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Background: In Australia, more money is spent on skin cancer than any other malignancy. Despite this, the mortality rate of
melanoma, the deadliest form, has steadily increased over the past 50 years. Diagnostic imprecision and a lack of complimentary
molecular biomarkers are partially responsible for this lack of progress.

Methods: Whole-microRNAome profiling was performed on plasma samples from 32 patients with histologically confirmed
melanoma and 16 normal controls. A classification algorithm was trained on these data and independently validated on multiple
previously published microRNA data sets, representing (i) melanoma patient- and normal-blood, (ii) melanoma and nevi biopsy
tissue, and (iii) cell lines and purified exosomes.

Results: 38 circulating microRNAs had biologically and statistically significant differences between melanoma and normal plasma
samples (MEL38). A support vector machine algorithm, trained on these markers, showed strong independent classification
accuracy (AUC 0.79–0.94). A majority of MEL38 genes have been previously associated with melanoma and are known regulators
of angiogenesis, metastasis, tumour suppression, and treatment resistance.

Conclusions: MEL38 exhibits disease state specificity and robustness to platform and specimen-type variation. It has potential to
become an objective diagnostic biomarker and improve the precision and accuracy of melanoma detection and monitoring.

The age standardised mortality rates of four of the five most
common cancers in Australia (i.e., prostate – first; breast – second;
colorectal – third; lung – fifth) are currently at their lowest levels
since government records began. In stark contrast, the mortality
rate of the fourth most common cancer, melanoma, has
consistently increased and is now 4200% higher than it was in
the 1960s (Australian Institute of Health and Welfare, 2017)
(Supplementary Figure 1). In 2017, melanoma kills at least three
people per day, resulting in an annual death toll higher than from
motor vehicle accidents. Despite this lack of progress, the
Australian Government spends an estimated $900 million on skin
cancer each year (melanoma $200 m, non-melanoma $700 m),
which is more than it spends on any other cancer type (Fransen
et al, 2012; Elliott TM et al, 2017). Recent advances in

immunotherapy for late stage melanoma patients, which can cost
upwards of $200 000 per patient per year, are likely to add to this
figure (Luftos and Wilslow, 2015). As melanoma is easily and
inexpensively cured if diagnosed early, this combination of
increasing mortality and ballooning expenditure suggest that new
thinking is needed on how skin cancer, particularly melanoma, is
diagnosed and managed.

In order to determine the pathological status of a suspicious
skin lesion, visual examination, dermoscopy, biopsy, and
histopathological examination are the methods currently
employed. Pigmented lesions can be difficult to diagnose and
subjective to the pathologist viewing them, especially in the case
of in situ or borderline. A recent study of pathologists’ diagnostic
accuracy concluded that up to one in six melanomas may be
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misdiagnosed due to an inter-pathologist variation of up to 45%.
This study also showed that 33% of skin lesion biopsies receive a
different diagnosis when reviewed by the same pathologist 8 or
more months apart. The authors conclude that diagnosis of skin
lesions ranging from benign to invasive melanoma are nether
accurate nor reproducible. The development of molecular tools
to compliment visual assessments is suggessted (Elmore et al,
2017). In addition to the risk of under and overtreatment
caused by diagnostic imprecision, there is significant economic
impact. In the United States alone, it is estimated that this
diagnostic imprecision adds US$673 million to the cost of
melanoma management. (Bhattacharya et al, 2017; Elmore
et al, 2017).

MicroRNAs (miRNAs) are a class of small regulatory molecules
with unique physical properties that make them strong candidates
for diagnostic or prognostic assay development (Keller et al, 2011).
These non-protein-coding RNAs are present both within and
external to melanoma cells and have strong tissue and disease
specificity. Extracellular miRNAs are secreted by cells in exosomes;
virus-sized particles that facilitate inter-cellular exchange of
molecular information. While all cells release exosomes into their
microenvironment, those from cancer cells have a higher
concentration of miRNAs compared to normal cells (Tomasetti
et al, 2017). MicroRNA-rich melanoma exosomes have a
functional role in tumour invasion, by stimulating cancer-activated
fibroblasts at the primary tumour site and also triggering events at
distant sites to facilitate the growth of metastases (Peinado et al,
2012).

The first comprehensive study of circulating miRNAs in
melanoma patients was performed in 2010 (Leidinger et al,
2010). Whole-blood samples from 35 individuals with melanoma
of various clinical stages were compared with normal controls,
resulting in a set of 51 differentially expressed miRNAs. While
this study demonstrated the diagnostic potential of these
molecules, the work was performed using a custom miRNA
detection platform not readily available outside of the research
setting and the genes identified were not evaluated for
association with other disease types, limiting the clinical utility
of the work.

