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Adrenocortical carcinoma (ACC) is a rare malignant tumor with poor prognosis. Ferroptosis, a new form of cell death, differs
from other forms of cell death and plays a vital role in tumor progress. Our study aimed to establish a ferroptosis-related signature
with prognostic value in ACC. RNA-seq data and corresponding clinical characteristics for ACC were downloaded from TCGA
and GEO databases. Genes included in ferroptosis risk signature were assessed by univariable and multivariable Cox regression
analysis as well as lasso regression analysis./e prognostic value of the ferroptosis risk signature was assessed using K-M and ROC
curves. Furthermore, we performed GSEA to discover the enriched gene sets in high-risk group. Additionally, TIMERwebsite was
applied to detect a possible connection between the signature and immune cells infiltration. ssGSEA was performed to evaluate
scores of immune cells and immune-related pathways in two groups. A ferroptosis signature comprised of six genes (SLC7A11,
TP53, HELLS, ACSL4, PCBP2, and HMGB1) was constructed to predict prognosis and reflect the immune infiltration in ACC.
Patients in high-risk group were inclined to have worse prognosis. /e ferroptosis model performed well in predicting prognosis
and could be served as an independent indicator in ACC. GSEA revealed that gene sets correlated with biological processes
including cell cycle, DNA replication, base excision repair, and P53 signaling pathway were highly enriched in high-risk group. In
addition, we discovered that the expressional levels of hub genes were linked to six immune cells’ infiltration in ACC tumor.
ssGSEA revealed that contents of most immune cells significantly decreased in the high-risk group. In conclusion, the novel
ferroptosis risk signature could be useful in predicting prognosis and reflecting immune infiltration in ACC. It also brings us new
insights into the possible value of targeting ferroptosis during the therapy of ACC.

1. Introduction

Adrenocortical carcinoma (ACC) is a rare and aggressive
malignant tumor derived from adrenal cortex with dismal
prognosis [1]. Although it is advantageous for ACC patients
to receive complete surgical resection or treatment with
mitotane, the 5-year survival rate is less than 40% [2, 3].
Meanwhile, prognosis varies based on age, scope of surgery,
mitotic intensity, and hormone secretion. /e present

tumor, lymph node, and metastasis (TNM) classification
method is unreliable in predicting prognosis owing to the
heterogeneous features of ACC patients. It is challenging to
make accurate prediction for ACC patients because of the
diverse pathogenic factors, high heterogeneity, and poor
prognosis. Hence, it is imperative to identify more effective
biomarkers for predicting prognosis of ACC patients.

Ferroptosis is a novel iron-dependent form of regulated
cell death along with iron accumulation and lipid
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peroxidation [4]. In the aspect of morphology, biochemistry,
and genetics, ferroptosis differs from other forms of cell
death such as apoptosis, necroptosis, autophagy, and
pyroptosis [5]. Emerging researches demonstrated that
ferroptosis is implicated in neurous system disorders and
plenty of cancers [6, 7]. Several research studies have re-
cently mined the online databases for identifying prognostic
signatures based on ferroptosis-related genes in diverse
cancers. Luo et al. produced a new ferroptosis-related sig-
nature that may predict prognosis in uveal melanoma pa-
tients [8]. For predicting the prognosis of low-grade gliomas,
Zheng et al. constructed a risk signature that included 12
ferroptosis-associated genes [9]. However, no research has
yet determined whether ferroptosis-related genes are linked
to ACC patients’ prognosis.

Firstly, we downloaded the mRNA expression data and
relevant clinical information of ACC patients from public
datasets. /en, based on the ferroptosis-related genes as-
sociated with overall survival (OS) from /e Cancer Ge-
nome Atlas (TCGA) cohort, we developed a prognostic risk
signature and validated it in Gene Expression Omnibus
(GEO). We further performed Gene Set Enrichment
Analysis (GSEA) to explore the underlying mechanisms.
Finally, we evaluated the potential associations between the
prognostic genes and immune cells based on the Tumor
Immune Estimation Resource (TIMER).

