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Abstract
In this survey the impact of the virtual screening concept is discussed in the field of drug 
discovery from nature. Confronted by a steadily increasing number of secondary metabolites 
and a growing number of molecular targets relevant in the therapy of human disorders, the 
huge amount of information needs to be handled. Virtual screening filtering experiments 
already showed great promise for dealing with large libraries of potential bioactive molecules. 
It can be utilized for browsing databases for molecules fitting either an established pharma-
cophore model or a three dimensional (3D) structure of a macromolecular target. However, 
for the discovery of natural lead candidates the application of this in silico tool has so far 
almost been neglected. There are several reasons for that. One concerns the scarce availability 
of natural product (NP) 3D databases in contrast to synthetic libraries; another reason is the 
problematic compatibility of NPs with modern robotized high throughput screening (HTS) 
technologies. Further arguments deal with the incalculable availability of pure natural com-
pounds and their often too complex chemistry. Thus research in this field is time-consuming, 
highly complex, expensive and ineffective. Nevertheless, naturally derived compounds are 
among the most favorable source of drug candidates. A more rational and economic search 
for new lead structures from nature must therefore be a priority in order to overcome these 
problems.

Here we demonstrate some basic principles, requirements and limitations of virtual 
screening strategies and support their applicability in NP research with already performed 
studies. A sensible exploitation of the molecular diversity of secondary metabolites however 
asks for virtual screening concepts that are interfaced with well-established strategies from 
classical pharmacognosy that are used in an effort to maximize their efficacy in drug discov-
ery. Such integrated virtual screening workflows are outlined here and shall help to motivate 
NP researchers to dare a step towards this powerful in silico tool.

1 Introduction

In the field of drug discovery we are confronted by a paradox situation: 
highly efficient tools and advanced technological and molecular know-
how, e.g., in the area of genomics, combinatorial chemistry, high through-
put screening (HTS), robotized and miniaturized process cycles, could find 
entrance in big pharmaceutical industries. These costly procedures were 
expected to raise the number of launched drug substances; however the 
results were disappointing [1, 2]. In 2002, Adam Smith, the chief-editor of 
Nature presented the sobering data of research and development expenses 
of the 20 leading pharma companies versus new drugs on the market. They 
have steadily fallen in recent years despite the increasing financial efforts 
[3].

On the other side we are faced by a high traditional impact of naturally 
derived medicines and incredible success stories of natural products (NPs) 
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as potent remedies from the beginnings of human therapeutic activity to 
modern research and drug development. Nevertheless, most large phar-
maceutical companies scaled down or terminated their work in NPs opera-
tions. The reasons behind this are that the drug discovery process starting 
from natural sources is hardly compatible with the today’s highly auto-
mated drug discovery technologies. Thus, the pre-eminence of combinato-
rial chemistry as the preferred method for generating new drug leads has led 
to the comparative neglect of this valuable resource. William Strohl from 
Merck Research Laboratories summarized the difficulties of NP programs 
versus synthetic chemicals in his editorial remarks in Drug Discovery Today
[4]. These include (i) the existence of already found potent antimicrobic 
and antitumor NPs and the lack of sufficient dereplication programs which 
prevent their repeated discovery; (ii) the fact that – in contrast to the highly 
sophisticated molecular targets – NP extracts are generally regarded as too 
‘dirty’, too difficult to assay and too time-consuming; (iii) obtaining an 
assay hit resulting from a bio-guided fractionation, the NPs’ structure still 
has to be elucidated compared with synthetic chemicals; (iv) NPs are often 
deemed as too structurally complex, possessing multiple hydroxyl moi-
eties, ketones and chiral centers. Strohl nevertheless concluded by listing 
a number of advantages applying an active NP program, which he finally 
described as an ‘expensive endeavor’ which, however, is ‘well worth the cost’.

The use of NPs has been the single-most successful strategy for the 
discovery of new drug leads, which is clearly shown by different statistics 
[5, 6]. With increased calls in recent years for further research on NPs [7, 
8] there are again signs that they may play a more active role in the future 
drug discovery process, since their reintroducing may help to re-discover 
the sweet spot in drug discovery [1].

2  Status of NPs

To date some 200,000 natural compounds [9–11] have been published. The 
terrestrial flora has been intensively investigated over the last decades; the 
potential in finding new NPs slumbering in untapped biota is however 
nearly inconceivable. It is estimated that only 5–15% of the approximately 
250,000 described high plant species have ever been in the focus of phy-
tochemical and pharmacological investigations [12]. More sobering is the 



Virtual screening for the discovery of bioactive natural products

215

percentage in the field of bacterial (less than 1%) and fungal species (less 
than 5%) [13].

The main part of known NPs belongs to secondary metabolites. These 
compounds provide living systems with their characteristic features man-
datory for surviving. They contain an inherently large-scale of structural 
diversity. About 40% of the chemical scaffolds of published NPs are unique 
and have not been made by any chemist [14]. 

In the past 100 years researchers have discovered many potential thera-
peutic targets. Since the completion of the human genome, 30,000 to 
40,000 genes and at least the same number of proteins are assumed [15]. 
Thus, we are up against an increasing number of macromolecular targets, 
like proteins, receptors, enzymes, and ion channels – that might be of 
pathological concern for humankind. Among them, proteins continue to 
attract significant attention from pharmaceutical technology as a valuable 
source of drugable targets [16]. Proteins provide the critical link between 
genes and disease, and thus are the key to understanding the basic biologi-
cal processes. Up to now drug discovery has been performed against only 
approximately 500 targets [17], though the number of potential targets are 
estimated to be in the range of 2,000 to 5,000 [2, 15].

Taken together, it can be assumed that a large number of drug leads 
and hits are conserved in the inexhaustible pool of NPs pre-screened by 
evolution. But how to dig out and to recognize the respective drug leads 
is a challenging task for both industry and academia, for medicinal chem-
ists, pharmacognosists and pharmacologists. NP research is affected with a 
wealth of time-consuming and cost intensive investigations. Collection of 
the natural material, phytochemical analysis, isolation and identification of 
the constituents is just the basic procedure. A biological screening of extracts 
or even the arbitrary testing of isolated metabolites is feasible and often per-
formed, though is not at all a focused procedure, thus unpractical and too 
expensive. The NPs’ diversity has to be accessed in a more rational way. 

