
ORIGINAL RESEARCH
published: 05 May 2015

doi: 10.3389/fnhum.2015.00206

Frontiers in Human Neuroscience | www.frontiersin.org 1 May 2015 | Volume 9 | Article 206

Edited by:

Christian O’Reilly,

McGill University - Montreal

Neurological Institute, Canada

Reviewed by:

Petros Xanthopoulos,

University of Central Florida, USA

Christian O’Reilly,

McGill University - Montreal

Neurological Institute, Canada

Errikos-Chaim Michael Ventouras,

Technological Educational Institution

of Athens, Greece

*Correspondence:

Beena Ahmed,

Electrical and Computer Engineering

Program, Texas A&M University at

Qatar, PO Box 23874, Doha, Qatar

beena.ahmed@qatar.tamu.edu

Received: 14 November 2014

Accepted: 28 March 2015

Published: 05 May 2015

Citation:

Palliyali AJ, Ahmed MN and Ahmed B

(2015) Using a quadratic parameter

sinusoid model to characterize the

structure of EEG sleep spindles.

Front. Hum. Neurosci. 9:206.

doi: 10.3389/fnhum.2015.00206

Using a quadratic parameter
sinusoid model to characterize the
structure of EEG sleep spindles
Abdul J. Palliyali, Mohammad N. Ahmed and Beena Ahmed*

Electrical and Computer Engineering Program, Texas A&M University at Qatar, Doha, Qatar

Sleep spindles are essentially non-stationary signals that display time and

frequency-varying characteristics within their envelope, which makes it difficult to

accurately identify its instantaneous frequency and amplitude. To allow a better

parameterization of the structure of spindle, we propose modeling spindles using a

Quadratic Parameter Sinusoid (QPS). The QPS is well suited to model spindle activity

as it utilizes a quadratic representation to capture the inherent duration and frequency

variations within spindles. The effectiveness of our proposed model and estimation

technique was quantitatively evaluated in parameter determination experiments using

simulated spindle-like signals and real spindles in the presence of background EEG. We

used the QPS parameters to predict the energy and frequency of spindles with a mean

accuracy of 92.34 and 97.73% respectively. We also show that the QPS parameters

provide a quantification of the amplitude and frequency variations occurring within sleep

spindles that can be observed visually and related to their characteristic “waxing and

waning” shape. We analyze the variations in the parameters values to present how they

can be used to understand the inter- and intra-participant variations in spindle structure.

Finally, we present a comparison of the QPS parameters of spindles and non-spindles,

which shows a substantial difference in parameter values between the two classes.

Keywords: sleep spindles, sleep spindles model, sleep spindle structure, sleep stages, sleep spindle morphology

Introduction

Spindles are rhythmic transients present in the electroencephalogram (EEG) characteristic of stage
two sleep. Though varying definitions of spindles exist in literature, the American Academy of
Sleep Medicine (AASM) has standardized them by describing spindles as “oscillatory bursts on
EEG, of 11–16Hz sinusoidal waves, with a duration of 0.5–2 s and waxing and waning envelope”
(Rechtschaffen and Kales, 1968; Iber et al., 2007).

Sleep spindles are used to aid sleep staging (Rechtschaffen and Kales, 1968; Iber et al., 2007).
Recent research has shown that they play a role in memory formation and sleep “stability” (Wei
et al., 1999; Fogela and Smith, 2011). They have also been found to have an association with various
pathological phenomenon such as depression, epilepsy, Parkinson, Alzheimer, and schizophrenia,
further raising their significance (Bódizs et al., 2009; Wamsley et al., 2012; Tezer et al., 2014). For
example in Fogela and Smith (2011) the authors propose that spindles can be used as possible phys-
iological markers of intellectual ability; spindle properties were found to be highly correlated with
tests of intelligence such as IQ tests. The authors also discuss the role of spindles in the consolida-
tion of declarative memory by aiding the interaction between the hippocampus and the thalamus.
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Similarly, in Bódizs et al. (2005), the authors showed that the
grouping and density of fast spindles correlated positively with
mental ability measured from standard Raven Progressive Matri-
ces test. Authors in Tezer et al. (2014) reported a significant
decrease in the power and density of spindles before epileptic
seizures especially in extra temporal lobe epilepsies. Participants
with schizophrenia were also found to have drastically reduced
density, number and coherence of sleep spindles (Wamsley et al.,
2012).