2. Methods

2.1. Data Collection. As a training set, TCGA database was
applied to collect the mRNA expression and related clini-
copathological data of 79 ACC patients. In addition, 21 ACC
patients with survival information from GEO database
(GSE19750) were retrieved as a validation set. Supple-
mentary Material Table S1 listed the detailed clinical in-
formation. A list of 130 ferroptosis-associated genes was
downloaded from GeneCards detailed in Table S2. No
ethical approval was required because the data we utilized
were obtained from public databases.

2.2. Establishment and Validation of a Prognostic Ferroptosis
Risk Signature. To construct a ferroptosis risk signature in
ACC patients, univariate Cox regression analysis was applied
to assess the association between ferroptosis-associated genes
and OS. PPI network diagram of the candidate prognostic
ferroptosis-related genes was drawn using STRING online
database to explore the relationships between these genes.
Ferroptosis-related genes with a p value< 0.05 in univariate
analysis were considered as candidate genes and recruited
into lasso-penalized Cox regression analysis to narrow the
gene extent with independent prognostic value. Further
multivariate Cox regression analysis was then used to elim-
inate the possible interaction among the candidate genes and
obtain the coefficients./e risk score value of each patient was
calculated by the following formula:

risk score � 􏽘
n

i�1
(coef mRNAi∗ expression of mRNAi). (1)

Coef was the coefficient calculated by multivariable Cox
regression. Risk score was calculated for each individual, and
total patients in the TCGA and GEO databases were allo-
cated into high- and low-risk groups according to the
median risk score value. PCA and t-SNE were adopted to
explore whether the risk model had reliable clustering
ability. Kaplan–Meier (K-M) curves were generated to
compare the survival difference in two groups. Moreover,
receiver operating characteristic (ROC) curve and area
under the ROC curve (AUC) were applied to evaluate the
prognostic value of risk signature for OS in ACC patients.
Furthermore, we performed univariate and multivariate Cox
analysis to determine whether the risk score could serve as
an independent factor for OS. We further applied GEO data
to verify the above results through the same methods.

2.3. GSEA. To assess the potential molecular mechanisms
underlying our risk signature, GSEA was applied to identify
enriched terms correlated with KEGG pathway in high-risk
group. Significant gene sets were classified as those with
normalized enrichment score (NES)> 1 and minimal p

value< 0.05.

2.4. TIMER and ssGSEA. TIMER is an integrated website,
which could measure immune infiltrate levels in various
cancers, including ACC. In our study, we assessed the
correlation between the hub ferroptosis-related genes with
the contents of six immune cells, including CD4+ T cells,
CD8+ T cells, B cells, neutrophils, dendritic cells, and
macrophages in AGG via the TIMER. ssGSEA was per-
formed to evaluate scores of 13 immune-related pathways
and 16 immune cells in two risk groups.

3. Results

3.1. Construction of a Ferroptosis Risk Signature. Flow chart
of our research was displayed in Supplementary Figure S1.
To construct a ferroptosis risk signature and explore its
prognostic value in ACC patients, a total of 94 overlapping
ferroptosis-associated genes derived from the TCGA and
GEO database were preserved for further analysis. /en,
univariate Cox regression analysis was performed to assess
the association between the expression levels of these 94
genes with ACC clinical survival information in the TCGA
dataset. We found 31 ferroptosis-associated genes correlated
with OS of ACC patients (Figure 1(a), p< 0.05). Figure 1(b)
displayed the PPI network suggesting that TP53, HMGB1,
CDKN2A, and MAPK1 were the hub genes. /e association
among these genes was exhibited in Figure 1(c). 11 fer-
roptosis-associated genes were finally reserved after lasso
regression analysis (Figure 1(d)). In addition, through
further multivariate Cox regression analysis to eliminate the
possible interaction among the candidate genes, six genes
(SLC7A11, TP53, HELLS, ACSL4, PCBP2, and HMGB1)
were screened out (p< 0.05), suggesting their strong cor-
relations to the OS of ACC patients (Figure 1(f)). /e
multivariate Cox regression coefficients and expression
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levels of the six ferroptosis-associated genes were used to
construct a ferroptosis risk model./e formula for risk score
calculation is as follows: risk score � (0.88∗ SLC7A11) +
(0.50∗TP53) + (1.37∗HELLS) − (1.37∗ACSL4) + (1.06∗
PCBP2) + (1.55∗HMGB1).

