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A nonlinear model consisting of a system of coupled ordinary differential equations (ODE), describing a biological process linked
with cancer development, is linearized using Taylor series and tested against different magnitudes of input perturbations, in order
to investigate the extent to which the linearization is accurate. )e canonical wingless/integrated (WNT) signaling pathway is
considered. )e linearization procedure is described, and special considerations for linearization validity are analyzed. )e
analytical properties of nonlinear and linearized systems are studied, including aspects such as existence of steady state and initial
value sensitivity. Linearization is a useful tool for speeding up drug response computations or for providing analytical answers to
problems such as required drug concentrations. A Monte Carlo-based error testing workflow is employed to study the errors
introduced by the linearization for different input conditions and parameter vectors.)e deviations between the nonlinear and the
linearized system were found to increase in a polynomial fashion w.r.t. the magnitude of tested perturbations. )e linearized
system closely followed the original one for perturbations of magnitude within 10% of the base input vector which yielded the
state-space fixed point used for the linearization.

1. Introduction

)e WNT signaling pathway is a cascade of biochemical
reactions transducing signals from the extracellular space
into the cells. )is pathway is involved in different biological
processes such as embryonic development, tissue homeo-
stasis, and tumorigenesis [1–3]. )e pathway is activated by
the binding of WNT-protein ligands to Frizzled family re-
ceptors, which pass the biological signal to the Dishevelled
(DVL) protein inside the cell.

Specifically, we considered the canonical WNT pathway
that regulates translocation of the cytoplasmic β-catenin
(CTNNB1) into the nucleus. Without WNT signaling,
β-catenin is degraded by a destruction complex, which in-
cludes AXIN, APC, GSK3β, and CK. )e last two compo-
nents phosphorylate β-catenin on several serine and

threonine residues targeting it for ubiquitination and sub-
sequent proteosomal degradation. )is continual elimina-
tion of the β-catenin prevents its translocation to the nucleus
[1–3].

)e pathway is activated when WNT ligands bind FZD
and LRP5/6. )is disrupts the function of the destruction
complex by recruiting it to the plasma membrane, leading to
β-catenin stabilization in the cytoplasm and its subsequent
nuclear translocation. In the nucleus, β-catenin binds TCF/
LEF transcription factor proteins and activates expression of
WNT target genes [3].

Nuclear β-catenin together with 5 different TCF/LEF
transcription factors and 4 other proteins (BCL9, BCL9L,
PYGO1, and PYGO2) makes 20 positive readouts. Without
WNT signaling and, corresponding nuclear β-catenin, the
5 TCF/LEF transcription factors are combined with
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4 transcriptional corepressor proteins forming 20 negative
readouts, thus leading to a total of 40 readouts. Figure 1
depicts an overview on the WNT model structure.

)e main objective of this paper is to investigate the
effect of linearization (based on Taylor series expansion) for
a custom prototype model of the human WNT signaling
pathway described above, similar to the Reactome model in
terms of structure and complexity [4, 5]. )e approach
considered herein is however generic and applicable to any
nonlinear system of coupled ordinary differential equations
(ODE).

Linearization may be a useful approach for many sig-
naling model-based use cases. First of all, we refer to the case
where only “relative” data are available. “Relative” datasets
do not contain pairs of input-output vectors of absolute
values. Instead, a data sample represents the ratio of outputs
for two different input conditions/vectors. )e datasets may
be organized in chunks. A chunk has a unique base input
vector; other input vectors are variations of the base one.
Each input vector has a corresponding output ratio, i.e., the
ratio between its corresponding output vector and the base
output vector. )ese ratios may be more relevant than plain
absolute values, as they can easily indicate up or down
regulation of model components/states for various input
conditions/vectors.

To evaluate a ratio, the steady state corresponding to the
base input vector must be computed first. Using the base
steady-state point as initial conditions, other forward sim-
ulations compute the steady state for each input vector. )is
procedure usually employs numeric integrators for ODE
systems, which have various computational and time re-
quirements. A linearization may be conducted around the
base steady-state point. For inputs which do not lead to large
linearization errors (i.e., ones sufficiently close to the base
input vector), the linearized model can be employed since it
is faster and easier to use than the nonlinear one.