These analyses require accurate labeling of sleep spindles in
EEG recordings, which is time-consuming and error-prone when
done manually. Automated spindle detection is thus gathering
increasing attention from the research community. As spindles
are of sinusoidal nature, characterized by progressively increas-
ing, then gradually decreasing amplitude, most spindle detectors
utilize features best suited for sinusoidal functions such as Filter
banks, Fast Fourier Transforms, Wavelets, and Matching pursuit
(Schönwald et al., 2006; Huupponen et al., 2007; Bódizs et al.,
2009). The accuracy of these features however decreases when the
frequency content of the background EEG overlaps the spindle
range causing an increase in the number of false positives. Auto-
matic sleep spindle detection is also hindered due to fluctuations
in the frequency patterns and large inter-individual variability
(Campbell et al., 1980; Kunz et al., 2000). However, a more signif-
icant issue in the development of accurate sleep spindle detectors
is the proper training or tuning of these detectors. The broad
AASM definition for sleep spindles leaves the manual marking of
spindles in EEG data open to some interpretation, leading to low
inter-expert agreement for spindle scoring (Kunz et al., 2000). A
study by Wendt et al. found an average intra-expert agreement
of 72 ± 7% (κ : 0.66 ± 0.07) and an average inter-expert agree-
ment of 61 ± 6% (κ : 0.52 ± 0.07) (Wendt et al., 2015). Thus,
the accuracy of sleep spindle detectors when trained and tested
using data scored from a single scorer can fall significantly when
tested against data scored by other experts. This also makes it
difficult to develop validated assessment criteria for automatic
sleep spindle detectors to compare the performance of proposed
detectors.

A number of mathematical models have been proposed to bet-
ter characterize the structure of sleep spindles, thus enabling a
better understanding of their structure and facilitating further
analysis (Olbrich and Achermann, 2005, 2008; Xanthopoulos
et al., 2006; Ktonas et al., 2007; Perumalsamy et al., 2009; Non-
clercq et al., 2013). InOlbrich andAchermann (2005), the authors
fitted autoregressive (AR) models onto EEG data and used it to
analyze oscillatory patterns including spindles. The authors fur-
ther expanded their work in Olbrich and Achermann (2008) to
study the temporal organization of spindles. Though, spindles
were detected by studying damping constants of the AR model,
no physical characteristics of the spindle were modeled. A similar
approach was later proposed in Perumalsamy et al. (2009) where
oscillations in EEG including spindles were detected using AR
models through surrogate data testing. In Nonclercq et al. (2013),
the authors modeled the amplitude and frequency of spindles
using bivariate normal distributions. The work, motivated by the
widely varying values of spindle properties, used tolerance inter-
vals of normal models to detect spindles. However, it was limited

to the detection of spindles and did not model intra-spindle
variations of these properties.

Spindle models as above have been adequate for applications
such as the detection of spindles. However, they fail to incor-
porate details such as the intra-spindle variation of frequencies
or “skewness” of the envelope. These details more than often
vary with abnormalities or other factors, requiring a model that
parameterizes these variations. As spindles have strong amplitude
and frequency modulations, non-stationary sinusoidal analysis
where the amplitude and frequency are allowed to evolve within
the analysis frame are required. In this context, Ktonas et al.
(2007) modeled spindles as amplitude and frequency modulated
sinusoids. The model consisted of six parameters that captured
the time varying microstructure of spindles. The authors also
compared various time-frequency analysis methods for param-
eter estimation in Xanthopoulos et al. (2006) and concluded that
complex demodulation provided the best results. They report
promising preliminary results with simulated spindles and some
selected spindles from three healthy controls and three demen-
tia participants (Ktonas et al., 2009), but do not present detailed
validation studies with the model parameters. Furthermore, the
sinusoidal form approximation imposed by the model means
non-sinusoidal variations in the spindle envelope and instan-
taneous frequency, as shown in Figure 1, cannot be tracked
completely as also discussed by the authors in Ktonas et al. (2009).

In this paper, we extend the work done on spindle modeling
using amplitude and frequencymodulation with a newQuadratic
Parameter Sinusoid (QPS) model to improve the representation
of the intra-spindle amplitude and frequency variations without
increasing complexity. The model utilizes a quadratic represen-
tation to modulate the specific amplitude and frequency vari-
ations within spindles. The QPS model was originally used to
model non-stationary speech and music (Marques and Almeida,
1989). Non-stationary speech frames were approximated as a
sum of time varying frequency and amplitude sinusoids and spec-
trally analyzed using Short Time Fourier Transforms. The QPS
model is well suited to model spindle activity due to its ability
to accurately model instantaneous frequency, phase and ampli-
tude in non-stationary signals without the need to assume local
stationarity.

The rest of the paper is structured as follows. In the Mate-
rials and Methods section we define the QPS model, explain
the methodology utilized to estimate the model parameters and
experiments conducted to validate the QPS model. We then
summarize the results obtained from parameter estimation on
simulated spindles with additive white noise and delta EEG as
well as real spindles, followed by a discussion of the results and
conclusions.