3  Holistic versus molecular approaches in drug 
 discovery from nature

During the last century and even today the discovery of bioactive NPs and 
their development into potential drug candidates are mainly covered by 
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a holistic approach. A characteristic workflow of this procedure is given 
in Figure 1. Starting from the knowledge or assumption about a biological 
effect the natural material is selected and adequately extracted. If a positive 
effect in the obtained multi-component extract is recorded, it is attempted 
to trace it back to the active principle/s by intense phytochemical and 
analytical investigations (Fig. 1). This can for instance be achieved by a 
bioactivity-guided fractionation. A more targeted approach focuses on 
innovative technological tools combining analytical and biological infor-
mation. An overview of recent developments in this area and successful 
examples thereof are presented by Potterat and Hamburger [18, 19].

As soon as the constituent regarded to be responsible for the overall 
effect is isolated, further research focuses on a molecular level including 
structure elucidation and pharmacological profiling. Synthesis and testing 
of series of derivatives enable an insight into a structure-activity-relation-
ship and pharmacokinetic aspects. Finally, potential drug leads become 
drug candidates after some intense toxicological studies and after the veri-
fied effectiveness in vivo (Fig. 1).

Recent advances in lead identification from nature work on a molecular 
base more than on a holistic one. A first prerequisite for that is on bioin-

Figure 1.
Traditional early drug development of a nature based drug candidate
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formatics comprising 3D structures from genes and proteins (bioinformat-
ics), substantial knowledge on molecular target functions with accurate 
structural information and protein–ligand interactions. Secondly, it is 
essential to refer to unambiguously characterized structures of secondary 
metabolites preferably with some information to their biological effect. 
Based on available structural as well as biological knowledge from both 
sides, information can be deduced from chemoinformatics to bridge the 
gap between known ligands and the discovery of new lead structures 
(Fig. 2).

4  Computational approaches for the discovery of 
 lead structures from nature

The increasing understanding of fundamental principles of protein–ligand 
interactions and the steadily growing number of 3D-structures of poten-
tial and experimentally proved ligands provide undreamed of possibili-
ties towards more rationalized concepts in drug discovery. However, too 
much is expected of the human brain to profit from the already published 
information. Thus, efficient and effective approaches benefit from today’s 
knowledge about NPs. In the area of medicinal chemistry, computational 
methods, like virtual screening experiments, have already proved to satisfy 
these requirements. They are needed to exploit the available structural 

Figure 2. 
Schematic correlation between bioinformatics and chemoinformatics
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information, to understand specific molecular recognition events, and 
to clarify the function of the target macromolecule. Though rationalized 
procedures in the search for bioactive natural products are in great demand 
to find the ‘needles in a haystack’, computational assistance could hardly 
break into natural product research.

The common idea of all computational approaches within the early 
drug discovery process is to mine more or less large compound databases 
in silico and to select a limited number of candidates proposed to have 
the desired biological activity. For this process the term ‘data mining’ was 
coined in 1996 [20], which was concisely defined by Gasteiger and co-
authors: ‘to extract knowledge from a large set of data in order to make predic-
tions of new events’ [21].

Within the lead discovery process, virtual screening technologies have 
largely enhanced the impact of computational chemistry and nowadays 
chemoinformatics plays a predominant role in early phase drug research 
[22, 23]. The key goal of the use of such methods is to reduce the overall 
cost associated to the discovery and development of a new drug, by iden-
tifying the most promising candidates to focus the experimental efforts 
on. Recently published books and reviews on the impact of computa-
tional chemistry for lead structure determination highlight these efforts 
[24–27].

If the 3D structure of the biological target is known, high through-
put docking turned out to be a valuable structure-based virtual screen-
ing method to be used [28–31]. Within this context, the scoring of hits 
retrieved still remains a question that is often discussed. In fact, currently 
the major weakness of docking programs lies not in the docking algo-
rithms themselves but still in the inaccuracy of the functions that are used 
to estimate the affinity between ligand and target, the so-called scoring 
functions. Previously, Stahl and Rarey analyzed scoring functions for vir-
tual screening [32], giving valuable insight into strengths and weaknesses 
of currently used models for affinity estimation. The combination of sev-
eral different scoring functions termed as consensus scoring turns out to 
be one of the possible answers to the question raised previously. In fact, 
several authors recently described their efforts in this area; an example is 
given in reference [33]. In a theoretical study, other authors demonstrate 
that consensus scoring outperforms any single scoring for simple statisti-
cal reasons and that a moderate number of scoring functions (i.e., three or 



Virtual screening for the discovery of bioactive natural products

219

four) are sufficient for the purpose of consensus scoring [34]. However, it 
has been shown that consensus scoring alone is not suitable for all cases of 
docking, and, as highlighted in a recent review by Krovat and co-authors, 
considerable efforts are still devoted to the optimization of scoring func-
tions [28].

Because of the restricted free access to NP 3D libraries (see below), the 
number of virtual screening studies published for the rational access to 
bioactive NPs is limited. Some examples using high throughput docking 
as a structure-based virtual screening tool will be given here: Liu and Zhou 
applied a theoretical approach to find natural ligands as potential inhibi-
tors of the SARS-CoV protease, a virus target of the severe acute respiratory 
syndrome [35]. They used a docking-based virtual screening cycle and 
applied drug-like filters to finally propose 18 drug candidates out of two 3D 
databases comprising metabolites from marine organism and compounds 
from traditional Chinese Medicine. The same virus organism was the main 
interest in the study performed by Toney et al., who focused on its main 
proteinase, 3CLpro. The crystal structure of this attractive target was used 
as the starting point for the virtual docking screening of the NCI database. 
Searching for non-peptidyl inhibitors, the authors identified the naturally 
occurring terpenoid alkaloid sabadinine (i.e., cevine; 1) as potential anti-
SARS agent [36]. 

The author group around Stefano Moro could identify ellagic acid (2)
as inhibitor of the protein kinase CK2 screening an in-house generated 
database with almost 2,000 structures of natural compounds [37]. A com-
bination of four docking protocols and five scoring functions has been 
utilized to dock and rank the molecules in the database. The consensus 
docking suggested ellagic acid to be one of the most promising candidates. 
This assumption could be verified by experimental studies revealing this 
NP as highly potent CK2 inhibitor (Ki = 20 nM).

Estrogen receptor-  plays a key role in regulating brain development 
and estrogen-induced promotion of neurogenesis and memory. Using the 
3D coordinates of the co-crystal structure of human estrogen receptor-
bound with genistein as starting point, Zhao and Brinton pursued a recep-
tor-based molecular docking approach [38]. They focused on the search for 
natural estrogen receptor- -selective ligands. Twelve candidate molecules, 
which had been suggested by the database screening, were selected. The 
authors determined their binding affinity and selectivity; three of the com-
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pounds belonging to the flavanoid family (3–5) displayed over 100-fold 
binding selectivity to the estrogen receptor-  over . A similar approach 
was employed by Liu and co-authors. Applying a docking virtual screen-
ing filtering experiment, the authors discovered potent inhibitors of the 
potassium ion channel from a Chinese NP database [39].