To compute the numerical solution of stiff nonlinear ODE
systems (until steady state is reached) a system of linear
equations needs to be solved multiple times. Depending on
the time step, and on the number of time steps required to
reach the steady state, the total number of solutions may vary
between a few tens and several thousands. In contrast, for the
linearized system, a system of linear equations must be solved
exactly once. Furthermore, additional runtime is required for
evaluating the model equations and the Jacobian.

Another advantageous use case for linearization is the
computation of the required input deviations (relative to the
base input vector) that would lead to a desired change in the
state variable vector (relative to the base steady-state point).
)is approach may be employed to compute the ideal
specificity of a potential drug or drug combination to treat a
certain type of tumor, or to help in designing new drugs for
specific patients or groups of patients.

Moreover, linearization is a step often performed [6–8]
in designing control systems for regulating different com-
ponents of a biological system, either through a nonlinear
feedback, or by linearizing the model’s equations, as it allows
for a direct application of both classical and modern control
strategies.

Studying the accuracy of the linearization is therefore
useful for indicating when the linearized model can be
successfully employed, i.e., when the linearization errors
are negligible. )ese errors depend on the distance between
the base input vector and other input vectors. If a suitable
threshold can be found, input vectors meeting the
threshold can be analyzed using the linearized model, while
the rest can be forward simulated using the nonlinear
model.

In the following, the base input vector is denoted as ub,
and the other input vectors are regarded as input
perturbations.

2. Methods

2.1. Nonlinear Systems and Linearization. Generically, a
dynamic nonlinear system is described using the following
equations:

dx

dt
� f(x, p, u), (1)

y � g(x, p, u), (2)

where x is the state vector, p is the parameter vector, u is the
input vector, and y is the output vector. Function f de-
scribes the behavior of the system, while function g defines
the output variables of the model. If f is Lipschitz con-
tinuous, then equation (1) has a unique solution [9].

For the considered WNT model, f and g are Lipschitz
continuous functions and parameter vector p is presumed
constant (therefore, its notation can be omitted). )e model
has the following size: x ∈ R421, u ∈ R60, p ∈ R1154, and
y ∈ R40.

If input vector u has a step-like evolution, then at a fixed
point xss (considered as steady state), equations (1) and (2)
are rewritten as follows:

0 � f xss, ubf( , (3)

yss � g xss, ubf( , (4)

where yss is the steady-state output vector and ubf is the final
value of the base input vector ub.

If a linearization is performed around xss, using Taylor
series expansion, and all terms of second or higher order are
being discarded, then

flinear(x, u) � f xss, ubf(  +
zf

zx
xss, ubf(  x− xss( 

+
zf

zu
xss, ubf(  u− ubf( ,

(5)

where (zf/zx)xss, ubf is the state Jacobian evaluated at
(xss, ubf ) and (zf/zu)xss, ubf is the input Jacobian evaluated
at (xss, ubf ). Vectors (x−xss) and (u− ubf ) are states and
input vector deviations from the point where the lineari-
zation was performed at.

Typically, the following notations are used in control
theory [10, 11]:
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A �
zf

zx
xss, ubf( , (6)

B �
zf

zu
xss, ubf( . (7)

If conditions (i-ii) listed below hold, the nonlinear system
is already linear in its input space and the linearization does
not introduce any errors from omitting nonlinear terms of
(u− ubf ) since they do not exist. )ese conditions are true for
the WNT model considered in this paper:

(i) )e input Jacobian is constant (i.e., does not depend
on x or u)

(ii) )e state Jacobian does not depend explicitly on u

Using equations (3) and (6)-(7),
dxlinear

dt
� flinear xlinear, u(  � A xlinear −xss(  + B u− ubf( ,

(8)
where xlinear is the state vector of the linearized system.

Based on equation (3), at the point of linearization,
dxss/dt is zero. )erefore,

d

dt
xlinear − xss(  � A xlinear − xss(  + B u− ubf( . (9)

If xdev is defined as (xlinear −xss), i.e., the vector rep-
resenting the deviations of the state from the point of lin-
earization for the linear model, then

dxdev

dt
� Axdev + B u− ubf( . (10)

)e agreement between the linearized model and the
original model can be formalized as follows:

dxdev

dt
� Axdev + B u− ubf( ,

dxnonlin

dt
� f xnonlin, u( ,

e � xnonlin − xdev −xss,

(11)

where dxnonlin/dt is the state evolution as dictated by the
original nonlinear system and e is the error vector repre-
senting the differences introduced by the linearization. A
new nonlinear systemwas obtained, describing the evolution
in time of the agreement between the linearized and the
original model. By defining

xagreement �
xdev

xnonlin
 , (12)

an analysis related to the errors introduced by the lineari-
zation can be conducted for different input vectors u. An
example workflow would be as follows:

(a) Forward simulate the nonlinear model until a
steady-state point xss is reached for input ub

(b) Compute matrices A and B

(c) Forward simulate model (11) for a new input vector

u, with the initial conditions xagreement0 �
0

xss
 

(d) Compute measures of interest on the agreement
error vector e

2.2. Effects of Linearization. If the linearization is performed
around a hyperbolic fixed point, the Hartman–Grobman
theorem [12] guarantees that the linearized system will
exhibit the same qualitative behavior as the original system,
in a sufficiently small neighborhood around the linearization
point. A fixed point xf is “hyperbolic” if all eigenvalues of
the Jacobian evaluated at xf (i.e., the linearized systems’
poles) have a nonzero real part (i.e., the system does not have
purely oscillatory modes).

In terms of quantitative behavior, usually a linearization
is considered accurate only for small deviations of the state
vector around an equilibrium point. Of importance is the
steady-state behavior of the linearized system when com-
pared to the original one, i.e., the steady-state deviations/
errors (introduced by the simplified model) for different
magnitudes of exogenous input perturbations.

WNT FZD LRP DVL AXIN APC CK

Destruction complex

WNT:FZD:LRP

Cytoplasm

WNT:FZD:LRP:DVL
destruction complex

Degradation
Nucleus

CTNNB1p-CTNNB1

GSK3

Figure 1: Overview of the WNT signaling model. )e WNT signaling pathway model contains 7 WNT ligands, 7 FZD receptors, 2 LRP
coreceptors, and 40 readouts.
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In case of stable linearized models, for step-like inputs,
the steady state is dependent only on the final value of the
exogenous input vector and on the model matrices:

0 �
dxdevss

dt
� Axdevss + B ut⟶∞− ubf( ,

xdevss � −A−1B ut⟶∞− ubf( .

(13)

Herein, all vector fields u which have the following
properties are regarded as “step-like” inputs:

ut⟶∞ � lim
t⟶∞

u(t) � ufinal � const,

ufinal ≠ ubf .
(14)

)is translates to the new steady state depending neither
on the time-dependent evolution of the input vector (it de-
pends only on its final value) nor on the initial conditions x0.

However, these considerations are not universally true
for nonlinear systems. )e existence of the steady state is
guaranteed if the following lemma applies. Suppose B is a
nonempty bounded subset of Rn. By definition [13], the ω
limit of set B, denoted ω(B), is the set of all points x for
which a sequence of pair xk, tk  exists, with xk ∈ B and
lim

k⟶∞
tk �∞ such that

lim
k⟶∞

x tk, xk(  � x. (15)

Lemma. [13]. Let B be a nonempty bounded subset ofRn and
suppose there is a number M such that x(t, x0)≤M for all
t≥ 0 and all x0 ∈ B. #en, ω(B) is a nonempty compact
invariant set. Moreover, the distance of x(t, x0) from ω(B)

approaches 0 as t⟶∞, uniformly in x0 ∈ B.

Less formally stated, if the nonlinear system has an overall
stable behavior, i.e., with initial conditions x0 in a neigh-
borhoodB, its state does not diverge towards infinity, then at a
large enough time t≥T, its state trajectory will enter and
remain in a closed set ω(B). If neighborhood B is centered
around an attractor fixed point xss, which can be used as a
linearization point, the lemma suggests, if its conditions are
met, that both the linearized and the nonlinear system will
reach a new steady state in case of an exogenous perturbation.
It is worth noting that the lemma deals explicitly with au-
tonomous systems, but, if the evolution of the exogenous
perturbation is known, it can be integrated into an extended
autonomous system, comprising two subsystems: the per-
turbation model and the original nonlinear model [14]. In the
following, let ω(B) consist of only one point, i.e., the system
has no oscillatory behavior at steady state.

