
Common Colds and Respiratory Viruses: 
Impact on Allergy and Asthma

Ioanna M. Velissariou, Paraskevi Xepapadaki, 
and Nikolaos G. Papadopoulos

Introduction

The association between common colds and acute wheezing episodes has been 
 recognized for decades [1]. Indeed, wheezing associated with colds is the most 
common form of wheezing at all ages [2]. Although the nature of the debate has 
evolved over the years, many of the contradictory issues are still relevant, including 
whether episodic virus-induced wheezing in young children should be considered 
asthma. Furthermore, the debate continues over whether severe early viral infec-
tions have a causative role in the development of asthma, by immune modulation, 
airway damage, or both, or whether children who present with virus-induced 
wheezing have a pre-existing predisposition.

The clinical correlation of the common cold with asthma episodes is not recent. 
However, it is only in the last 10–15 years, with using sensitive methodologies 
for the detection of the most prevalent respiratory viruses, such as rhinoviruses 
and coronaviruses, we have been able to appreciate their importance [3, 4]. 
Furthermore, some of the most obvious changes in affluent societies, such as  family 
structure, congregation, and hygiene, have implications for the epidemiology of 
infections, leading to speculation that infection-associated factors may be related 
to the asthma epidemic [5].

Using the polymerase chain reaction (PCR) and detailed analysis of epide-
miological data, our understanding of the relationship between viral infections 
and asthma exacerbations has improved [6]. Nevertheless, there still are some 
apparently contradictory effects and many unexplored aspects to be addressed. The 
mechanisms by which respiratory viruses exacerbate asthma are under scrutiny. 
In addition, the possibility that some viral or intracellular bacterial infections may 
initiate asthma is still disputed. The subject has become more complicated since it 
was recognized that early exposure to microorganisms and/or different infections 
may actually protect against asthma, the so-called “hygiene hypothesis” [7].
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Understanding the role of viral infections in the development of allergy and 
asthma may have implications on designing and selecting optimal therapeutic 
strategies, while indirectly affecting immunization programs, antibiotic use, and 
marketing of antiviral drugs, as well as the development of new approaches to 
therapy. This chapter addresses the interplay between viral infections, the immune 
system, and lung development, focusing on the possible role of respiratory viruses 
in the origin and exacerbations of asthma and allergy. Also presented are antiviral 
strategies for the prevention and treatment of virus-induced asthma exacerbations 
that have been investigated recently.

Viral Infections and the Development of Allergy 
and Asthma

To understand the potential implications of viral infections in the development of 
asthma, it has to be kept in mind that asthma has a complex natural history that 
includes different phenotypes, which may differ in their pathogenesis. It is well 
established that a majority of asthma cases start early in life. However, a significant 
 proportion of children who wheeze at a young age, mostly after upper respiratory tract 
infections (URTIs), overcome their problem before school age. These subjects, char-
acterized as ‘transient early wheezers’, have reduced airway function at birth; thus it 
is likely that their disease is at least partly mechanical rather than immunological in 
nature [8]. Other children commence wheezing early and continue to do so at least 
until adolescence. These persistent wheezers have an altered immune response with 
a rise in IgE levels during their first reported URTI, and no reduction in eosinophil 
numbers during the acute phase of the URTI, in contrast to transient wheezers [9].

The virus, most frequently associated with severe bronchiolitis in the first years 
of life, is the respiratory syncytial virus (RSV). RSV infection occurs in almost all 
children before their second birthday, and clinical presentations vary from subclini-
cal to severe, life-threatening bronchiolitis [10]. Early studies have pointed out that 
children suffering from severe bronchiolitis have an increased risk of developing 
asthma in subsequent years [11]. Whether RSV bronchiolitis represents a marker 
of susceptibility to wheezing or it can per se divert the immune system or affect the 
lung and initiate asthma is not yet concluded. It is also possible that these pathways 
are not mutually exclusive: a pre-existing susceptibility may become clinically 
relevant once an exceptionally severe infection occurs (Fig. 1).