3.2.PrognosticPerformanceof theFerroptosisRiskSignature in
TCGA. As seen in Figure 2(a), most of ferroptosis-associ-
ated genes were linked with a higher risk score in TCGA
cohort. Based on the median risk score, individuals in TCGA
were assigned to high-/low-risk group (Figure 2(b)). Patients
in high-risk class had higher mortality than those in low-risk
class (Figures 2(c) and 2(d)). PCA and t-SNE showed that
individuals in disparate categories were distributed in dif-
ferent directions (Figures 2(e) and 2(f )). Furthermore, pa-
tients in high-risk group were inclined to have shorter OS
than those in low-risk group (Figure 2(g)). In addition, the
AUC in TCGA reached 0.909 at 1 year, 0.947 at 3 years, and
0.968 at 5 years, respectively (Figure 2(h)). /ese results
suggested that the novel ferroptosis risk signature had a
definite effect in predicting the prognosis of ACC patients.
K-M curves for each of the six hub genes included in the risk
model in ACC are demonstrated in Supplementary
Figure S2, showing that lower expression of ACSL4 and
higher expression of SLC7A11, TP53, HELLS, PCBP2, and
HMGB1 were associated with poor survival. Considering
heterogeneity of ACC patients, we further assess whether the
ferroptosis risk signature had good performance in pre-
dicting the prognosis of ACC patients in different stages. As
shown in Supplementary Figure S3, patients in high-risk
group had shorter OS than those in low-risk group in both
stage 1-2 group (p � 0.00062) and stage 3-4 group
(p< 0.0001), suggesting that our ferroptosis risk signature
also performed well in predicting prognosis of ACC patients
in different stage.

3.3. Validation of the Ferroptosis Risk Signature in GEO.
In GEO cohort, the heatmap revealed that most of the
ferroptosis-associated genes were also related with a higher
risk score (Figure 3(a)). In the same way, ACC patients in
GEO were categorized into two groups (Figure 3(b)).
Similarly, PCA and t-SNE analysis showed that patients in
GEO with different risk scores were distributed in disparate
directions (Figures 3(e) and 3(f)). As shown in Figure 3(g),
the OS of patients in high-risk class was obviously shorter
than that of patients in low-risk group in GEO cohort
(p � 0.006). In addition, the ROC curve was drawn to assess
the predictive performance of the risk model./e AUC at 1-,
3-, and 5-year in GEO cohort were 0.618, 0.899, and 0.945,
respectively, indicating that the risk signature had a
favourable capacity in predicting prognosis of ACC patients
(Figure 3(h)).

3.4. Independent Prognostic Value of the Ferroptosis Risk
Signature. We performed univariate and multivariate Cox
regression analyses to observe whether clinical charac-
teristics (such as age, gender, T, N, M, and stage) and the