An extensive review of circulating miRNA studies for melanoma
diagnosis was performed by Carpi et al (2016), identifying over 40
publications on the topic. The authors conclude that for miRNA
technology to be useful, clinical practice for melanoma four areas
need to be addressed, namely (i) the lack of reproducibility between
studies, (ii) the wide variety of evaluation techniques, (iii) individual
cancer variation, and (iv) prospective trials validation. The robust
level of scientific consensus as to the suitability of circulating miRNAs
as melanoma biomarkers was also noted.

While there are well defined challenges in developing a novel
cancer biomarker, there is a clear need for additional methods of
detecting the presence of malignant melanoma, particularly for
high risk individuals, in which up to 50% of all melanomas occur
(Williams et al, 2011). The goal of this study was to perform
miRNA analysis using readily available, high throughput
laboratory methods and to develop a diagnostic biomarker for
cutaneous melanoma in order to complement existing
methods of detection. The NanoString system is highly suited
for non-invasive detection of miRNAs in plasma, where RNA
quantities are often miniscule. It is an amplification-free based
method of gene expression analysis that requires lower amounts
of starting materials and has lower cost compared with
microarray or sequencing-based methods (Chatterjee et al,
2015). A robust biomarker may also be useful in the post-
treatment setting, where objective and non-invasive methods for
detecting melanoma recurrence and monitoring response to
novel therapies are also needed in order to improve patient
outcomes.
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Figure 1. Training and independent validation series results. (A)
Training series support vector machine (SVM): MEL38 scores generated
from circulating microRNA profiles of normal control individuals and
melanoma patients with stage I–IV disease. (B) A 28-gene subset of
MEL38 applied to circulating microRNA profiles generated from blood
collected from normal controls and melanoma patients with stage I–IV
disease (n¼57). The 28-gene subset SVM was partially retrained with
leave-one-out cross validation to and applied to the peripheral blood
microRNA independent validation series. 3C Independent validation of
the microRNA signature of melanoma in. (C) Solid line: ROC analysis of
the SVM classifier as trained on the 48-sample Nanostring discovery
series. AUC¼ 0.79, Po0.001. Dotted line: ROC analysis of the SVM
classifier partially retrained on the 57 sample independent validation
series using the 28 out of 38 genes available. AUC¼ 0.94, Po0.001.
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PATIENTS AND METHODS

Specimen collection and microRNA profiling. To create a
database of circulating miRNA expression profiles of individuals
with and without melanoma, 0.5–2 ml of cell-free plasma was
obtained from 16 healthy controls and 32 Caucasian individuals at
the time of their diagnosis with cutaneous melanoma (Cureline
Inc., CA, USA and Folio Biosciences, OH, USA). The institutional
ethics board of each hospital, in collaboration with Cureline and
Folio Biosciences, approved the use of the tissue material. Written
informed consent was obtained from each patient.

All melanoma cases were confirmed by histopathological
examination before the corresponding plasma sample was
processed further. Details of the 48 individuals used are provided
in Table 1, including tumour depth (T), nodal involvement (N),
and the presence or absence of metastases (M). Using current

American Joint Committee on Cancer staging guidelines; 4, 18, 4,
and 4 melanoma patients involved in this section of the study had
stage I, II, III, and IV disease at the time of specimen collection,
respectively.

Cell-free miRNA purification was performed by Canopy
Biosciences (St Louis, MO, USA) using the QIAGEN miRNeasy
Serum/Plasma Kit (cat no./ID: 217184), incorporating the
miRNeasy Serum/Plasma Spike-In Control (cat no./ID: 219610)
as per manufacturer recommendations. Total RNA was eluted in
100 ml water and concentrated to 20 ml. Three microlitres was used
for profiling on the multiplexed nCounter microRNA Assay V3
from NanoString Technologies (Seattle, WA, USA). The assay
detects 800 human miRNAs curated from miRBase Version 21
(Kozomara and Griffiths-Jones, 2014).

Purified RNA samples were prepared for detection and
quantification by ligating a specific DNA tag (miR-tag) onto the
30 end of each mature miRNA per the manufacturer’s instructions.
Excess tags were removed by restriction digestion at 37 1C.
Hybridisations were carried out by combining 5 ml of each
miRNA-miR-Tag sample with 20 ml of nCounter Reporter probes
in hybridisation buffer and 5 ml of nCounter Capture probes at
65 1C for 16–20 h.