To analyze the influence of the initial condition x0 on the
state trajectory of the nonlinear model, the Lyapunov expo-
nents theory can be employed. We consider Φ as the discrete-
time counterpart of the continuous-time model f, with the
property that xk+1 � Φ(xk), where xk � x(t0 + kTs) and Ts is
the sampling period. )e following statement holds (any
conclusions drawn for the discrete model are also valid for the
continuous one): the global Lyapunov exponent ofΦ at x with
respect to direction y is defined as the limit (if it exists) [15]:

lim
t⟶∞

1
t
lim
δ⟶0

ln
Φt(x + δy)−Φt(x)

����
����

‖δy‖
� λ, (16)

where Φk(x0) � x(tk, x0). )e global Lyapunov exponent λ
describes the decay in time of the distance between two
trajectories which start at two separate initial points x and
x + δy:

Φt(x + δy)−Φt(x)
����

����

‖δy‖
≈ e

λt
. (17)

If λ< 0, any state trajectory which starts at x + δy (for
any sufficiently small δ) will converge to the “main” tra-
jectory which starts at x. Since for a small δ we can state that

‖Φ(x + δy)−Φ(x)‖ ≈ ‖J(Φ, x)δy‖, (18)

where J(Φ, x) is the Jacobian of Φ evaluated at x and λ can
be expressed as

λ � lim
n⟶∞

1
n
ln

J Φn, x( )y
����

����

‖y‖
�
1
n



n−1

t�0
ln

J Φt+1, x( y
����

����

J Φt, x( y
����

����

�
1
n



n−1

t�0
ln

J Φ,Φt( J Φt, x( y
����

����

J Φt, x( y
����

����
.

(19)

)us, the global Lyapunov exponent ofΦ at point x with
respect to direction y is the average of the local Lyapunov
exponents of Φ at points x0,x1, x2, . . . of the trajectory of x

w.r.t direction J(Φk, x)y at each point xk [15]. )e local
Lyapunov exponents are characterized by the eigenvalues of
J(Φ, xk). )erefore, if the system reaches a new steady state
(e.g., an attractor fixed point xssfinal) when an input per-
turbation is applied (starting from an initial stable equi-
librium point xss0 which can be employed for the
linearization), all state trajectories starting from a sufficiently
small neighborhood B of xss0 will converge to xssfinal.

Let S⊆Rn be a compact and convex set of points x for
which the state Jacobian evaluated at x has negative real-part
eigenvalues. More formally, let λi be the eigenvalues of
(zf/zx)x, p, and R(λi)< 0, ∀x ∈ S, i ∈ [1, . . . , n]. In this
case, the eigenvalues of the discrete-time model Φ lie inside
the unit circle. S is restricted so thatΦ(x) ∈ S, ∀x ∈ S. )en,
at each point x ∈ S, the local Lyapunov exponent w.r.t.
direction y is defined as

lim
δ⟶0

ln
‖Φ(x + δy)−Φ(x)‖

‖δy‖
, (20)

and is negative; therefore,

‖Φ(x + Δy)−Φ(x)‖≤ c‖Δy‖, (21)

where 0< c< 1 and Δ> 0 is a small enough number.
It can be shown that, for a constant input u, for every

initial point x0 ∈ S, the nonlinear model reaches a unique
fixed point xss ∈ S at steady state. Banach’s fixed point
theorem states that if Φ is a strict contraction, then Φ has a
unique fixed point in S [9]. AmapΦ is a strict contraction on
S, if ∀p, q ∈ S:

‖Φ(p)−Φ(q)‖≤ c‖p− q‖, (22)
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where c< 1. To prove equation (22), consider the line seg-
ment connecting points p and q, and the sequence of distinct
points p1, p2, . . . pk, qk, qk−1, . . . , q1 between p and q. )en,

‖Φ(p)−Φ(q)‖ �
����Φ(p)−Φ p1( − Φ(q)−Φ q1( ( 

+Φ p1( −Φ q1( 
����≤

≤ Φ(p)−Φ p1( 
����

���� + Φ(q)−Φ q1( 
����

����

+ Φ p1( −Φ q1( 
����

����.

(23)

)e points of each pair (pk−1, pk) are close enough:

Φ pk−1( −Φ pk( 
����

����≤ cpk
pk−1 −pk

����
����, (24)

where cpk
< 1 is the local Lyapunov exponent of Φ at pk.

Applying the procedure of equation (23) iteratively and
employing equation (24) yields

||Φ(p)−Φ(q)||≤ cp1
p−p1

����
���� + . . . + cpk−1

pk −pk−1
����

����

+ . . . + cq1
q− q1

����
����.