risk score are independent prognostic factors for OS. We
discovered that the risk score and T staging were inde-
pendent prognostic predictors for OS in TCGA cohort.
Owning to incomprehensive clinical parameters, a further
Cox regression was not conducted to assess the prognostic
value in GEO cohort. In addition, we investigated the
correlation between the six ferroptosis-associated genes
with the pathological T staging in ACC patients. Heatmap
showed the expressional profiles of the six ferroptosis-
associated genes at different T staging in TCGA cohort
(Figure 4(c)). As drawn in Figure 4(d), the expressional
levels of the major ferroptosis-associated genes, except
ACSL4, which was considered as a protective gene, were
generally higher in ACC patients at advanced T staging.
We further compared the prognostic efficiency of our
ferroptosis risk signature with other common prognostic
factors, including age, gender, T, N, M, and stage. As
shown in Figure 4(e), our ferroptosis risk signature
(AUC � 0.909) demonstrated significantly better predic-
tion of ACC patients’ OS at 1 year than age (AUC � 0.707),
gender (AUC � 0.438), T staging (AUC � 0.649), N staging
(AUC � 0.438), M staging (AUC � 0.528), and stage
(AUC � 0.587). /ese results suggested that our risk sig-
nature performed better than other common prognostic
characteristics.

3.5. GSEA for Identifying the Ferroptosis-Associated Signaling
Pathways. We conducted GSEA to compare the biological
signaling pathways between two groups. It was noteworthy
that enriched gene sets linked to cell cycle, base excision
repair, DNA replication, and P53 signaling pathway were
highly enriched in high-risk group in both TCGA and GEO
datasets (Figures 5(a) and 5(b).

3.6. Relationships between the Ferroptosis-Associated Genes
and Immune Infiltration. Numerous studies demonstrated
that the infiltration of cancer-related immune cells is asso-
ciated with tumor development and prognosis. To identify
whether there was a link between immune infiltration and the
expressional levels of hub genes, we used TIMER to assess the
correlation between the 6 hub genes and tumor purity along
with six types of immune cells. As exhibited in Figure 6(a), we
found the association between SLC7A11 expression and in-
filtration levels of B cells (r� 0.273, p � 1.94e−02), CD8+
T cells (r� −0.007, p � 9.55e−01), CD4+ T cells (r� −0.037,
p � 7.55e−01), macrophages (r� 0.106, p � 3.72e−01), neu-
trophils (r� 0.051, p � 6.69e−01), and DCs (r� 0.206,
p � 8.06e−02) in ACC. Besides, the other 5 hub ferroptosis-
associated genes (TP53, HELLS, ACSL4, PCBP2, and
HMGB1) included in the signature also showed significant
correlation with the infiltrating levels of B cells (r� 0.159 to
0.387, p< 0.001), CD8+ T cells (r� −0.078 to 0.211,
p< 0.001), CD4+ T cells (r� −0.019 to 0.293, p< 0.001),
macrophages (r� −0.155 to 0.304, p< 0.001), neutrophils
(r� 0.044 to 0.257, p< 0.001), and DCs (r� 0.206, p< 0.001)
in ACC (Figures 6(b)–6(f)). In sum, these results revealed that
these 6 hub genes were in varying degrees related to tumor-
associated immune cells in the ACC microenvironment.
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Figure 1: Construction of ferroptosis risk signature. (a) Forest plots showing the results of ferroptosis-related genes associated with OS by
univariate Cox regression. (b) PPI network indicating the interactions among the candidate genes from the STRING. (c) /e correlation
network of candidate genes. (d) Partial likelihood deviance for the lasso regression. (e) Lasso profiles of ferroptosis-related genes. (f ) /e
ferroptosis risk signature developed by multivariate Cox regression.
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To identify the association between our signature and
immune microenvironment condition in ACC, we further
performed ssGSEA to evaluate the scores of 16 immune cells
and 13 immune-related pathways in TCGA cohort. We found
that the contents of most immune cells in high-risk group,
including aDCs, B cells, CD8+T cells, iDCs, mast cells,
neutrophils, NK cells, pDCs, T helper cells, Tfh,/2 cells, and
Treg, were significantly lower than those in low-risk group
(Figure 7(a)). Moreover, the scores of the most immune-
related pathways were lower in high-risk group (Figure 7(b)).
/e above results suggested an immune suppressive micro-
environment in ACC patients with high-risk scores.