Excess probes were removed using a two-step magnetic bead-
based purification on the nCounter Prep Station. Levels of specific
target molecules were quantified using the nCounter Digital
Analyzer by counting individual fluorescent barcodes. Assay
quality control was performed using nSolver version 3 using a
combination of metrics including percent field of view registration,
minimum binding density and positive control linearity, with
manufacturer recommended thresholds for miRNA analysis.

Data analysis. Raw gene counts were adjusted for background
noise by negative control adjustment and normalised to spike-in
genes cel-miR-254 and osa-miR-414 using Nanostring nSolver
V3.0 (Nanostring Inc, WA, USA). To prepare the data for
statistical comparison between normal and melanoma classes,
genes with no or low detection rates across all samples were
excluded and variance modelling at the observational level (voom)
transformation was then applied (Law et al, 2014). This method
estimates the mean-variance relationship of the log-counts,
generates a precision weight for each observation and enters these
into the limma empirical Bayes analysis pipeline for downstream
gene selection.

For count-based data such as Nanostring or RNA-seq, voom
transformation has been shown to produce the most accurate
assessment of true differential expression, with the lowest false
discovery rate (Ritchie et al, 2015). The empirical Bayes method of
gene expression analysis uses a pooled estimate of sample variance
and gives a stable assessment of expression level variance between
and within classes. This is important when the number of samples
measurements is smaller than the number of genes measured in
each.

Table 2. Summary of microRNA gene expression data sets generated for or used in this study. Data set IDs are NCBI GEO or EBI
Arrayexpress accession numbers

Data set ID Function
No. of patients/

specimens
MicroRNA expression

technology
miRbase build Specimen type

Number of
MEL38 present

Discovery series MEL38 discovery 48 Nanostring human v3 miRNA Assay 21 Plasma 38

GSE20994 MEL38 validation 57 febit Homo Sapiens miRBase 13.0 12 Whole blood 28

GSE61741 MEL38 validation 393 febit Homo Sapiens miRBase 13.0 12 Whole blood 28

GSE35387 MEL38 validation 7 Affymetrix miRNA GeneChip 1.0 11 Cell lines and
isolated
exosomes

26

E-MTAB-4915 MEL38 validation 16 Affymetrix miRNA GeneChip 4.1 20 FFPE tissue 38

Table 1. Patient and specimen details for microRNA discovery
set

Melanoma Normal

Characteristic No. % No. %
Age (Mean) 61 - 32 -

Sex
M 11 34 4 25
F 21 66 12 75

Specimen type
Fresh 16 50 8 50
Archival 16 50 8 50

Subtype
Acral lentiginous 2 6
Epithelioid cell 4 13
Nodular 3 9
Melanoma NOS 19 59

T-stage
X 2 6
0 2 6
1 3 9
2 5 16
3 10 31
4 10 31

N-stage
X 6 19
0 20 62
1 4 13
2 0 0
3 2 6

M-stage
0 29 91
1 3 9

Abbreviations: NOS=Not otherwise specified.
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Table 3. MicroRNA signature 1: circulating microRNAs with significant differential expression between melanoma and normal
controls (‘MEL38’) identified using limmaþ voom analysis

Gene function:

MicroRNA
ID

Log mean fold-
change

(melanoma/
normal

False
discovery

rate

P-value
(adjusted for

multiple testing)