(25)

Let cmax � max cp1
, . . . , cpk−1

, . . . , cq1
 < 1.

)en,

‖Φ(p)−Φ(q)‖≤ cmax p−p1
����

���� + . . . + pk −pk−1
����

����

+ . . . + q− q1
����

����.

(26)

Because p, p1, p2, . . . pk, qk, qk−1, . . . , q1, q are collinear
points, their inner distances sum to ‖p− q‖. )erefore,

‖Φ(p)−Φ(q)‖≤ cmax‖p− q‖, (27)

and Φ is a strict contraction for all p, q ∈ S. )is also implies
that the ω limit of S consists of only one point. For com-
parison, a stable linear system will always reach a unique
steady-state fixed point (i.e., ∀x0 ∈ Rn at t0) for a specific
constant input, as stated in equation (13).

As the global Lyapunov exponent is the average of the
local Lyapunov exponents, the existence of S is a particular
case of the global Lyapunov exponent reasoning described
above. S may also be regarded as a smaller subset of the
attraction basin of the attractor fixed point xss.

In conclusion, a linearization offers valid results only
when tested against valid input perturbations, i.e., pertur-
bations that do not drive the nonlinear system into an
unstable region. In this case, the nonlinear and linearized
models have similar behaviors: existence of steady state and
(local) insensitivity w.r.t. initial conditions. )e application
of an exogenous input perturbation modifies the location in
the state space of the attractor fixed point xss, and therefore,
it invalidates the prerequisites of the Hartman–Grobman
theorem (due to the fact that the linearized system was
defined at the initial fixed point location xss0, before applying
the exogenous perturbation). Although the trajectories of
the models will initially behave qualitatively the same when
starting from xss0, i.e., the trajectories will start varying in the
same direction (since the linearization is accurate for small

deviations around xss0), the two models may behave qual-
itatively differently around xss. )is holds true especially if
the Jacobian varies considerably between xss and xss0.

)e actual steady-state error between the linearized
model and the original model is influenced by the Hessian of
the system. For exemplification, suppose conditions (i-ii)
hold, let xlin be an attractor fixed point around which a
linearization was performed, and the input perturbation u be
a Heaviside step function. As a first example, consider the
Taylor expansion of f around xlin:

f(x, u) � f xlin, ubf(  +
zf xlin( 

zx
x−xlin( 

+
1
2!

x− xlin( 
T z2f xlin( 

zx2 x−xlin( 

+ . . . + B u− ubf( .

(28)

At a new steady state of the nonlinear model xss,
f(xss, u) will be zero. If the Hessian norm is relatively large,
the large weights of the second-order term will introduce
errors between the steady state of the linearized and the
steady state of the original model.

As a second example, computing the partial derivatives
of x w.r.t. u at both fixed points xlin and xss yields

zxlin

zu
� −

zf xlin, u( 

zx
 

−1

B � −A−1B,

zxss

zu
� −

zf xss, u( 

zx
 

−1

B.

(29)

If the Jacobian varies significantly between the two fixed
points xlin and xss, the linearized and the original system will
exhibit different input sensitivities. )e rate of change of the
Jacobian w.r.t. δx ≈ xss −xlin is dictated by the Hessian.

As a third example, by following an iterative procedure,
one can forward simulate the linearized system for small
enough time increments so that it follows precisely the
nonlinear system. More formally, there is a δ > 0 so that, for
every ε> 0, if ‖xnonlinear(t)−xlinear(t)< ε‖, then
Δt � tk+1 − tk < δ. At the end of each time increment, the
linearization (i.e., the Jacobian) is recomputed. Applying this
for k steps until the new steady state is reached yields

0 � f xss, u(  � 
k

zf xk( 

zx
xk+1 −xk(  + B u− ubf( . (30)

If the Jacobian is constant, equation (30) reduces to
equation (13). )erefore, if the Jacobian varies significantly
along the state trajectory towards the new attractor point
given by the applied perturbation, the linearized system will
deviate from the real one. Again, if the Hessian computed at
xlin has a relatively large norm, linearization errors are to be
expected.