In 1971, Rooney and Williams [11] found that 56% of children hospitalized 
for bronchiolitis would continue to wheeze 2–7 years later, and this has been 
 confirmed in several subsequent studies. However, it has been difficult to ascertain 
whether this is solely an association or whether causation is also involved, result-
ing from either direct lung damage or an RSV-mediated immunological deviation 
toward type-2 cytokine production [12]. Although pulmonary function is reduced 
many years later in children with a history of lower respiratory tract infection, it 
seems that this is a pre-existing feature of these children [8, 13].
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When bronchial responsiveness was assessed, the results were conflicting; 
either no difference or an increase in bronchial reactivity several years after bron-
chiolitis has been reported [14]. Equally conflicting are the results relating to the 
potential effects of RSV in allergic sensitization. One group has shown that RSV 
bron-chiolitis is an independent risk factor for the development of asthma and 
allergic sensitization at age 7 years, in fact a stronger risk factor than a family 
history of asthma [15]. In contrast, other studies have failed to establish such an 
effect [16, 17]. Differences in disease severity and age of evaluation may partly 
account for this discrepancy. It is conceivable that severe RSV disease may be 
required for the establishment of long-lasting effects. In another study, the correla-
tion of RSV bronchiolitis with sensitization that was observed at the age of 6 was 
not present at age 9–10 years [18]. Importantly, RSV-related effects on wheezing 
and asthma decline with age, becoming nonsignificant by adolescence [17–19]. 
These findings should also be interpreted with caution: asthma symptoms may 
be undervalued in adolescence or may relapse later in life [20]; thus, prospective 
evaluation of the current cohorts is required to evaluate these possibilities. Most 
data relating to acute severe infections early in life and the increased risk of asthma 
implicate RSV, but most of the studies on which these conclusions are based have 
not adequately looked for other respiratory viruses, in particular rhinovirus (RV). 
Stein et al. [17] reported a fourfold increased risk of asthma later in life in children 
with RSV infections that were severe enough to lead to a pediatric consultation 
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Fig. 1 Transient wheezing may be associated mostly with airway size at birth, resoling before 
school-age (1) severe RSV bronchiolitis in early life may be either the cause (2) or a marker of 
susceptibility (3) of asthma. These possibilities are not mutually exclusive, as it is possible that a 
viral attack may further affect immune programming in a susceptible host (4)
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early in life. However, increased risks, —twofold to threefold, were observed with 
other  respiratory viruses, suggesting that any single acute infection severe enough 
to lead to a  pediatric consultation early in life is also a risk factor for asthma later 
in life. Although important as an observation, this lasting effect, possibly associ-
ated with human RV infections that were not virologically confirmed at the time, 
has not gained enough attention [17]. Nevertheless, it is supported by more recent 
findings showing that infection with human RV is more frequent during infancy 
than previously thought [21], can induce severe bronchiolitis [22], is associated 
with increased airway resistance [23], and is also more strongly associated with 
persistence of wheezing in the first 3 years of life [24].

A type-2/type-1 cytokine imbalance in favor of type-2 responses or with 
impaired type-1 responses in acute RSV bronchiolitis has been reported in several 
instances [25, 26]. These findings could be explained as either an inherent defect 
or a direct result of the RSV infection itself. A profound imbalance in infants with 
acute RSV bronchiolitis has been observed, with significantly reduced produc-
tion of the type-1 cytokines interferon (IFN)-γ, interleukin (IL)-12, and IL-18 and 
increased production of IL-4 [27]. This imbalance was associated with impaired 
virus clearance, suggesting that it may be an important determinant of disease 
severity. In addition, because the imbalance was observed as early as the 1st or 2nd 
day after initiation of disease, the immune deviation was most probably already 
present in these infants before RSV infection; deviation of the immune response by 
the virus itself was unlikely to have occurred so early in the course of the illness, 
when virus-specific immunity was only beginning to develop [27].

From the above, it is obvious that no safe conclusion about whether RSV bron-
chiolitis may cause or is only associated with asthma in later life (through  common 
 causality) can be currently reached. Nevertheless, these two possibilities are not 
mutually exclusive. Children with a predisposition to asthma may be prone to 
develop severe RSV bronchiolitis; however, this infection may also further affect 
their immune responses and/or lung structure, leading to the development of asthma 
symptoms (Fig. 1) [28]. With the advent of effective RSV prevention modalities it is 
now possible to design randomized intervention studies. In these studies, confounding 
factors should be ruled out by randomization; thus they may offer more conclusive 
evidence. In one such study, modest differences in pulmonary function were observed 
between infants treated with ribavirin versus placebo-treated control infants, but the 
number of subjects was small [29]. Later intervention studies are awaited.