Previously
identified role
in melanoma

Angiogenesis /
inflammation

Invasion/
metastasis

Drug
resistance

Tumour
suppressor/
oncogene

hsa-miR-
424-5p

2.65 4.30E� 15 4.30E�15 Yes |

hsa-miR-
548l

�1.51 4.65E� 09 4.65E�09 Yes |

hsa-miR-
34a-5p

1.53 8.87E� 09 8.87E�09 Yes |

hsa-miR-
497-5p

1.34 1.05E� 08 1.05E�08 Yes | |

hsa-miR-
299-3p

1.95 1.77E� 08 1.77E�08 Yes |

hsa-miR-
205-5p

�1.09 1.90E� 07 1.90E�07 No |

hsa-miR-
1269a

�1.06 1.12E� 06 1.12E�06 Yes |

hsa-miR-
624-3p

�1.57 4.23E� 06 4.23E�06 Yes |

hsa-miR-
138-5p

�1.51 4.70E� 06 4.70E�06 Yes |

hsa-miR-1-
5p

�1.63 4.79E� 06 4.79E�06 Yes | |

hsa-miR-
152-3p

1.25 5.74E� 06 5.74E�06 Yes |

hsa-miR-
1910-5p

1.47 9.01E� 06 9.01E�06 No |

hsa-miR-
181b-5p

1.60 9.01E� 06 9.01E�06 Yes |

hsa-miR-
3928-3p

�1.45 9.06E� 06 9.06E�06 No |

hsa-miR-
3131

�1.24 9.06E� 06 9.06E�06 No |

hsa-miR-
301a-3p

2.28 5.50E� 05 5.50E�05 Yes |

hsa-miR-
1973

�1.55 1.30E� 04 1.30E�04 Yes |

hsa-miR-
520d-3p

�1.04 2.42E� 04 2.42E�04 Yes |

hsa-miR-
548a-5p

1.26 3.07E� 04 3.07E�04 Yes |

hsa-miR-
548ad-3p

�1.01 3.07E� 04 3.07E�04 Yes |

hsa-miR-
454-3p

1.52 3.07E� 04 3.07E�04 Yes |

hsa-miR-
4532

1.50 3.47E� 04 3.47E�04 Yes |

hsa-miR-
1537-3p

1.20 3.47E� 04 3.47E�04 Yes |

hsa-miR-553 �1.10 4.27E� 04 4.27E�04 No |

hsa-miR-764 �1.27 5.15E� 04 5.15E�04 No |

hsa-miR-
1302

�1.73 7.28E� 04 7.28E�04 No |

hsa-miR-
1258

1.19 7.28E� 04 7.28E�04 No |

hsa-miR-
522-3p

�1.05 7.53E� 04 7.53E�04 No |

hsa-miR-
1264

�1.25 1.05E� 03 1.05E�03 No |
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Classification models were constructed using linear support
vector machine (SVM) algorithm developed by Vapnik et al
(1995). The SVM predictor is a linear function of voom-
transformed count data that best separates the data subject to
penalty costs on the number of specimens misclassified. Statistical
analysis and algorithm development were performed using R 3.4
(R Core Team, 2014), Bioconductor 3.5, Minitab 17.1 and Medcalc
17.6 (2010; Schoonjans et al, 1995; Gentleman et al, 2004).

Independent validation. To further explore the performance of
the novel miRNA signature identified, multiple independent data
sets were downloaded from public gene expression data reposi-
tories (Table 2). In total, these data sets represent 473 unique
melanoma patients, normal control individuals or cell-line models,
with the clinical or technical details of each as originally published.
An downside to this approach is that due to the evolving nature of
mirBase (Kozomara & Griffiths-Jones, 2014), there is an
incomplete overlap in the miRNA content of the Nanostring,
Agilent, Affymetrix, and custom platforms used to generate the
data sets used in this study. In addition to varying probe content,
the method of miRNA isolation/enrichment, detection chemistry
and data normalisation methods associated with each technology
are unique and can lead to challenges in comparing data between
experiments(Kolbert et al, 2013).

RESULTS

Identification of circulating microRNAs differentially expressed
between melanoma patients and normal controls

Gene selection and functional annotation. Circulating miRNA
gene expression profiles of melanoma patients and normal control
donors were compared using voom and limma (Law et al, 2014),
after probes corresponding to non-expressed genes in a majority of
samples were excluded. Those miRNAs with a limma FDR of
o0.01 and an absolute fold-change 42.0 were selected (n¼ 38).

Supplementary Figure 2 shows the relationship between log FDR
and fold change for each gene before (a) and after (b) filtering and
gene selection. The 38 genes differentially expressed between
melanoma and normal donor expression profiles are hereon
referred to as MEL38 and shown in Table 3.

Literature searches revealed that 22 of the miRNAs in the
MEL38 signature (58%) have been previously associated with
melanoma, predominantly in studies of cell lines or skin biopsies
rather than blood, serum or plasma. Notably, two of the 38 genes
(hsa-miR-1537-3p and hsa-miR-181b-5p) have only been pre-
viously identified in studies that used next-generation sequencing
methods, demonstrating the comparable level of sensitivity of the
Nanostring platform (Kolbert et al, 2013).

The reported biological or molecular functions of each gene in
MEL38 can be distilled into four categories. These are angiogenesis
and inflammation (n¼ 2), cancer cell invasion and metastasis
(n¼ 14), immune system and treatment resistance (n¼ 11), and
tumour suppression or oncogene regulation (n¼ 8), with a number
of genes having dual functions. A summary of the reported
functions or biological roles of each member of MEL38 and
relevant references is provided in Supplementary Table 3.