5  Pharmacophore concept in NP research

The pharmacophore concept has proven to be extremely successful, not 
only in rationalizing structure-activity relationships, but also by its large 
impact in developing the appropriate 3D-tools for efficient virtual screen-
ing [40]. Profiling of combinatorial libraries and compound classification 
are other often-used applications of this concept. Although well estab-
lished in combinatorial chemistry, it has to be pointed out that the tools 
described in this section have likewise a considerable impact on the rational 
finding of new potential lead compounds originating from the immense 
source of secondary metabolites. The prior use of pharmacophore models 
in biological screening of NPs is an efficient procedure since it quickly 
eliminates molecules that do not possess the required features thus lead-
ing to a dramatic increase of enrichment, when compared to a purely 
random screening experiment. In a previous study conducted by Doman 
and co-authors [41], only 85 molecules or 0.021% revealed as protein tyro-
sine phosphatase-1B inhibitors (IC50 < 100 µM) by a HTS of approximately 
400,000 compounds. On the other hand, of 365 molecules suggested by 
molecular docking, 127 or 34.8% were found to be active. Thus, docking-
based virtual screening enriched the hit rate by almost 1,700-fold over 
random screening. 

One should not forget, however, that additional molecular character-
istics not reflected by pharmacophore models (physicochemical proper-
ties relevant for ADME and toxicological properties) must be taken into 
account when deciding upon which compounds should be further devel-
oped [42]. A rapid identification and elimination of compounds with 
unsuitable physicochemical and pharmacokinetic properties is a pivotal 
step in the early drug discovery process [43, 44]. They can be evaluated 
traditionally or by high throughput screening, which are discussed in 
detail by Avdeef and Testa [45]. This must be considered for synthetics 
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as well as NPs, though studies revealed secondary metabolites not only 
high scaffold diversity; biosynthesized molecules also show structural and 
spatial characteristics that are closer to drug leads than those of synthetic 
molecules [46, 47]. Typically, NPs include more chiral centers and their 
stereochemical architecture is much more complex than that of synthetic 
molecules. Furthermore, they usually contain more carbons, hydrogen 
and oxygen, however, less nitrogen and other atoms compared to synthet-
ics. Surprisingly, NPs often show a molecular weight higher than 500 Da 
combined with a high polarity [7], which is in clear contrast to Lipinski’s 
rule of five [48]. Nevertheless only about 10% of NPs contain two or more 
violations of Lipinski’s rules [47]. In summary, natural chemistry can be 
seen as highly diverse scaffolds endowed with potential drugable pharma-
cophores.

6  Structure-based pharmacophore model

An inevitable prerequisite for generating a structure-based model is the 
knowledge about the ligand-target interaction [49] including the avail-
ability of the 3D structure of the target either by X-ray crystallography or 
NMR or constructed on the basis of the structure of homologous proteins. 
A unique platform containing 3D coordinates of experimentally solved 
protein structures is the Brookhaven Protein Data Bank (PDB [50]). A crys-
talline complex with a ligand bound to a protein’s active site is the best 
requirement to start the construction of a structure-based 3D model. In 
this case, one may profit from the exact information of the ligand’s bioac-
tive conformation which is preserved in the binding site of the crystalline 
complex. The building of a structure-based pharmacophore is depicted in 
a step by step way in Figure 3.

A new software tool has recently been described for the successful gen-
eration of such chemical features-based models: The software LIGAND-
SCOUT [51] is a program for ligand interpretation and data mining in the 
PDB. The performance of this program allows the detection of relevant 
interaction points between ligand and protein. The binding mode of the 
ligand in the active site of a protein can be visualized in a sophisticated 
way. LIGANDSCOUT‘s algorithms perform a stepwise interpretation of 
the ligand molecules: Planar ring detection, assignment of functional 
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group patterns, determination of the hybridization state and finally the 
assignment of Kekulé pattern. The interpretation of the ligand molecules 
is the basis for the next step, an automated generation of pharmaco-
phore models, derived from the data provided by a crystalline complex 
of the PDB. An automatic detection and classification of protein–ligand 
interactions into hydrogen bonds, charge transfer, and lipophilic regions 
leads to a collection of chemical features in a pharmacophore model. The 
graphical user-interface can provide an integrated view of protein, ligand, 
pharmacophore model, and interaction lines. In a previously published 
study, LIGANDSCOUT was used for the detection and interpretation of 
crucial interaction patterns between ligands and the factor Xa protein 
structure [52]. In a second step, the program CATALYST, a state of the art 
virtual screening platform, was used for rapid virtual screening of multi-
conformational 3D structure databases. The information for the pharma-
cophore pattern (i.e., 3D coordinates of interaction points) was obtained 
by the interpretation of LIGANDSCOUT pharmacophore definitions and 
resulted in specific interaction models that were able to map the ligand in 
their bioactive conformation and to retrieve selectively a 78% fraction of 
the known factor Xa inhibitors within a small subset of the large Derwent 
World Drug Index library. A further application of the LIGANDSCOUT 
pharmacophore definitions covers the rationalized search for angiotensin 
converting enzyme (ACE)-2 inhibitors by virtual screening of approxi-
mately 3.8 million compounds from various commercial databases [53]. 

Figure 3 
Concept for generating a structure-based pharmacophore model; Visualizing and calculation of 
chemical features using LigandScout [51]:
a. Protein (e.g., CDK2) complexed with a ligand {shown in ball-and-stick mode; N-methyl-{4-[2-

(7-oxo-6,7-dihydro-8H-[1,3]thiazolo[5,4-E]indol-8-ylidene)-hydrazino]-phenyl}-methane-sulfon-
amide} in the active binding site (highlighted in the yellow cube)

b. Zoom up of the binding site with the ligand
c. Ligand with calculated distances to the interacting amino acid residues of the protein 
d. Determination of interactions between the ligand and the target; evaluation and setting of che-

mical features (yellow sphere, hydrophobic feature; green arrow, hydrogen bond donor function; 
red arrow, hydrogen bond acceptor function)

e. Subtraction of the protein; the ligand, the chemical features and exclusion volumes (= grey spheres; 
representing areas not to be occupied by the ligand) are left

f. Subtraction of the ligand; the pharmacophore model remains comprising chemical features and 
exclusion volumes
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Hit reduction and selection was achieved using a five feature hypothesis 
based on a recently resolved inhibitor-bound ACE2 crystal structure. Sev-
enteen virtual hits were selected for their experimental validation in a 
bioassay; the concept was confirmed since all of them were revealed as 
ACE-2 inhibitors.