2.3. Properties of the Considered WNT Model. By analyzing
the model equations, we observe that function f has for all
state variables the following form:

Computational and Mathematical Methods in Medicine 5



_xk � fk(x, p, u) � −xkh1k
xi, p(  + h2k

xi, p(  + uk, (31)

where xk is the kth state variable, xi is the set of all state
variables excluding xk (i.e., i ∈ [1, . . . , k− 1, k + 1, . . . , 421]),
and h1k

and h2k
are nonlinear Lipschitz continuous functions

with the property that h1k
(x, p)> ck > 0 and h2k

(x, p)≥ 0,
∀x, p> 0, and ck is constant.When both the exogenous input
uk and the parameter vector p are chosen to be positive
(which is the case for the considered datasets) and all state
variables are nonnegative, the subsystem defined by fk is
equivalent to a stable linear time-variant first-order filter.
)is, however, does not imply that the entire model is stable,
due to the existence of nonlinear feedback loops.

If all state variables have nonnegative initial values (at
t0), xk will always remain nonnegative. To prove this, let all
other state variables be nonnegative and consider the zer-
ocrossing of xk. Equation (31) is reduced to

_xk � fk(x, p, u) � h2k
xi, p(  + uk ≥ 0. (32)

)erefore, xk will increase again as a positive number. As
a consequence, negative values have no relevance for the
nonlinear model and can simply be corrected in the line-
arized model. )e predictions of the linearized model were
thus in the end adjusted by clipping the state variable values
in the range [0, ∞).

2.4. Monte Carlo Analysis of Linearization Accuracy Range.
To estimate the quantitative behavior of the linearized
model, the following workflow was used:

(1) Generate a random parameter vector p and set rnoise,
representing the range of a uniform distribution
centered around 1, used to perturb the input vectors

(2) For each input sample ub,i,

(a) Forward simulate the nonlinear system until the
steady-state xss0 is reached

(b) Linearize the nonlinear model around xss0
(c) Compute ui by perturbing input vector ubf ,i, with

a multiplicative noise of range ± rnoise%
(d) Forward simulate system (11) until the steady

state, using the initial conditions

xagreement0 �
0

xss0
 

(3) Compute metrics by averaging over all input sam-
ples, for the current p and rnoise.

3. Results

For the WNT model described Introduction, the proposed
workflow was applied four times, for different parameter
vectors p. )ree ranges rnoise of multiplicative noise were
used: 10%, 25%, and 50%. Vectors p were drawn from a log-
uniform distribution over [10−1, 101]. )e same set of inputs
ubf ,i was used for all workflow runs, and it consisted of 2000
synthetically generated input samples, drawn from a fitted
log-normal distribution over a smaller set of real input
samples. )e perturbed input was computed as

ui � 1 + rnoise − 2rnoisedi(  ∘ ubf ,i, (33)

where “∘” is the Hadamard product and di is the pertur-
bation direction for input ui. Vectors di were drawn from a
uniform distribution over [0, 1]. Each workflow run had its
own set of directions di, used for all ranges rnoise.

First of all, we refer to runtime considerations: a runtime
larger than 0.150 seconds is required for a nonlinear simulation
to steady state of the herein considered WNTmodel (based on
Matlab’s ODE15 s function, with user-supplied Jacobian),
whereas for the linearized system, only 0.003 seconds are re-
quired. )is time difference may become significant, especially
when the “relative” dataset chunk size is considerable.

Tables 1 and 2 display the steady-state results (averaged
over all input samples) for the four runs of the proposed
workflow. )e predictions output by the linearized model
were corrected as described above, to avoid negative-state
variable values. For Table 1, the results were averaged over all
model states, while for Table 2, the results were averaged
over the model outputs (i.e., the readout model states). MRE
and MSE represent mean relative and mean squared errors,
respectively:

MSE � xss linear − xss nonlinear( 
2
, (34)

MRE �
xss linear − xss nonlinear

xss nonlinear




, (35)

where xss linear and xss nonlinear are the linear and nonlinear
steady-state vectors (after having applied perturbation) and
std(e)/std(xdiff ) is the ratio between the standard deviation
of the linearization error vector and the standard deviation
of the vector xdiff � xss nonlinear − xss0, where xss0 is the lin-
earization point.

As an example, we display in Figure 2 the evolution in
time of the error metrics MRE andMSE for a single case with
rnoise � 50%. )e errors increase in time, as the state vector
moves farther away from the linearization point xss0, and
consequently, the actual Jacobian differs more substantially
from the one computed at xss0.