4. Discussion

ACC is a rare endocrine malignancy with poor prognosis.
For early diagnosis, more effective therapy, accurate prog-
nosis of ACC, novel biomarkers, and prognostic signatures
are required. Although there are some single gene and risk
models linked to ACC patients’ prognosis, no ferroptosis-
related risk signature was reported for predicting prognosis
in ACC. In our study, the associations between 103 fer-
roptosis-related genes and OS as well as immune cells in-
filtration were investigated in ACC patients. A new
prognostic risk signature including six ferroptosis-
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Figure 2: Prognostic value of the ferroptosis risk signature in TCGA. (a) Heatmap of the 6 ferroptosis-associated genes in two groups. (b)
/e distribution and median value of the risk scores. (c), (d) /e mortality in two groups. (e) /e PCA plot. (f ) /e t-SNE analysis. (g) K-M
curves for the OS of patients in two groups. (h) ROC curve for assessing the predictive efficiency of the risk signature.
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associated genes correlated with immune cells infiltration
was firstly constructed in ACC patients.

Ferroptosis, a novel form of cell death, emphasizes the
importance of iron synthesis and metabolism, which was
firstly proposed in 2012. On account of discovering the
unique cell death form, numerous researches are focusing
on the exploration of the potential mechanisms and
therapy related to ferroptosis in multiple cancers. Previous

studies show that ferroptosis also opens up a new potential
avenue for cancer development and treatment [10, 11].
Furthermore, the expressional level of ferroptosis-related
gene GPX4 and the sensitivity to ferroptosis were signifi-
cantly increased in ACC, indicating that ACC patients may
be susceptible to induction of ferroptosis [12]. In this study,
we constructed a novel ferroptosis risk signature with
powerful value in predicting ACC patients’ prognosis for
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Figure 5: GSEA for identifying the ferroptosis-associated signaling pathways. (a) GSEA of the associated signaling pathway in TCGA
cohort. (b) GSEA of the associated signaling pathway in GEO cohort.
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Figure 6: Continued.

8 International Journal of Endocrinology



the first time. Furthermore, the risk signature had better
prognostic efficiency than other common prognostic fac-
tors, including age, gender, T, N, M, and stage of ACC
patients. /e six ferroptosis-related genes adopted in the
risk signature contained the risk-related genes (SLC7A11,
TP53, HELLS, PCBP2, and HMGB1) and the protective
gene (ACSL4).

/ese hub genes can be crudely categorized into four
classes, including iron metabolism (PCBP2), lipid meta-
bolism (ACSL4, HELLS), (anti)oxidant metabolism
(SLC7A11, HMGB1), and cancer metabolism (TP53) [11].
Among these, tumor protein p53 (TP53) acts as an im-
portant tumor suppressor in cancer development and
progression. Apart from the impact on apoptosis and cell
cycle, TP53 could regulate cancer ferroptosis in a dual
manner at transcriptional or posttranslational levels [13]. By
targeting DPP4 and inducing P21 expression, TP53 could
inhibit the ferroptosis. Conversely, ferroptosis could be
enhanced by the inhibitory effect of TP53 on solute carrier
family 7 member 11 (SLC7A11) in cancers [14]. Moreover,
overexpression of SLC7A11, which had a high expression in
several cancers, including ACC, inhibited the ferroptosis
induced by ROS [14, 15]. Helicase lymphoid specific
(HELLS, known as LSH), a chromatin remodeler, was shown
to be linked with advanced stage and worse prognosis in
pancreatic carcinoma, hepatocellular carcinoma, and na-
sopharyngeal carcinoma [16–18]. In lung carcinoma, Jiang
et al. demonstrated that HELLS could inhibit ferroptosis by
stimulating ferroptosis-associated genes SCD1 and FADS2