Barreca and co-authors developed a 3D structure-based pharmacophore 
model with LIGANDSCOUT for the discovery of new scaffolds acting as 
HIV-1 non-nucleoside reverse transcriptase inhibitors by virtual screen-
ing of large chemical databases. Six virtual hits were finally selected for 
determination of their inhibitory effects. Those belonging to the new scaf-
fold class of the quinolin-2(1H)-one family exhibited reverse transcriptase 
inhibitory activity at sub-micromolar concentrations [54].

In a recently published work, Schuster et al. presented a so-called 
cytochrome P450 profiler [55]. Several structure-based (generated with 
LIGANDSCOUT) and ligand-based pharmacophore models (using CATA-
LYST) for substrates and inhibitors of five cytochrome P450 isoenzymes 
(1A2, P450 2C9, P450 2C19, P450 2D6, and P450 3A4) were created and 
validated by the authors’ group. Their results showed that the models were 
suitable for fast pharmacokinetic profiling of large drug-like databases. 

In this context the parallel screening is of particular interest. Whereas 
in usual virtual screening cycles interactions of thousands or even millions
of 3D database entries are browsed against one pharmacophore model, it 
is contrary in the case of parallel screening; low-energetic conformers of 
one structure are screened for their potential interactions against numerous
models. The basics of parallel screening have just recently been presented 
by Steindl and co-authors [56, 57]. Furthermore, the authors exemplified 
this strategy for the activity profiling using a set of HIV protease pharmaco-
phore models [58]. This in silico concept is of particular interest to virtually 
scrutinize drug candidates for their preliminary activity profiling relevant 
to putative side effects and toxicity [40]. According to the obtained interac-
tions to virtually screened antitargets (e.g., hERG, sigma-1, sigma-2, alpha-
1A, alpha-1B, alpha-1D, alpha-2A, alpha-2B, alpha-2C, D2L, D3, D4.2, 
5-HT1A, 5-HT2A, 5-HT7, H1, I2, A2A, A2B, cytochrome P 450) a first insight 
to potentially risky affinities is provided before time and cost intensive 
toxicological studies are performed. 

The virtual screening approach using a structure-based pharmacophore 
model has revealed some first application examples in NP research: Niko-
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lovska-Coleska and co-authors successfully pursued this in silico strategy in 
the area of X-linked inhibitors of apoptosis (XIAP) [59]. A high resolution 
3D structure of the XIAP BIR3 domain complexed with the N-terminal end 
of the Smac/Diablo protein [60], which is an endogenous ligand of the 
respective XIAP binding pocket, was used as the starting point to virtually 
screen an in-house 3D-NP database. Embelin (6) from the Japanese Ardisia 
herb emerged as virtual small molecule weight hit, which was found to be 
a fairly potent inhibitor of XIAP using a fluorescence polarization binding 
assay.

In our group, we previously focused on acetylcholinesterase (AChE) [61]; 
according to the cholinergic hypothesis of the pathogenesis of Alzheimer’s 
disease, inhibitors of the AChE are successfully used as therapeutic strategy. 
Based on the co-crystal structure of AChE with its ligand galanthamine, 
a structure-based pharmacophore model was generated and used for an 
in silico screening of a multi-conformational database consisting of more 
than 110,000 NPs. From the obtained hit list, promising, virtually active 
candidates were selected, namely scopoletin (7) and its glucoside scopolin 
(8). Their AChE inhibitory effect was first verified from the crude extract 
of Scopolia carniolica roots using a bioautographic TLC assay. The isolated 
coumarins showed a significant and dose-dependent inhibition of the 
AChE in the microplate enzyme assay as well as in the in vivo test. The 
i.c.v. application of both coumarins on rats resulted in a long-lasting, pro-
nounced and – in case of the glucoside – even in a two-fold higher increase 
of the neurotransmitter’s concentration than the one caused by the posi-
tive control galanthamine.

7  Ligand-based pharmacophore model

Very often, however, lead discovery projects have reached a well-advanced 
stage before detailed structural data on the protein target has become avail-
able, even though it is well recognized that modern methods of molecular 
biology together with biophysics and computational approaches enhance 
the likelihood of successfully obtaining detailed atomic structure informa-
tion. A possible consequence is that often scientists identify and develop 
novel compounds for a target using preliminary structure-activity informa-
tion, together with theoretical models of interaction. Only responses that 
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are consistent with the working hypotheses contribute to an evolution 
of the used models. Within this framework, the chemical feature-based 
pharmacophore approach has proven to be successful [62] allowing the 
perception and understanding of key interactions between a receptor and a 
ligand on a generalized level. A function-based pharmacophore represents 
the common ensemble of steric and electrostatic features of different com-
pounds which are necessary for their interaction with a specific biological 
target structure (Fig. 4).

Such pharmacophore models together with large 3D structure databases 
originating either from in-house compound collections, from commercial 
vendors, or from natural products databases have proven to be extremely 
useful in silico screening experiments. When using ligand-based phar-
macophore models as screening filters instead of protein 3D structures, 
affinity estimation is only based on geometric fit of compound atoms or 
groups to features of the model. In these cases, the values calculated are 
often far away from reality, however, still are useful for filtering possible 

Figure 4.
Concept for generating a ligand-based pharmacophore model using the Catalyst program (Accelrys 
Inc., CA)
a. critical selection of active ligands
b. alignment of low-energetic conformers of the selected ligands
c. derivation and determination of common features
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hits from non-binding molecules. Additionally, in pharmacophore fitting 
procedures, calculation demands are considerably lower than in docking 
algorithms allowing the number of compounds to be processed in the 
same time to be by far higher than even in high throughput docking. 

Since in most of the studies no experimental information on either the 
biological conformation of the ligand or the target protein are currently 
available, the ligand-based chemical feature pharmacophore approach can 
provide essential information for medicinal chemists. Several successful 
applications within this subject have been performed using the CATA-
LYST program, one of the leading software packages in chemical feature-
based pharmacophore modeling. Schuster and co-workers succeeded in 
the identification of 11 -hydroxysteroid dehydrogenase type 1 inhibitors 
applying a common feature-based pharmacophore model for their virtual 
screening filtering experiments [63]. Similarly, the authors preceded by 
suggesting compounds with a proposed inhibition to the cytochrome 
P450 19 isoenzyme [64]. Several reviews covering successful applications 
of such feature-based methods have been published by Kurogi et al. [65], 
by Krovat et al. [28] and by Güner et al. [66]. They outline the theoretical 
background and describe several significant studies including 3D database 
search strategies.