The Protective Effect of Respiratory Viruses 
on the Development of Allergy and Asthma

As respiratory viral infections are frequently the most apparent event in the 
 presentation of asthma, either as a cause or as a marker, it seems contradictory that 
similar infections may protect against development of the disease. Nevertheless, 
the “hygiene hypothesis”, first suggested by Strachan [5], is a dominant theory used 
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to explain the increasing prevalence of allergies and asthma, based on our under-
standing of these diseases as dysregulations of the immune system. This  subject 
has aroused much interest because of the findings of an effect of birth order and 
family size, as surrogate markers of infectious load, on the development of allergy 
[7, 29]. A protective role of infections also has been seen in developing countries, 
where an inverse relationship between evidence of respiratory infections and later 
development of atopy has been observed [30]. One possibility is that these findings 
could have resulted from a genetic bias in confined communities. However, this 
is unlikely, as there was a similarly reduced prevalence of atopic disease in East 
Germany compared with the genetically similar population of West Germany [31]. 
The East German children were assumed to have been exposed to more infections 
because of the much greater use of early childhood daycare facilities, which has 
been associated with less subsequent asthma [31].

There is a paradox, however, as several studies show that parental reports 
of lower respiratory illnesses are associated positively with later asthma [7]. 
A  possible explanation is that daycare use and large family size are associated with 
an increased microbial load, which includes gastrointestinal viruses and other poten-
tially protective microbes and is independent of the host response [7]. In contrast, 
parental reporting of symptoms reflects the host response. Children destined to have 
asthma have an impaired type-1 response to virus infections and are therefore at a 
risk of more frequent and severe symptoms, which are more likely to be reported.

In a prospective birth cohort study, children who had more than one respiratory 
illness confined to the upper respiratory tract during the first 3 years of life were at 
lower risk of having asthma symptoms at age 7 [31]. In contrast, when the infec-
tions were located in the lower airways, the risk for asthma increased significantly 
in a dose-dependent manner. Although the authors concluded that upper respiratory 
infections early in life may protect infants against the development of asthma, it is 
also possible that the development of upper or lower respiratory infectious disease 
is influenced to a considerable extent by the susceptibility of the host.

Another large birth cohort study found that personal and sibling viral infections 
(e.g., measles, mumps, rubella, hepatitis, chickenpox, herpes, mononucleosis) 
 during the first year of life resulted in a small protective effect against the develop-
ment of asthma (but not hay fever or eczema) later in childhood [32]. However, 
a strong protective birth order effect against all atopic diseases was present in 
that cohort. When respiratory tract infections as a whole were analyzed, a dose-
dependent increased risk for asthma and hay fever was noted. Further, exposure to 
antibiotics was associated with an increased risk of developing allergic disease.

In another study, the detrimental effect of lower respiratory episodes during 
the first year of life in the expression of asthma at age 4 was confirmed, while no 
significant protective effect of upper respiratory infection was found in that setting 
[33]. An increased number of respiratory infections (e.g., measles, mumps, rubella, 
varicella) conferred increased risk for atopy in a Danish cohort, irrespective of the 
age of exposure: the presence of asthma was not assessed in that study [34].

It is probably too early to confirm a possible protective effect of respiratory 
viruses on the development of allergy and asthma. Prospective studies evaluating 
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exposure to microorganisms, pathogenic or not, as well as symptomatic infection, 
will be required to differentiate between the effect of these two factors, also taking 
into account possible confounders such as birth order and antibiotic use.

We recently proposed an alternative explanation for this apparent contradic-
tion, using the term “incoordination” hypothesis [35]: the physiological rate of 
development and response of the human immune system may not match the rate 
of exposure to various stimuli as they currently appear in modern (especially 
“Westernized”) environments. Infectious agents, including viruses, are prominent, 
but not unique among these stimuli, as they are major determinants of immune 
maturation and their ecology is affected considerably by environmental changes, 
including, but not uniquely depending on, hygiene.