and lipid metabolism-related gene GLUT1 [19]. Poly(rC)
binding protein 2 (PCBP2), an RNA-binding adaptor pro-
tein, could bind and deliver iron to ferritin for storage.
Higher levels of PCBP2 are connected with worse prognosis
in glioblastoma and gastric cancer [20, 21]. High mobility
group box 1 (HMGB1), a nuclear protein, releases under the
exposure to ferroptosis activators [22]. Ye et al. found that
HMGB1 is a novel regulator of ferroptosis through RAS-
JNK/p38 pathway in leukemia [23]. In addition, acyl-CoA
synthetase long-chain family member 4 (ACSL4), a vital
protein in ferroptosis, was overexpressed and served as an
independent prognostic indicator in various cancers [24]. It
is reported that ACSL4 is both a sensitive regulator and an
effective inducer of ferroptosis [25]. In short, previous re-
search revealed that these six genes are closely connected
with ferroptosis and tumorigenesis, providing a powerful
theoretical foundation for our risk model based on fer-
roptosis-related genes. Moreover, it was reported that ACC
was associated with abnormal p53 signaling and frequent
genetic alterations in TP53 [26]. In the study based on the
comprehensive genomic characterization of 91 ACC pa-
tients, TP53 somatic alterations were reported to be the most
frequent gene with genetic alterations [27]. TP53 p.R337H
mutation is highly prevalent among children with ACC,
accounting for 90% of ACC cases in Southern Brazil [28].
Although limited research focusing on the effects of these six
hub genes on ACC have been published, we found that lower
expression of ACSL4 and higher expression of SLC7A11,
TP53, HELLS, PCBP2, and HMGB1 were related to poor OS
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Figure 6: Relationships between the ferroptosis-associated genes and immune infiltration. (a–f). Relationship between the 6 hub fer-
roptosis-associated genes expression (SLC7A11, TP53, HELLS, ACSL4, PCBP2, and HMGB1) and the infiltrating levels of six immune cells
in ACC.
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of patients with ACC in our study, and the underlining
mechanism needed further study. In addition, it is reported
that adrenal cortex cells are extremely sensitive to ferroptosis
due to their steroidogenic properties. Mitotane, as the only
available drug applied in the treatment of ACC, is unable to
induce ferroptosis [15]. Hence, it might be very promising in
developing new drugs by inducing ferroptosis for ACC in
years to come.

According to recent studies, ferroptosis could play a vital
role in tumor immunotherapy [29–31]. IFNc, released by
CD8+ T cells, regulates lipid peroxidation and ferroptosis-
related pathways in tumors. Several studies have shown that
cells under the condition of ferroptosis could modulate
anticancer immunity by releasing chemotaxis interacted
with immune cells, such as NK and CD8+ T cells [30, 32].
Furthermore, a previous study reported that iron
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metabolism-related genes FPN1 and CP might participate in
tumor immune microenvironment of ACC [33]. Of note, we
mentioned that the ferroptosis-related genes in our signa-
ture have significant associations with immune cells, im-
plying that ferroptosis and immunity in ACC
microenvironment are complicated. Meanwhile, the lower
scores of immune cells and immune-related functions in
high-risk group suggested an immune suppressive micro-
environment in ACC patients with high-risk scores, im-
plicating that the poor prognosis of patients in the high-risk
group might be caused by the immunosuppressive status.
However, the underlying mechanisms between ferroptosis-
related genes and tumor immunity in ACC remain poorly
understood and warrant further investigation.

As far as we know, this is the first study aiming at
constructing and validating a ferroptosis risk signature in
patients with ACC. /ese results revealed that our ferrop-
tosis risk signature could be considered as a powerful tool for
predicting prognosis and reflecting the immune infiltration
in ACC. However, there are several limitations in our study.
Firstly, our study was retrospective based on public datasets,
so further large-scale prospective researches and clinical
trials are needed for validation of the prognostic ability.
Besides, the mechanism of how ferroptosis modulates the
development of ACC was not verified by functional ex-
periments. /us, further researches are required to confirm
our findings and explore the underlying mechanisms before
application in clinical practice.
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