In Figure 3, we display the evolution in time for two
model states for which the linearization introduces errors
(the same case as in Figure 2 was considered). At first, the
two models display almost perfect agreement (both quali-
tatively and quantitatively). However, as the state vector
starts departing farther away from the linearization point (at
t � 0), the error between the two models increases.

Figure 4 displays the dependence between linearization
error and rnoise for one state variable of the model. )e
evolution in time of both models, linearized and nonlinear,
is depicted, for all three values of rnoise. For small pertur-
bations, the linearized model follows closely the nonlinear
version. As the perturbations become larger in magnitude,
the difference between the time courses of the two models
increases. )is behavior can be observed also in Figure 5,
where the MRE variation (for the output variables of the
model, in steady state) was plotted for all workflow runs. An
approx. polynomial dependence can be observed, which is in
agreement with equation (28).
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Without the adjustment introduced for the predictions
of the linearized model, for some input perturbations,
certain state variables in the nonlinear model decay to zero,
while the state variables in the linearized model converge to
negative values. An example is displayed in Figure 6.)e two
models display a good agreement up to the zerocrossing of
the state variable in the linearized model. Without the ad-
justment, this example would have yielded a highMRE value
since the linearization error would have been divided by a
small denominator, according to equation (35).

Table 2: Metrics on model outputs, computed using adjusted linear predictions.

Workflow number 1 2 3 4

rnoise � ±10%
std(e)/std(xdiff ) (%) 9.65 7.05 6.95 7.33

MRE (%) 0.87 0.40 0.72 0.39
MSE 6.80E−04 1.08E−04 4.50E−05 3.30E−05

rnoise � ±25%
std(e)/std(xdiff ) (%) 22.51 17.53 16.76 17.34

MRE (%) 5.26 2.62 4.43 2.61
MSE 2.70E−02 4.52E−03 1.32E−03 1.28E−03

rnoise � ±50%
std(e)/std(xdiff ) (%) 43.12 31.61 30.73 31.81

MRE (%) 17.96 10.12 17.80 10.76
MSE 3.89E−01 6.06E−02 2.76E−02 1.95E−02
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Figure 2: Evolution in time of the error metrics for one pertur-
bation example with rnoise � 50%.
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Figure 3: Evolution in time of two state variables, for both systems,
with rnoise � 50%.
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Figure 4: Evolution in time of one state variable for the linear and
the nonlinear systems, for all three perturbation levels. )e dif-
ferences between the two models are indicated with arrows. )e
linear model is depicted with darker colors. For rnoise � 10%, the
two models overlap perfectly.

Table 1: Metrics on all states, computed using adjusted linear predictions.

Workflow number 1 2 3 4

rnoise � ±10%
std(e)/std(xdiff ) (%) 4.61 4.89 5.08 5.53

MRE (%) 0.41 0.27 0.59 0.31
MSE 0.162 0.024 0.195 0.039

rnoise � ±25%
std(e)/std(xdiff ) (%) 10.41 12.09 11.60 12.90

MRE (%) 2.33 1.65 3.38 1.86
MSE 4.763 0.895 6.217 1.044

rnoise � ±50%
std(e)/std(xdiff ) (%) 18.67 22.68 20.43 22.92

MRE (%) 9.10 6.13 12.29 6.48
MSE 62.042 13.702 85.323 17.656
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4. Conclusions

Linearization is a useful tool for the analysis of large non-
linear dynamical systems. It produces a simpler version of
the original model, on which established linear analysis
methods can be applied to gain insights into the local be-
havior of the original model.

As an example to test the approach, a model of the
canonical WNT signaling pathway was considered. )e
model was forward simulated until steady state was reached
for an input set ub,i. Linearization was performed at steady
state for each input sample, and the accuracy of the line-
arized model was determined for various ranges of input
perturbation magnitudes.

)e concepts related to linearization validity were pre-
sented. A linearization approach offers correct insights only
when tested against valid input perturbations (i.e., ones that
do not drive the nonlinear system into an unstable region).

In terms of accuracy, errors tend to increase in a
polynomial fashion w.r.t. the magnitude of tested pertur-
bations. For small enough perturbations, the linearized
system closely follows the original one.

By choosing an acceptable error level, a relative input
perturbation threshold can be derived, which can be used to
discriminate between various test input vectors, i.e., predict
which input vectors will not lead to large linearization errors.
For the considered WNT model, linearization errors were
determined to be low for input vectors ui within ±10% of the
base input vector ubf ,i.