Epidemiology of Viruses in Asthma Exacerbations

Although the role of viruses in the induction of, or protection from allergy and 
asthma is still inconclusive, the evidence for the participation of these pathogens 
in asthma exacerbations is much stronger. The observation that asthma exacer-
bations often follow common colds is old and a daily experience of practicing 
physicians, especially pediatricians. Early reports documented that viral shedding 
decreased soon after the cold, before the patient referred to their physician or the 
hospital, indicating that early sampling was necessary for viral detection [36]. 
Furthermore, virus detection rates in these studies fluctuated considerably; this 
was attributed to difficulties in RV and corona virus identification. With the use 
of PCR-based detection for RV and prospective designs, the magnitude of the 
problem was revealed.

In a prospective study in the community, asthmatic children aged 9–11 years 
were followed up for 1 year and sampled as soon as they reported cold symptoms 
[37]. The percentage of asthma exacerbations following virologically confirmed 
colds was 80–85%. In children hospitalized with severe asthma exacerbations, 
the viral detection rate was 82% [38]. In adults, the proportion of virus-attributed 
asthma exacerbations was generally lower. However, it was possible that viral 
shedding was less or of a shorter duration in adults than in children. In one of the 
first community-based prospective studies using polymerase chain reaction (PCR) 
detection for rhinoviruses, virus detection rates were 44%, although cold symptoms 
preceded 70% of the episodes [39]. In another study (with a combined longitudinal 
and cross-sectional design) of inner-city asthmatic adults [40], virus detection was 
once again 44% in followed-up subjects and 50–55% in subjects presenting to the 
Emergency Department. In another study, virological confirmation was achieved in 
60% of asthma exacerbations in adults [40]. Additional studies of similar designs 
have confirmed the high prevalence of viral infections in association with asthma 
exacerbations, with RV being the dominant pathogen [41–43].

The conclusion from the above is that respiratory viruses are the most common 
triggers of asthma attacks, and it is shown that such attacks can be severe, leading 
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to hospital admissions [44]. Peak in hospital admissions for asthma and virus isola-
tion occurs, in most instances, immediately after school vacations. This pattern of 
a segregation-dependent disease is a characteristic of rhinovirus colds [45]. Similar 
seasonal variation has been partly observed in asthma mortality, especially among 
young children and the elderly, who are most susceptible to viral infections [46].

Another important point, on which all of these studies agree, is that RVs are 
the most prevalent agents, accounting for 50–60% of all detected viruses. This is 
thought to reflect the prevalence of these viruses in common colds, rather than any 
specific asthmagenic properties, because there are minor or no differences in symp-
toms produced by different viruses [37] or in the proportion of asthma episodes 
resulting from colds by any specific virus [36]. However, recent evidence from 
our laboratory suggests that RVs may have increased propensity toward inducing 
asthma in comparison to influenza viruses (NG Papadopoulos, unpublished data).

Virus-Induced Changes in Airway Reactivity

The above epidemiological data have raised considerable interest regarding the 
mechanisms of virus-induced asthma exacerbations, the understanding of which 
may suggest potential therapeutic targets. Airway hyperresponsiveness is one of the 
most prominent functional abnormalities in asthma that can be objectively assessed 
in human and animal models. An increase in airway responsiveness to histamine in 
normal subjects after URTIs, lasting as long as 7 weeks, was observed more than 
20 years ago [47]. Although results have varied, probably because of differences 
in methodology, models, viral strains, and so on; increased airway reactivity has 
since been documented after RSV, influenza, parainfluenza, and adenovirus infec-
tions, mostly in animal models [48].

Because of the lack of appropriate animal models, human experimental infections 
have been used as a model for RV infection. Using this model, the increased airway 
responsiveness to histamine after RV infection in atopic asthmatic subjects was cor-
related with the severity of the experimental cold, which was paralleled by an increase 
in IL-8 in nasal lavage fluid [49]. In addition, when daily forced expiratory volume 
in 1 s (FEV