Gene set analysis was also performed using the miRNA
Enrichment Analysis and Annotation Tool (miEAA; https://ccb-
compute2.cs.uni-saarland.de/mieaa_tool/), which uses a database
of miRNA predicted or validated target gene binding sites to
identify significantly enriched functional or pathway gene sets
(Backes et al, 2016). Among the biologically relevant and
statistically significant pathways targeted by MEL38 are melano-
genesis (hsa04916), T-cell activation (P00053) and both RAS
(P04393) and MAPK (WP422) oncogene activation, as shown in
Supplementary Table 1.

A classification algorithm to predict disease state from circulating
microRNAs. In order to demonstrate the potential of the MEL38
signature to predict the melanoma or normal (non-melanoma)
status of a plasma sample, a support vector machine algorithm
was trained on the information present in the Nanostring

Table 3. ( Continued )

Gene function:

MicroRNA
ID

Log mean fold-
change

(melanoma/
normal

False
discovery

rate

P-value
(adjusted for

multiple testing)

Previously
identified role
in melanoma

Angiogenesis /
inflammation

Invasion/
metastasis

Drug
resistance

Tumour
suppressor/
oncogene

hsa-miR-
1306-5p

�1.58 2.34E� 03 2.34E�03 Yes |

hsa-miR-
219a-2-3p

�1.03 2.99E� 03 2.99E�03 Yes |

hsa-miR-
431-5p

1.52 3.24E� 03 3.24E�03 No |

hsa-miR-
450a-5p

1.11 3.94E� 03 3.94E�03 Yes |

hsa-miR-
2682-5p

1.08 5.16E� 03 5.16E�03 No |

hsa-miR-
337-5p

1.58 5.24E� 03 5.24E�03 Yes |

hsa-miR-
27a-3p

1.42 5.50E� 03 5.50E�03 No |

hsa-miR-
4787-3p

�1.04 5.82E� 03 5.82E�03 No |

hsa-miR-
154-5p

1.14 5.83E� 03 5.83E�03 No |

Previous association with melanoma and gene functions determined by literature searches, see Supplementary Information for additional details and references.
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plasma miRNA discovery series (i.e., 38 genes� 48 samples) using
leave-one-out cross validation (Ben-Dor et al, 2000). Gene re-
selection was not performed as limma method used for their
selection strictly controls for false discoveries and adjusts for
multiple testing bias. As expected from a discovery series, the
MEL38 SVM showed a high degree of accuracy as shown in
Figure 1A, with clear separation of scores based on disease status
apparent.

Independent validation of MEL38 using peripheral blood
microRNA profiles of individuals with or without melanoma.
To independently validate the significance of the circulating
miRNAs identified from the discovery series of forty eight
Nanostring whole-miRNAome profiles, additional genomic data
sets were sourced from the NCBI Gene Expression Omnibus
(GEO) and EBI ArrayExpress. To date, no other group has
published a multi-sample plasma ‘microRNome’ profiling study of
melanoma. As such, the most suitable validation data set identified
was GEO ID GSE20994, which is a series of 57 miRNA profiles
generated from peripheral blood of melanoma patients (n¼ 35)
and normal controls (n¼ 22). These data were generated using a
custom miRNA oligonucleotide microarray, based on version 13.0
of the Sanger MirBase; (febit Homo Sapiens miRBase 13.0,
Hummingbird Diagnostics, Heidelberg, Germany).

By comparing probe annotations and sequences between the
Nanostring and febit platforms, 28 of the MEL38 miRNAs (74%)
were matched. The MEL38 SVM algorithm was applied to the
validation data set in two ways; (1) using the exact SVM gene
weights obtained from the discovery series; and to partially
compensate for the incomplete overlap, (2) re-calculation of SVM
gene weights using leave-one-out cross validation. A box plot of the
method (2) SVM classification score for each patient/control
individual in this series, grouped by disease state and clinical stage,
is shown in Figure 1B.

Both SVM application approaches resulted in statistically
significant stratification of melanoma and normal profiles. Method
1 gave a sensitivity of 71% and specificity of 86% for prediction of
melanoma. ROC analysis was performed and an AUC of 0.79
(Po0.001, Figure 1C – solid line) was observed. Method 2 gave a
higher sensitivity of 89% and the same specificity of 86%. The AUC
of method (2) was 0.94 (Po0.001, Figure 1C – dotted line).
Permutation analysis performed during the LOOCV process
method 2 revealed that the probability of observing this level of
classification accuracy by chance alone was Po0.01.