Data Availability

)e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is work was supported by a grant of the Romanian Na-
tional Authority for Scientific Research and Innovation,
CCCDI—UEFISCDI, project number ERANET-FLAG-
ITFoC (2), within PNCDI III.

References

[1] T. Zhan, N. Rindtorff, and M. Boutros, “Wnt signaling in
cancer,” Oncogene, vol. 36, no. 11, pp. 1461–1473, 2017.

[2] Y. Duchartre, Y. M. Kim, and M. Kahn, “)e Wnt signaling
pathway in cancer,” Critical Reviews in Oncology/Hematology,
vol. 99, pp. 141–149, 2016.

[3] B. T. MacDonald, K. Tamai, and X. He, “Wnt/β-catenin
signaling: components, mechanisms, and diseases,” De-
velopmental Cell, vol. 17, no. 1, pp. 9–26, 2009.

[4] A. Fabregat, S. Jupe, L. Matthews et al., “)e reactome
pathway knowledgebase,” Nucleic Acids Research, vol. 46,
no. 1, pp. D649–D655, 2018.

[5] D. Kimelman, “Signaling by Wnt,” Reactome—A Curated
Knowledgebase of Biological Pathways, vol. 21, 2007 http://
www.reactome.org/content/detail/REACT_11045.1.

[6] F. Cacace, V. Cusimano, A. Germani, P. Palumbo, and
F. Papa, “Closed-loop control of tumor growth by means of
anti-angiogenic administration,” Mathematical Biosciences
and Engineering, vol. 15, no. 4, pp. 827–839, Article ID 103934,
2018.

[7] A. Mourad, G. Keltoum, and H. Aicha, “Blood glucose reg-
ulation in diabetics using H∞ control techniques,” European
Journal of Advances in Engineering and Technology, vol. 2,
no. 5, pp. 1–6, 2015.

[8] S. Oke, M. B. Matadi, and S. S. Xulu, “Optimal control analysis
of a mathematical model for breast cancer,” Mathematical
and Computational Applications, vol. 23, no. 21, pp. 1–28,
Article ID 103390, 2018.

[9] M. Björklund, On Existence and Uniqueness of Solutions of
Ordinary Differential Equations, KTH Royal Institute of
Technology, Dep. of Mathematics, Stockholm, Sweden, 2003.

xlinear
xnonlinear

–3

–2

–1

0

1

2

3

5 10 15 200
Time (s)

Figure 6: An example which yields negative values for one of the
linearized model state variable. )e nonlinear state variable decays
to zero, while the state variable in the linearized model converges to
a negative value.

0

2

4

6

8

10

12

14

16

18

20

22
M

RE
 (%

)

0.1 0.2 0.3 0.4 0.50
rnoise

Figure 5: Dependence between perturbation level rnoise and the
mean relative linearization error of the model outputs, at steady
state and for the four workflow runs.

8 Computational and Mathematical Methods in Medicine

http://www.reactome.org/content/detail/REACT_11045.1
http://www.reactome.org/content/detail/REACT_11045.1


[10] M. Vidyasagar, Nonlinear System Analysis, Prentice-Hall,
Upper Saddle River, NJ, USA, 2nd edition, 1993.

[11] R. C. Dorf and R. H. Bishop, Modern Control Systems,
Prentice-Hall, Upper Saddle River, NJ, USA, 12th edition,
2011.

[12] S. Zimmerman, “An undergraduates guide to the Hartman-
Grobman and Poincare-Bendixon theorems,” in Rachel Levy’s
Homepage, Harvey Mudd College, Department of Mathe-
matics, Claremont, CA, USA, 2008.

[13] A. Isidori and C. I. Byrnes, “)e steady-state behavior of a
nonlinear system,” in Control Handbook, , EECI Institute, 2nd
edition, 2010.

[14] T. Caraballo and X. Han, Applied Nonautonomous and
Random Dynamical Systems—Applied Dynamical Systems,
Springer, Berlin, Germany, 2016.

[15] M. Goldsmith, “)e maximal lyapunov exponent of a time
series,” Master )esis in the Department of Computer Sci-
ence, Concordia University, Montreal, Canada, 2009.

Computational and Mathematical Methods in Medicine 9