1
) was monitored, a variable airway obstruction was observed [50]. When 

normal and atopic rhinitic subjects were compared, lower airway responsiveness was 
more affected in the allergic group [51]. However, in another study, experimental RV 
infection induced small changes in either upper or lower airway symptoms in normal 
and asthmatic subjects, with no effect on bronchial reactivity, leading the authors to 
suggest that RV infection by itself may not be sufficient to provoke clinical worsening 
of asthma [52]. Exposure to allergens during respiratory viral infection is the most 
obvious cofactor, because it is well known that rhinovirus experimental infection 
enhances the responses to inhaled allergens [53] and potentiates inflammation after 
segmental allergen bronchoprovocation [54]. Most surprisingly, Avila et al. [55], 
using the same human model in allergic rhinitis subjects, showed that pre-exposure 
of the nose to an allergen significantly delayed the onset of cold symptoms, reduced 
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the duration of the  illness, and delayed the appearance of proinflammatory cytokines 
locally. An inverse correlation between nasal eosinophils at the time of inoculation 
and eventual cold symptoms was also observed, suggesting that an allergic response 
might protect from RV colds. Although this evidence seemed contradictory to most 
previous findings, it could prove helpful in several ways. First, it suggested that 
eosinophils could be involved in RV immunity [56]. Furthermore, it indicated that 
allergen exposure and viral infection did not have a simple additive effect, and timing 
or dosage may be important.

Mechanisms of Virus-Induced Inflammation

Several characteristics of virus-mediated pathology can also be seen in asthma. 
Among these, direct virus-mediated damage to lower airway epithelium is a char-
acteristic of several viruses including influenza and RSV. Dead epithelial cells drop 
into the airway lumen, inducing or increasing airway obstruction. Although to a 
lesser extent, this is also the case for RV, which can infect the lower airways and 
induce cytotoxicity [57–59] (Fig. 2). Furthermore, RV infection induces the pro-
duction of several cytokines and chemokines, including IL-6 and IL-8, regulated 
upon activation normal T cell expressed and secreted (RANTES), granulocyte-
macrophage colony-stimulating factor (GM-CSF), and IL-16 [58, 59]. These 
studies strongly suggest that lower airway infection and local inflammation may 
represent the first step in the pathogenesis of an asthma episode, adding to and 
clarifying previous attempts to prove this notion [60, 61]. It is possible that the 
degree of inflammation, which is similar to other respiratory viruses [62], and not 
the degree of cytotoxicity, is more relevant in the induction of an exacerbation.

Epithelial damage and mediator production after viral infection are only some of 
the mechanisms that could initiate or sustain an asthma exacerbation. A  dysfunction 
of the inhibitory M2 muscarinic receptor has been documented after viral infection, 
which could lead to increased reflex bronchoconstriction [63]. The role of tachykinins 
has also been suggested, partly explained by the reduction of neutral endopeptidase 
activity, which is the major metabolizing enzyme for substance P and neurokinin A 

Fig. 2 In a simple model of epithelial wound healing, damaged epithelium (t = 0) is suboptimally 
repopulated after RV-infection in comparison to sham-infected control. DAPI stained cells 
(Published in Respiratory Research [57])
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[64]. Most of the above studies have been performed in animal  models with cytotoxic 
viruses such as influenza, parainfluenza, and RSV. A  neurally  mediated effect does 
not seem to be a prominent feature of human experimental RV infections [65].

Most puzzling is the potential involvement of the immune response to 
 respiratory viruses in asthma exacerbations. Although the asthmatic phenotype 
is paradigmatically related to type-2 lymphocyte responses, predominantly IL-4 
and IL-5, viral infections induce strong type-1 responses with high levels of IFN-γ 
that would be expected to downregulate, rather than augment, “allergic” immune 
responses. Among respiratory viruses, RSV, influenza, and parainfluenza are more 
extensively studied in animal models. Sensitization of BALB/c mice to the virus 
attachment protein G of RSV, followed by live virus infection, leads to pulmonary 
eosinopihlia and type-2 cytokine production. Although IFN-γ is still the dominant 
T-cell cytokine, a localized relative reduction of IFN-γ mRNA expression with a 
concomitant increase in IL-4 and IL-5 transcripts has been reported [66]. When 
Dermatophagoides farinae-sensitized mice were repeatedly infected with RSV, 
an increased production of type-2 cytokines was observed [67]. In the presence of 
IL-4, virus-specific CD8 T cells can switch to IL-5 production and induce airway 
eosinophilia [68]. Interestingly, IL-4 can also inhibit antiviral immunity, delaying 
both influenza [69] and RSV clearance.

RV-infected peripheral blood mononuclear cells from atopic asthmatic subjects 
produce significantly lower IFN-γ and IL-12 and significantly higher IL-10 and 
IL-4 than do cells from normal individuals [70]. Although IFN-γ remained the 
dominant T cell cytokine in this model, a shift toward a type-2 response may 
be involved in the induction of an asthma exacerbation, by mechanisms similar to 
the ones described above, for RSV in the mouse.