In the field of NPs only a very limited number of studies report from the 
rationalized access to bioactive compounds via ligand-based virtual screen-
ing. For example, this method was pursued for the discovery of inhibitors 
of the COP9 signalosome (CNS) associated kinases CK2 and PKD [67]. 
Using NPs curcumin and emodin as lead structures, a virtual screening of 
an in-house database was carried out. Among the virtual hits seven NPs, 
e.g., anthraquinone (9) and piceatannol (10), were found to significantly 
induce apoptosis by inhibition of the CSN-associated kinases using in vitro
and cell culture experiments. A further study has demonstrated the power 
of the ligand-based approach applied to pharmacophore modeling of 
sigma-1 ligands [68]. Therein, some reliable pharmacophore models could 
be extracted solely from ligand structure information. Compounds with 
potent affinities to the sigma-1 receptor known from literature were struc-
turally aligned to derive distinct common features. Their 3D arrangement 
in combination with a spatial restriction was then used for the generation 
of a pharmacophore model, which was able to retrieve compounds with 
high affinity values, among them also NPs, like solanidine (11).
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8  Discriminant analysis

Further ligand-based approaches use various forms of discriminant analy-
sis, e.g., artificial neural network simulations. They are based on collec-
tions of mathematical models that are interconnected and organized in 
different layers. They are analogous to an adaptive human learning process 
and usually trained with learning sets applying one or more molecular 
descriptors in order to form clusters that enable to distinguish between dif-
ferent objects and their properties. The resulting models are then applied 
to make predictions on test sets, until the validated models may be used 
to derive a QSAR of chemically related structures or to mine larger data-
sets. One may distinguish between supervised and unsupervised (e.g., 
Kohonen network) learning methods as discussed in detail by Zupan and 
Gasteiger [69]. A successful application example within the field of NPs 
was published by Wagner et al. [70]. The authors used a dataset of 103 
structurally diverse sesquiterpene lactones with known NF- B inhibitory 
activity to derive a QSAR. By the application of multiple 3D structure 
representations as descriptors, a single model was achieved which pro-
vided detailed information on the structural influence of the investigated 
biological activity. Sangma and co-authors pursued a combination of two 
approaches to predict new inhibitors of the HIV-1 RT and HIV-1 PR from 
a NP database comprising metabolites from Thai medicinal plants. After 
a high throughput docking of the molecules into the target enzymes, 
self-organizing maps were generated to reduce the number of promising 
candidates to be tested [71].

A set of different in silico methodologies was previously applied by 
Cherkasov and co-authors to aid in the discovery of natural non-steroidal 
ligands for human sex hormone binding globulin [72]. Therein, a rigor-
ously cross-validated neural network based QSAR model identified 105 
prospective compounds from a structure collection of 23,836 commercial 
natural substances. This stringent QSAR ranking was combined with dock-
ing studies and pharmacophore-aided database search. The integrated 
computational methods resulted in a convincing predictive tool which 
identified a set of 29 structurally diverse NPs, of which every fourth com-
pound was able to inhibit the target protein in a micromolar range. 

Compounds of arbitrary structural diversity and with known activity 
against a target are particularly suitable not only for generating a ligand-
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based pharmacophore model (as described before), but also for structure 
similarity studies using a decision tree. The object is to find as good 
a distinction as possible on the basis of a set of molecular descriptors, 
which identify molecular features shared by different subsets of active 
compounds and accordingly filter out compounds within the dataset in 
which these combinations are lacking. Using not only a simple logical 
description of one model, but an ensemble of decision trees tend to be 
the preferred option, since the consensus voting among trees give the 
approach higher predictive accuracy. One form of multiple decision trees 
well performed to virtually screen large 3D databases is Random Forest 
[73]. This chemoinformatic method was recently applied in a theoretical 
work performed by Ehrman and co-workers to predict ligands of multiple 
targets, like cyclooxygenase (COX), lipoxygenase (LOX), aldose reductase, 
HIV-1 enzymes etc., from a large dataset of Chinese herbs [74]. 

9  Databases

The advent of structure databases has provided a basis for the development 
and feasibility of automatic methods for the search of new lead structures. 
Conceptually, all the virtual screening concepts presented above have their 
origins in synthetic chemistry. Their application, however, is just as well 
adaptable to NPs’ chemistry. Prior to the in silico filtering experiment, a 
3D structure database requires an efficient generation of reasonable, ener-
getically minimized conformations assumed to meet approximately those 
conformations that might be of biological relevance [75]. The underlying 
algorithms for 3D structure generation and conformation analysis are 
implemented in commercial software tools, e.g., in CORINA [21] or the 
CATALYST program (CATALYST, available from Accelrys Inc., San Diego, 
CA, USA; www.accelrys.com).

In the field of NPs the virtual screening application is mainly restricted 
due to the lack of searchable resources for structurally well defined natural 
compounds. In general, molecular databases with free access on the internet 
may comprise a high number of molecules, e.g., ChemBank (> 1,100,000, 
http://chembank.broad.harvard.edu) or PubChem (> 5,000,000; http://
pubchem.ncbi.nlm.nih.gov); however, information about the number of 
contained natural molecules is rarely available. The library of the National 



Judith M. Rollinger, Hermann Stuppner and Thierry Langer

230

Cancer Institute (NCI) stores structural information of more than half a 
million compounds from both synthetic and natural origin that have been 
collected and tested by the NCI since 1955. About half of the synthetic 
compounds, which represent the large majority of the samples, may be 
used for free and are thus in the public domain. It is called the ‘Open NCI 
Database’ (Development Therapeutics Program NCI/NIH; http://dtp.nci.
nih.gov/webdata.html). An interesting property prediction approach to 
the more than 250,000 compounds contained in this open database was 
provided by Poroikov and co-authors [76]. By use of the program PASS 
(Prediction of Activity Spectra for Substances) an in silico tool for complex 
searches of 565 different types of activities is provided; e.g., in the case of 
antineoplastic effects, the authors could demonstrate a substantial dataset 
enrichment over random selection by the use of PASS-predicted prob-
abilities.

Libraries covering a major part of entities from nature (at least some 
thousands) or consisting of structural information exclusively from natu-
ral origin are not free of charge, e.g., the Traditional Chinese Medicinal 
Database (TCMD; http://tcm3d.com/services.htm [77]) or the Dictionary 
of Natural Product Database launched by Chapman & Hall (DNP; http://
www.chemnetbase.com) providing chemical and physical data on some 
200,000 natural compounds gathered from the world’s chemical litera-
ture.

