining pathways to a phenotype fit for that spatial location.

In all simulations, unless otherwise specified, the last time point was set to t =
1000. For simulations that include exploratory capacity, initial D (t = 0) was set to
0.1. Results of GD values for simulations using D = 0.01, and D = 0.5 are shown in
Supplementary Data 2.

, V¢ is the temporal pathway activity vector:
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Notes about figures. Plots were produced in R using ggplot2, and Python using
matplotlib. Between group analysis (BAG) with Correspondence Analysis option
was performed using R’s made4 library3!. Top 100 genes on the first three principal
components were used to create heatmaps of (zscored) expression. Correlation
between PDD (or PD) and DA were calculated using R statistics library, with
method Pearson. Python's scikit was used to obtain the PCA coordinates, and
matplotlib for visualizing the vector fields.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

All datasets that were used and support the findings of this study are available online.
The data (processed gene expression, phenotype labels, gene lists, pathway ontology,
computed pathway activity, and TF-gene regulatory networks), and our code can be
downloaded from our GitHub repository (https://github.com/oricel/PhenoExploreR, or
https://github.com/OritLavi/PhenoExploreR).
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