As these results are based on (i) an incomplete subset of the total
MEL38 gene signature, (ii) from a study using whole blood rather
than plasma only, and (iii) were generated using microarray rather
than Nanostring profiling, it is likely that the performance of the
signature will improve as additional clinical validation series are
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performed. Despite the caveats of this validation exercise, a robust
and statistically significant association was observed between a
SVM classifier based on a 28/38 genes in MEL38 and the likelihood
of an individual having cutaneous melanoma.

General linear model analysis of MEL38 SVM scores in relation
to demographic and clinical variables. Statistical analyses of the
MEL38 circulating miRNA classification score for individuals in
the training and independent validation series were performed
using general linear models (Supplementary Table 2). The
discovery series SVM scores showed a highly significant difference
between melanoma and normal samples (Po0.001), with no
difference associated with age or gender (P40.05). In the
independent validation series, the 28-gene subset SVM score was
also significantly different between disease status, with or without
partial retraining (Po0.001 and P¼ 0.002, respectively).

In the melanoma patient-only subset of each series, the
relationship between the SVM score and tumour thickness,
melanoma type (superficial, nodal, or amelanotic), disease stage
(I–IV), age, and sex (where available) was also investigated. None
of these variables were found to be statistically significant in any of
the general linear models (P40.05).

These results confirm that the MEL38 signature is significantly
associated with melanoma state (i.e., the presence or absence of
melanoma), over and above any association with patient age,
gender or tumour thickness, subtype, and stage of progression.

In vitro assessment of MEL38 expression in exosomes isolated
from melanoma and normal skin cell lines.. An additional
in vitro validation of the MEL38 gene signature was carried out
using Affymetrix miRNA GeneChip profiles of normal melano-
cytes cell line HEM-LP, melanoma cell line A375, and the isolated
exosomes of each (GEO ID: GSE35387). These data were generated
by Xiao and colleagues. who developed a method to purify
exosomes from cell culture supernatant using multiple rounds of
centrifugation and filtration, ensuring removal of whole cells and
debris, before verifying the presence of pure exosomes using
transmission electron microscopy and performing Affymetrix
miRNA analysis of their contents (Xiao et al, 2012).

Affymetrix probes corresponding to 26 of the MEL38 genes
(68%) were identified by probe annotation and sequence
comparison. Hierarchical clustering using these genes showed
similar expression profiles of matched cells and exosomes, with
larger differences between normal and melanoma states
(Figure 2A). A cross-validated SVM classifier was trained on the
26-gene subset, using LOOCV, the results of which showed clear
stratification of melanoma (cells or exosomes) vs normal (cells or

exosomes) (Figure 2B). These findings show that MEL38 genes
exist at similar relative levels both with, and external to, their cell of
origin.

MEL38 expression in melanoma compared to other cancer
types. To further evaluate the melanoma-specific association of
the MEL38 signature circulating miRNA profiles of individuals
with melanoma were compared with eight other malignancies
(colon, lung, ovarian, prostate, breast, renal, stomach, and wilms
tumour; N¼ 393, GEO ID GSE61741). These data were generated
by Keller et al (2014), Saarland University (Hamburg, Germany)
using a the febit custom miRNA analysis platform on which 28 of
the MEL38 genes are present. T-tests of differential expression
between melanoma and ‘other’ cancers were calculated. Fifteen
miRNAs (54%) exhibited significantly different levels of expression
between melanoma vs other cancer types (Po0.05; range P¼ 4.3
� 10� 6 to P¼ 0.036).

This analysis shows that a majority of the tested MEL38 genes
have patterns of expression that are specific to melanoma vs other
common cancer types.

MEL38 expression in melanoma vs melanocytic nevi biopsy
tissue. MicroRNA profiles generated from formalin-fixed, paraf-
fin-embedded melanoma (n¼ 16) and melanocytic nevi biopsies
(n¼ 3) were downloaded from EBI ArrayExpress (accession
E-MTAB-4915). These data were generated by Komina et al
(2016) using tissue obtained from individuals ranging from 35 to
81 years old, with tumours from 2–7 mm thick and Clark’s level
III–IV. All of the MEL38 genes were found on the Affymetrix
microRNA GeneChip 4.1 (mirBase v20) used for this study.