An excellent survey of public and commercial databases focusing on 
NPs has recently been published by Füllbeck and co-authors [78]. The 
authors provide information as to storing characteristics of the databases, 
web-addresses, total number of compounds and – if given – number of nat-
ural ones. In addition, a selection of suppliers and manufacturers of natural 
compounds and extracts are given. A new database is introduced by the 
authors (Super Natural Database [79]) storing information on available 
NPs, thus allowing the selection of compounds that can be purchased. 

Moreover a number of non-commercial in-house created databases 
have been used from different groups for their virtual screening studies 
on NPs, e.g., a marine natural product database (MNDP [80]), a natural 
product database (NPD [61, 81]), a database based on the antique source 
‘de materia medica’ by Pedanius Dioscurides (DIOS [81]), or a database fed 
with metabolites of ethnopharmacologically known plants [82]. Recently, 
Ehrman and co-authors generated a 3D multiconformational database of 
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Chinese herbal constituents containing a total of more than 8,000 com-
pounds from 230 Chinese herbs [83]. 

10  Integrated strategies for the discovery of 
 bioactive NPs

The more or less accurate prediction of potentially active compounds by 
virtual screening has doubtlessly rationalized the early drug discovery 
process. These filtering experiments definitely assist in saving costly and 
time-intensive pharmacological assays, since the pool of predicted ligands 
(i.e., virtual hits) is usually drastically reduced compared to the initial 
amount of compounds (i.e., 3D-database). Demands to be made on a 
good model are selectivity and target-specificity on the one hand, but it 
is also seminal not to lose too many valuable ligands during the filtering 
process.

How far all of these demands can be fulfilled strongly depends on the 
quality of information used as the basis for generating the model and the 
algorithm underlying the virtual screening process. In medicinal chem-
istry, an activity prediction of 10–30% is usually regarded as satisfying 
enrichment. In NP research, however, this percentage may be too scarce. 
It is rarely found that a large set of natural compounds can be acquired so 
easily. Only a minority of secondary metabolites are commercially avail-
able – usually at incredibly high prices. Thus, extraordinary charges and 
efforts are typically necessary before a virtual hit from nature is available 
for pharmacological testing. This process embraces the acquisition of the 
natural material described to contain the desired metabolite to the point 
of phytochemical analysis and isolation. Though advanced separation 
techniques, analytical instrumentation, and innovative tools for structure 
identification are at the phytochemists’ disposal, it remains a complex and 
sometimes uncertain endeavor. This is why the results obtained from in
silico predictions may nevertheless be too vague for a NP researcher. 

Methods are asked to further increase the probability of following the 
straight tip. There is the possibility to hyphenate sundry computational 
approaches, e.g., pharmacophore-based virtual screening combined with 
docking of the resulting virtual hits, or to consider only the consensus hits 
applying two or more screening concepts. Nevertheless all these strate-
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gies remain virtual and speculative. The combination of two approaches, 
which are completely divergent in nature, like a computational and an 
empirical one may however offer a more deepened access to bioactive NPs 
and may sometimes help to avoid a distorted view. 

Thus, the computer-aided molecular selection is best combined with 
further discovery methods, labeled as integrated approaches, to increase 
the probability in finding a real hit. In traditional pharmacognosy there are 
some well established methods in targeting this aim starting from a holistic 
level. These include (i) hints from ethnopharmacology, (ii) phenomeno-
logical effects registered after application of naturally derived preparations, 
(iii) guidance of chemotaxonomy, (iv) phylogenetic selection criteria, or 
(v) simply information gathered from a high/medium throughput screen-
ing of extracts. In a recently published review from our group, different 
strategies in the field of NPs have been presented with special emphasis 
on anti-inflammatory NPs interacting within the arachidonic cascade [84]. 
Integrated computational strategies for the discovery of natural bioactive 
compounds have been introduced elsewhere concentrating on their scope, 
strengths and limits [85]. 

Some strategies and examples from literature combining virtual screen-
ing approaches and classical methods for activity exploitation are outlined 
below. 

10.1    Strategy A (Fig. 5)

As soon as a sensitive data-mining tool has been developed and has proved 
itself by more or less selectively finding the active compounds within a test 
set, it can be applied for screening a 3D multi-conformational database. 
The subsequent procedure consists of the evaluation of the virtual hits 
considering physicochemical properties, toxicity and pharmacokinetics. 
In this stage additional virtual filtering tools for the profiling of ADME 
parameters [86] might have an invaluable impact to aid a refined selec-
tion of compounds. Then, a sensible choice of natural materials known 
to contain the focused metabolites and worth investigating in detail is a 
crucial step. It requires a comprehensive study in literature considering 
the hit content in the natural source, its availability and maybe hints from 
ethnopharmacology. 
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Once some natural materials are selected, it is advisable to perform a 
preliminary assay with those crude extracts and fractions assumed to con-
tain the promising metabolite/s. Though being aware that in case of small 
hit amounts present in the natural material the activity may be overseen. 
Therefore, it is advisable to first identify the promising constituent and 
to possibly enrich it in the extract to be tested. Those samples that scored 
well are then subjected to phytochemical investigations. In this way, the 
tricky selection of the natural material turns from a bold venture to a more 
rationalized endeavor. As soon as a promising (i.e., active) starting mate-
rial is found, there are in principle two possible strategies to embark on: 
The first one relies more on the in silico approach and focuses directly on 

Figure 5.
Strategy A for the discovery of bioactive NPs using an integrated virtual screening approach
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the identification of the initially obtained virtual hits within the natural 
matrix applying analytical tools, like LC-MS or LC-NMR, GC-MS etc. In 
a straightforward manner the hits are isolated using different chromato-
graphic separation steps. After structural confirmation the compounds are 
then tested to hopefully verify the predicted activities. This strategy is very 
goal-oriented, since only pharmacological assays for the finally isolated vir-
tual hits are necessary. On the other side, one may run the risk of ignoring 
further active NPs not necessarily fitting into the pharmacophore model.

The second strategy focuses on a bioactivity-guided fractionation irre-
spective of the virtual hits used for the selection of the starting material. 
Following the concept, the finally isolated active ingredients should cor-
respond to the predicted virtual hits. This approach is usually associated 
with higher phytochemical efforts and costs, because it requires an itera-
tive testing of all arising fractions and sub-fractions. For the evaluation of 
all the bioactive constituents in detail and for the discovery of possibly 
unknown metabolites this procedure is however indispensable.