The recent discovery that airway epithelial cells are deficient in their capacity to 
generate INF-β when infected with RV raises the possibility that a defect in innate 
immunity might underlie exacerbations of asthma [71]. The normal response of the 
airway epithelium to virus infection is the induction of primary IFNs, such as IFN-β, 
through activation of the Toll-like receptor 3, which recognizes viral double-stranded 
RNA, leading to apoptosis that is able to effectively eliminate the infected cell and 
therefore limit viral replication and release. However, in asthmatic epithelial cells a 
major defect in this pathway leads to enhanced viral replication and virus-induced 
cell cytotoxicity [72]. Evidence that this pathway might be  relevant to the persistence 
of asthma, as well as exacerbation, comes from the demonstration that in asthmatic 
patients RV can persist up to 6 weeks after infection [73] and in patients with severe 
asthma, RV is detectable in airway biopsy specimens between exacerbations [74].

Can Virus-Induced Wheeze Predict Later Asthma?

Most young children who wheeze initially present with episodes related to viral 
 infections. Only a proportion of these children will continue to wheeze in later 
childhood and adulthood. For the first few years of life, these latter children remain 
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 clinically indistinguishable from those with a transient wheeze. Therefore, it has 
been a long-standing aim of pediatricians to predict those who will have asthma 
later in life. In theory, anti-inflammatory remedies given early might modify the 
outcome [75], although recently it has been shown that early use of inhaled steroids 
for wheezing in preschool children had no effect on the natural history of asthma 
or wheeze later in childhood and did not prevent lung function decline or reduce 
airway reactivity [76]. From population studies, risk factors such as personal atopy or 
a family history of asthma could predict the relative risk of developing asthma with 
considerable accuracy, but for use in an individual, this approach is not sufficiently 
sensitive [77].

Because increased IgE levels and relative eosinophilia can be seen in infants that 
continue to have persistent wheeze, information obtained from a blood test during 
the initial episode could have some predictive potential [9]. However, this infor-
mation has relatively low specificity and may not be ideal for day-to-day practice. 
It seems, therefore, that currently, a precise prediction of asthma persistence cannot 
be attempted from the initial virus-induced wheezing episodes.

Antiviral Strategies

Although possible, it is not certain whether a window of opportunity exists from 
the occurrence of a viral upper respiratory infection to the development of an acute 
asthma exacerbation, during which an antiviral strategy may be effective. In addi-
tion, we cannot predict whether immunization against one or more of the viruses 
involved will reduce virus-induced asthma exacerbations or it may simply shift the 
problem to different strains. To answer the above questions, reliable antiviral tools 
are required.

RVs represent the major causes of virus-induced asthma exacerbations;  however, 
immunization options remain unsatisfactory, mainly due to the large number of 

Fig. 3 Addition of salmeterol (S) either at 10−8(A) or 10−9(B) M to fluticasone propionate (F) at 
10−9 M resulted in a significant reduction of RV-mediated VEGF production by epithelial cells, in 
a synergistic manner. n = 4–6, *p < 0.05, **p < 0.001 (Adapted from Volonaki et al. [84])
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 different serotypes [29, 78]. A variety of antiviral agents against RV have been 
studied. Additional antiviral and anti-inflammatory strategies against common cold 
have been suggested with varying, but usually little, success [79]. Such  strategies 
include the regularly used ascorbic acid, zinc, and Echinacea, which have little 
therapeutic value [78]. Macrolide antibiotics, batilomycin A1, erythromycin, and 
telithromycin have been shown to be effective as potential anti-inflammatory 
agents in vitro, but clinical proof is still insufficient [80, 81]. During the past few 
years antirhinoviral compounds such as pleconaril, acting by preventing the uncoat-
ing of picornaviruses [82], and the RV protease inhibitor ruprintrivir [83], have 
shown promising results, but only in early-stage clinical trials.

Based on the above, strategies against virus-induced asthma and related 
 exacerbations are, in principle, anti-inflammatory, following strategies against 
 persistent asthma. Steroids combined with long-acting beta agonists may be effec-
tive in this  setting: recent studies have shown that such combinations are syner-
gistically  effective in reducing RV-induced inflammation in vitro [84] (Fig. 3). 
Nevertheless, the extent to which these findings translate in clinical practice is still 
unspecified [85].
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