T-tests were performed between melanoma and nevi sample
classes and thirteen (34%) of the MEL38 genes were significantly
different (Po0.05). Twenty-one MEL38 genes (55%) had a fold-
change difference of 41.5. Hierarchical clustering of samples using
the MEL38 set resulted in perfect separation of melanoma and
benign samples (Figure 2C). A cross-validated MEL38 SVM
classifier was trained on these data (without gene re-selection) and
the SVM score for each individual is shown in Figure 2D. These
results show that MEL38 gene signature also has the ability to
discriminate between melanoma and benign biopsy nevi tissue,
further supporting the skin-cell origin of these circulating miRNAs
and suggesting an additional utility for the signature.

Comparison with previously published circulating microRNA
signatures of melanoma. Friedman et al (2012) discovered a set
of five serum miRNAs with potential as serum-based biomarkers
for recurrence in melanoma using RT–PCR methods. Three of
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these candidate genes (miR-199a-5p, miR-33a-5p, and miR-424-
5p) were also significantly differentially expressed in the Nano-
string plasma miRNA discovery series (mirBase v21) generated for
this study (Po0.05).

Leidinger et al (2010) identified an optimal set of 16 miRNAs
from their whole-blood custom-microarray data set (mirBase v12).
Eight of the 16 genes in their signature met, or approached,
statistical significance in the Nanostring plasma discovery series
(five genes: Po0.05, three genes: Po0.1).

Margue et al (2015) published a set of eight miRNAs profiled on
the Affymetrix miRNA GeneChip 1.0 (mirBase v11) which were
differentially expressed in late stage melanoma patients when
compared to healthy individuals. Of the seven signature genes that
are present in the Nanostring Human MicroRNA V.3 assay, four
are differentially expressed in the discovery series (57%).

Stark et al measured the expression of 16 miRNAs in melanoma
tissue and serum (Stark et al, 2010, 2015) that were previously
identified as being differentially expressed between melanoma cell
lines when compared to 14 ‘other’ solid malignancies. Thirteen of
these genes are technically present in the Nanostring assay and 6/
13 (46%) were significantly differentially expressed in the MEL38
discovery series.

Of the total combined set of miRNAs from these previously
published melanoma miRNA signatures, a majority were found to
be differentially expressed in the Nanostring plasma discovery
series. Three of these satisfied the combination of both statistical
(P-value) and biological (fold-change) significance we employed to
select MEL38; miR-205-5p, miR-424-5p, and miR-301a-3p.

Circulating microRNA and melanoma stage of progression.
Finally, we examined whether the expression of any miRNAs in
our discovery series were correlated AJCC clinical stage. Quality-
filtered plasma profiles from melanoma patients were grouped by
stage I, II, III, and IV (Table 1). Voomþ limma analysis was
performed to identify individual miRNAs with differential
expression between any two stages (FDR o0.1 and fold-change
42). Next, the correlation coefficient for each gene vs stage was
calculated and those o� 0.7 or 40.7 were selected. This resulted
in a final set of 18 miRNAs, eight of which overlapped with MEL38
(Figure 3B). The average fold change of each gene relative to its
expression in stage I is shown in Figure 3B.

This 18-gene-signature may be useful, as an adjunct to the
binary diagnostic capability of MEL38, in providing additional
information about the extent of melanoma progression. With
further validation, this signature (MEL18) may assist in reducing
the time between diagnosis and treatment.

DISCUSSION

To address the need for improved melanoma detection and
monitoring tools, we have identified a novel set of thirty eight
circulating miRNAs by performing Nanostring nCounter analysis
of forty eight plasma samples from individuals with or without
cutaneous melanoma (MEL38). The ability of the signature to
predict disease status independently validated, on multiple
previously published data sets, including a series of 57 individuals
with or without melanoma. Application of a 28-gene subset
classifier to these data showed a high degree of accuracy; 71–97%
sensitivity (without and with partial SVM retraining, respectively)
and 86% specificity. We anticipate improved performance on
future validation studies, where fewer technical differences in
experimental design will be present.

These results compare favourably to the average sensitivity and
specificity of melanoma detection in general practice, which is
reported to be approximately 62% and 84%, respectively, however
individual studies report wide ranges (Aitken et al, 2006;

Herschorn, 2012). Furthermore, these numbers do not take into
account the impact of imprecision in histological examination
(akin to technical reproducibility), which results in 17% of cases
being misdiagnosed (8% of cases over-interpreted, 9% under-
interpreted). As the technical imprecision of genomic profiling has
been shown to be negligible (1–3%), MEL38 shows strong potential
to improve the accuracy of melanoma diagnosis if incorporated
alongside conventional techniques (Ach et al, 2007; van Laar et al,
2014).