The decision, which of the presented ways is the more appropriate for 
the investigation at hand, strongly depends on the reliability and selec-
tivity of the used pharmacophore model, and the costliness of the used 
assay.

The strategy schematized in Figure 5 was recently applied to a medicinal 
plant with anti-inflammatory potential known from ethnopharmacologi-
cal sources [87]. From the pharmacophore based virtual screening filtering 
experiment a number of secondary metabolites known from the mulberry 
tree complied with all the models’ requirements, thus revealed as virtual 
hits. Indeed, in vitro tests attested extracts of Morus root bark a distinct COX 
inhibitory potential. The objective was to find the active principles from 
this plant material applying both different methods for their discovery. 
First, the computer-aided approach was used to identify the virtually active 
compounds able to interact with the pharmacophore models for COX-1 
and -2. Second, the bioactivity-guided fractionation was conducted for the 
isolation of the COX-inhibiting constituents. This resulted in the isolation 
of nine compounds belonging to the chemical classes of sanggenons and 
moracins. In the enzyme assay, all the isolates showed moderate to potent 
inhibitory effects on COX-1 and -2. When comparing the hits of the vir-
tual screening with the experimental data, a good correlation between 
predictions provided by the computer assisted method and in vitro data 
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could be obtained in the case of the isolated sanggenons (e.g., sanggenon 
C; 12). However, this agreement could not be achieved with the moracins 
(e.g., moracin M; 13). In any case the virtual screening was particularly 
helpful for the decision regarding which plant material is worth extensive 
study. Furthermore, the disclosed interactions of the sanggenons with the 
pharmacophore model – miming the binding site of the target – provided 
us with some essential information about the molecular requirements of 
COX-ligands.

10.2    Strategy B

A different integrated procedure is schematized in Figure 6. Applying this 
approach, the pre-selection of the natural material is not guided by virtual 
prediction; but a number of extracts is roughly screened with a bioassay 
to identify the active ones. A similar strategy is to collect information 
about the traditional application of natural preparations in the field of 
the focused pharmacological target. A 3D database is then generated con-
sisting of all the metabolites known from literature to be included in that 
extract/s that came off well. Likewise, ethnopharmacological knowledge 
about useful preparations from nature may guide the selection of NPs. The 
resulting biased database is virtually screened with an established pharma-
cophore model of the aiming target.

The impact of ethnopharmacology has been analyzed in a previous 
study from our group; there we investigated the statistical evidence consid-
ering hints from folk medicine for the discovery of anti-inflammatory NPs 
utilizing pharmacophore-based virtual screening techniques [81]. COX-1 
and -2 were used as preferential targets, since they are key enzymes in the 
inflammation process. Dioscorides’ de materia medica, which was written 
in the 1st Century AD, was used as the ethno-pharmacological source. Sec-
ondary metabolites of those medicinal plants, which Dioscorides described 
as active against fever, rheumatism, pain and pus were stored in a multi-
conformational 3D database. This was virtually screened against the vali-
dated pharmacophore models. The resulted hit list was analyzed and com-
pared with those obtained by screening unbiased databases of natural as 
well as of synthetic origin. The effectiveness of an ethnopharmacological 
approach could be statistically demonstrated by obtaining a significantly 
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higher hit rate compared to the hit rates of the unbiased natural as well as 
synthetic databases.

Following this strategy the putative hits may then be identified by 
modern analytical tools like LC-MS or LC-NMR to isolate them from the 
natural matrix in a target-oriented way for pharmacological testing. This 
approach is especially helpful for intricate pharmacological assays, which 
would turn a bioguided fractionation into an unrealistic endeavor.

A combination of an ethnopharmacologically based pre-selection of 
plant material and a computational approach was reported by Bernard 

Figure 6.
Strategy B for the discovery of bioactive NPs using an integrated virtual screening approach
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and co-workers, who used this strategy to rationalize a phytochemical lead 
discovery [88]. Starting with an in vitro screening on phospholipase A2 per-
formed with traditionally used anti-inflammatory plant extracts, a focused 
structural database was generated and virtually screened on an established 
ligand-based pharmacophore model for human non-pancreatic phospho-
lipase A2. The combination of experimental data with database exploita-
tion and molecular modeling resulted in the efficient identification of 
betulin (14) and betulinic acid (15) as extract ingredients with distinct 
anti-inflammatory in vitro effects. 

The combination of the two different, but complementary strategies 
consisting of in vitro screens and in silico assessment has recently been 
described by van de Waterbeemd [89]. He labeled this method as ‘in combo’
approach and used it for the straight forward access of various ADME prop-
erties. The application of the ‘in combo’ approach for the discovery of NPs 
has recently been tested in our group by the search of natural acetylcho-
linesterase inhibitors [90]. In a medium-sized throughput screening about 
100 plant extracts were investigated using an acetylcholinesterase enzyme 
test. From the sample showing the best inhibitory activity, all the known 
secondary metabolites were fed into a small 3D multiconformational data-
base and subsequently subjected to a virtual screening on a generated 
pharmacophore model. The efficacy of this procedure could be confirmed 
by the isolation of the obtained virtual hits, i.e., 8-deoxylactucin (16) and 
lactucopicrine (17). They showed a significant and dose-dependent inhibi-
tory effect in the enzyme assay. 

Methods and expectations of this integrated virtual screening concept 
have previously been discussed in detail by J. Bajorath [91, 92] with the 
author’s final statement that ‘a meaningful integration of virtual and experi-
mental screening programs, together with lessons to be learned from structural 
genomics, holds great promise for more rapid and consistent identification of high 
quality hits or leads across divers classes of therapeutic targets’. Though this 
conclusion was not particularly coined to NPs, it comes especially true in 
the rich world of secondary metabolites. 

Further hybridized computational strategies are quite sensible to get 
an improved understanding of ligand-target interactions. In the following 
two examples docking protocols helped enlighten the molecular mecha-
nism of bioactive natural compounds. Chimenti and co-authors isolated 
quercetin (18) among other secondary metabolites from the Mediterra-
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nean shrub Hypericum hircinum and identified this flavonol as selective 
inhibitor of the MAO-A with an activity in the nanomolar range (IC50 = 
10 nM) [93]. For a more comprehensive understanding of the underlying 
molecular selectivity, conformation analysis and docking simulations 
were performed using the most recent crystallographic structures of both 
human isoforms MAO-A and MAO-B. This enabled the authors to identify 
the most important interactions between the residues and the cofactor 
within the enzymatic cleft. The estimated free energies of complexation 
were in agreement with experimental data and confirmed the distinct 
preference for the MAO-A cleft with more intermolecular hydrogen bonds 
and -  interactions.