To test the cellular origin hypothesis of the circulating miRNAs
signature developed, analysis of melanoma cell line, normal
melanocyte, and purified exosome miRNA data was performed.
Clustering and SVM modelling using MEL38 in these data showed
strong separation of normal vs melanoma profiles, with remarkable
expression similarity between whole cells and their respective
exosomes. The MEL38 signature were also compared between
melanoma and benign FFPE tissue biopsies. Hierarchical clustering
and SVM classification of these data again showed separation basis
of disease state, further supporting the cellular origin hypothesis
and biomarker potential of the signature.

A majority of the genes that make up four previously published
miRNA signatures of melanoma, also exhibited differential
expression in our Nanostring discovery series. This is despite
being generated using different technology platforms, patient
populations, and specimen processing protocols. The commonality
of differential expression between this and previous melanoma
miRNA profiling studies addresses a common criticism of
genomics, that there is often limited consistency in findings
between experiments performed using multiple platforms.

Despite the substantial overlap in gene signatures and the
MEL38 discovery series, only three of the miRNAs contained in the
previously published signatures were actually part of the final 38
gene selection. This is most likely due to the combination of
biological (fold-change) and statistical (FDR) significance criteria
used, which represent a unique element of this study. These three
miRNAs have well defined roles in melanoma oncogenesis and
progression. miR-424-5p has shown promise as a prognostic serum
biomarker, being significantly upregulated in patients with poor
prognosis. (Rosa et al, 2007; Ghosh et al, 2010). miR-205-5p is
differentially expressed between primary and metastatic melano-
mas and has a role in regulating epithelial to mesenchymal
transition, an key step in the metastatic process (Xu et al, 2012).
Finally, miR-301a-3p is known to control the expression of the
tumour suppressor PTEN. This miRNA significantly up-regulated
in melanoma vs benign biopsy tissue and is also correlated poor
prognosis (Cui et al, 2016).

The molecular pathways and functional themes represented by
MEL38 further support the disease- and tissue-specificity of the
signature. Notably, the T-cell activation pathway is the highest
ranked for significance of overlap with MEL38 (Supplementary
Table 1). This observation aligns with recent advances in the
understanding of how melanoma cells modulate the anti-tumour
immune response, thus facilitating their growth and progression
(Schatton et al, 2015). In addition to genes involved in resisting the
body’s defense system, MEL38 miRNAs have involvement in
angiogenesis (e.g., hsa-miR-497-3p, which inhibits vascular
endothelial growth factor A), metastasis (e.g., miR-3928-3p, which
targets ERBB3; required for metastasis formation), and tumour
growth control (e.g., miR-548a-5p, a negative regulator of the
tumour inhibitor gene Tg737 (Tiwary et al, 2014; Yan et al, 2015;
Zhao et al, 2016).

The role of miRNA-rich exosomes as mediators of melanoma
development and progression, both at the primary and metastatic
site, has only recently been elucidated. Melanoma exosomes have
been demonstrated to cause vascular leakiness at pre-metastatic
sites and to modify bone marrow progenitor cells with a pro-
angiogenic phenotype (Peinado et al, 2012). They also allow

BRITISH JOURNAL OF CANCER A plasma-based melanoma biomarker

864 www.bjcancer.com | DOI:10.1038/bjc.2017.477

http://www.bjcancer.com


melanoma cells to modify the stromal niche, with miRNA
stimulation of cancer associated fibroblasts, paving the way for
invasion and metastatic spread (Dror et al, 2016). There is a
growing body of evidence that cancer-derived exosomes circulate
through the body containing pro-metastatic, anti-immune-
response, genetic instructions, and thus have a key role in all
stages of melanoma progression.

In conclusion, a signature of melanoma-specific circulating
miRNAs has been identified in human plasma and independently
validated in multiple data sets representing miRNA profiles of
whole blood, cell lines, and solid tissue. The signature was
developed using a technology platform which due to its high
specificity, low specimen requirements and cost efficiency, is
readily adaptable to clinical use (Chatterjee et al, 2015). A majority
of the genes in the signature have previously been associated
melanoma development or progression and are known regulators
of relevant oncogenic processes. Extensive additional clinical and
technical validation studies will be required to further define the
true diagnostic performance of an assay based on MEL38 and its
utility in melanoma diagnosis, treatment response monitoring and
relapse detection. We believe a non-invasive clinically available
biomarker for melanoma such as MEL38 has the potential to
improve diagnostic accuracy, reduce healthcare spending and
reverse the mortality rate of a highly treatable disease.
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