The goal of a recent in-house study was to rationalize the binding 
interaction of the protoalkaloid taspine (19) within acetylcholinesterase. 
Taspine was isolated in a bioactivity-guided manner from Magnolia x sou-
langiana and revealed as selective inhibitor of acetylcholinesterase with a 
significantly higher effect than the positive control galanthamine (20; IC50

= 0.33 ± 0.07 µM). Extensive molecular docking studies were performed 
with human and Torpedo californica-acetylcholinesterase employing Gold 
software (Vers. 3.1; www.ccdc.cam.ac.uk/products/life_sciences/gold/). The 
results suggested taspine to bind in an alternative binding orientation than 
galanthamine [94]. While this is located in close vicinity to the catalytic 
amino acid triad, taspine was found to be mainly stabilized by sandwich-
like -stacking interactions in the aromatic gorge of the enzyme.

In both case studies the active natural compound was already identi-
fied. Thus, the in silico tool was not employed for data mining, but to elicit 
the putative binding mode in the macromolecular target. Docking simu-
lations turned out to be excellent tools to get an idea about the assumed 
molecular ligand target interaction.

10.3    Strategy C

Another approach capitalizes exactly on the just-mentioned observation 
that computational predictions may reveal an idea about the interaction 
to a specific target’s binding site. Thus, it is possible to start with one com-
pound of unknown activity and to mine it against a number of structurally 
disclosed targets in terms of elaborated pharmacophore models (Fig. 7), i.e., 
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parallel in silico screening (see previous). As soon as the orphaned molecule 
is able to comply with all the requirements and restrictions imposed by 
any model, it can be assessed as rational hint. Consequently, the focused 
compound will be subjected to a pharmacological testing on the predicted 
target/s. In this way, the parallel screening is not only helpful to estimate 
the interactions of a drug candidate with diverse antitargets; or to canvass 
its interactions to related targets as is performed for an activity profiling. 
In this approach, the parallel screening is a computational tool for target
fishing to get a rational idea about any potential target interaction and to 
prioritize a few targets for experimental evaluation by applying simple 
ligand-based or target-based queries. The potential of virtual screening of 
target libraries was recently discussed by Didier Rognan [95]. In his group a 
structure-based method for target screening was pursued applying inverse 

Figure 7.
Parallel screening for the discovery of bioactive NPs
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docking [96]. The authors used 2,148 structurally well-defined PDB entries 
to build a 3D protein library. The virtual screening of this protein library 
with four unrelated ligands was suitable for recovering the true targets of 
specific ligands and may as well be used for virtual selectivity profiling of 
any ligand of interest.

Nettles and co-authors performed the target fishing approach using a 
ligand-based procedure [97]. The potential of both 2D and 3D chemical 
descriptors were compared as tools for predicting the biological targets of 
ligand probes on the basis of their similarity to reference molecules in a 
chemical database comprising 46,000 biologically annotated compounds. 
The ligand-based 3D tool FEPOPS (FEature POint PharmacophoreS), which 
provides pharmacophoric alignment of the small molecules’ chemical 
features consistent with those seen in experimental ligand/receptor com-
plexes, was used for scaffold jumping within the screened database. Using 
ATP the authors were able to identify the natural compound balanol (21) 
as ligand of CDK2. 

The highest effort applying this strategy is the availability of a rep-
resentative amount of reliable pharmacophore models covering a wide 
range of relevant targets (Fig. 7). Thus, it may be of particular interest to 
focus on one pathological syndrome, e.g., obesity, inflammation, apop-
tosis etc., where a phenomenological activity of a NP is already evident. 
Applying this approach the disposition of pharmacophore models for tar-
gets involved in the respective pathological complex is easier to manage. 
In this way, a goal-oriented strategy may help to bridge the gap between a 
phenomenological effect and the underlying molecular mode of action.

11  Conclusion

Pertaining to the drug discovery from nature we are facing two facts: (i) 
statistics show that the myriad of structurally diverse natural compounds 
are the most favored source of new drugs for clinical use [5]; (ii) the drug 
discovery process has moved towards more rational concepts based on the 
increasing understanding of the molecular principles of protein–ligand 
interactions. Spurred on by economic interest fundamental advances have 
been made in research applying data mining strategies, like virtual screen-
ing.
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Chart 1.
Structures 1–11
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Chart 2.
Structures 12–21
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Though being aware of both potentials, their combined benefit could 
only rudimentary be savored. Only limited attempts applying innovative 
in silico tools in NP research are pursued so far, because the search for 
bioactive compounds is a complex and multidisciplinary challenge. Thus, 
a sensible adaptation of computational strategies is in demand to profit 
in an economic way from the unique chemical and biological diversity 
associated with NPs. Virtual screening techniques, however, must not 
be used exclusively as activity-predicting tools, since the results provide 
merely an indication for a putative activity: it is only by the creation 
of interfaces between computational tools and well-established meth-
ods from pharmacognosy that a reasonable standard of success can be 
achieved. The search for the most effective strategy is best performed by 
a drug discovery process that involves the exploitation of all the informa-
tion which can be gathered from bioactivity-guided fractionation, on-line 
analytical activity profiling, ethnopharmacological screening, chemo-
informatics, virtual and in vitro screening studies. In the first instance it 
behoves modern pharmacognosy to skillfully exploit knowledge from 
all these fields because it is of paramount importance to sift through the 
enormous wealth of NPs. 

Examples underlining the impact of virtual screening on the iden-
tification of active NPs have been presented in this survey. Though the 
full potential in this field is by far untapped, these early results indicate 
that the integrated virtual screening approaches are target-oriented and 
trendsetting strategies. However, as any computer-based technique, the 
successful use of virtual screening will entirely depend on the way it is uti-
lized and the quality of its underlying experimental data. The advantages 
implemented to a virtual screening cycle compared to a conventional in
vitro screening are obvious: (i) higher capacity, (ii) no need for isolated 
compounds, (iii) less experimental efforts for testing; (iv) theoretically, 
interactions of all known NPs to all structurally defined targets can be cal-
culated and predicted, (v) the quality of hit compounds can be increased 
by additional drug-like filters and virtually restricted ADME properties; 
thus diminishing failures in the early drug development. 

Nevertheless experimental investigations are seminal, but can be 
focused in a more effective fashion. A cautious handling of virtual hits 
together with lessons learned from traditional pharmacognosy seems to be 
crucial for a successful exploitation of treasures from nature. In this area, 
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virtual screening will most likely play an essential role in accelerating the 
early stage of drug discovery by efficiently digging out lead compounds 
from nature.
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