Materials and Methods

Quadratic Parameter Sinusoid
Sleep spindles have a waxing and waning sinusoidal form which
enables them to be represented as a modulated sinusoidal whose
instantaneous frequency and amplitude continuously varies with
time. A sleep spindle s (t) can thus be represented as
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FIGURE 1 | (A) Band passed EEG spindle and its envelope (B) Non-sinusoidal variation of the spindle frequency with time.

s (t) = eA(t)cos P(t) (1)

where A(t) represents the instantaneous logarithmic amplitude
and P (t) the instantaneous phase. The instantaneous frequency
F(t) can be obtained from the time derivative of P(t)/2π. Due
to the non-stationary nature of EEG, both A(t) and F(t) will be
time-varying, making their determination non-trivial. For each
spindle, as shown in Ito and Yano (1989), both A(t) and P(t) can
be approximated using Taylor’s polynomials around a center time
tc. P (t) is given by

P(t) =
∞
∑

n= 0

pn(t − tc)
n/n ! (2)

where,

pn = d(n)P(tc)

dt(n)
(3)

For frequency to be time-varying, there must be at least one
non-zero pn for n ≥ 2 in P(t). Hence, the minimum possible
approximation of P(t) would be as a quadratic function if the
higher order terms are assumed to be negligible. A(t) can simi-
larly be represented as a quadratic function. This allows the sleep
spindle to be defined as a Quadratic-Parameter Sinusoid (QPS)
that is given by

s (t) = e(a+ bt+ ct2)cos
(

d + et + ft2
)

(4)

where a, b, c, d, e and f are the parameters of the quadratic func-
tions A (t) and P(t) from (1) respectively. As (4) gives only the
real part of the QPS, the general form of s (t) is given by

s (t) = e(a+ bt+ ct2)ei(d+ft+gt2) (5)

Figure 2A compares a spindle obtained from an EEG record-
ing to a QPS model generated spindle in Figure 2C. The model

was applied to the band passed version of the spindle as shown
in Figure 2B. The figure shows considerable similarities between
the waxing and waning envelope of the spindle and model.

The 6 parameters (a–f) of the QPS function determine charac-
teristics such as frequency, change in frequency, amplitude, vari-
ation in amplitude and the envelope shape of the signal s(t). The
parameters a, b, and c largely determine the amplitude and the
shape of the envelope of the QPS and hence, that of the spindle.
a is the approximate instantaneous log-amplitude at time, t = 0,
at which the QPS is centered; b the rate of change of amplitude;
c the Gaussian parameter which determines the shape and dura-
tion of the curve (Abe and Smith, 2005). In symmetrical spindles,
b would be zero, with increasing/decreasing values shifting the
time at which the spindle reaches maximum amplitude. Negative
values of c cause the signal to decay, giving the spindle its ris-
ing and waning shape. Figures 3A–C illustrates the variations in
amplitude of s(t) caused by increasing values of b and decreasing
values of c.

The remaining three parameters d, e, and f influence the
frequency characteristics and phase of the signal. d represents
the initial phase at t = 0. The initial frequency of the sig-
nal is given by e, whereas f represents the frequency rate
change (Ito and Yano, 2007). In the absence of drastic varia-
tions, parameter e determines the dominant spindle frequency
and f causes a linear variation in this frequency within the spindle
duration. Figures 3D–F show the variation that occurs in spindle
frequency with increasing e and f .

The highly nonlinear structure of the QPS signal makes
parameter estimation of the QPS for a real spindle non-trivial.
The problem is further compounded due to the presence of back-
ground noise in the EEG.We used non-linear least square (NLLS)
estimation using the “Levenberg-Marquardt” technique to obtain
the parameters for the QPS model due to its relative simplicity
and dependability.

NLLS estimation algorithms are iterative numerical meth-
ods that attempt to converge toward optimal parameter val-
ues by successively minimizing a sum of squares cost function.
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FIGURE 2 | (A) Raw spindle from MASS-C1/SS2 EEG recording (B) Band-passed version of the EEG spindle (C) QPS spindle generated using the parameters of the

band–passed version of the spindle.

FIGURE 3 | Change in simulated QPS spindle with (A) b = 0, c = −20 (B) b = 5, c = −30 (C) b = 10, c = −40 (D) e = 50, f = 0 (E) e = 70, f = 20 (F) e = 90,

f = 40.

The “Levenberg-Marquardt” technique utilized in this work is a
standard NLLS implementation that adaptively varies the param-
eter update between Gradient descent and Gauss-Newton meth-
ods using a damping factor. If an iteration results in a large
reduction of the cost, the damping factor is decreased bringing

the algorithm closer to the Gauss-Newton approach. On the
other hand, if an iteration produces negligible cost reduction, the
damping factor is increased to mimic a more Gradient-descent
strategy. Like all NLLS algorithms, the algorithm can converge to
local minima and is heavily dependent on the initial conditions.
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In our work, convergence was ensured by initializing the param-
eters to spindle-like values and applying constraints consistent
with the AASM spindle definition.

Experimental Validation Methodology
Our proposed QPS spindle model was validated using two
datasets. The first dataset consisted of a group of simulated spin-
dles with known parameter values. The second dataset consisted
of real spindles from the MASS (Montreal Archive of Sleep
Studies) database (O’Reilly et al., 2014). This database includes
about 1700 h of PSG recording sampled at 256Hz (O’Reilly et al.,
2014). EEG recordings, annotated by two expert scorers, V4 and
V5, were retrieved from the 19 participants of MASS-C1/SS2
database. The participants in this subset comprised of 11 women
and 8 men with a mean age of 24.3 and 23.2 years respectively
and an age range of 18–33 years (O’Reilly et al., 2014). The two
expert scorers, V4 and V5 had an average Cohen’s Kappa of
0.389 across all participants (O’Reilly and Nielsen, in revision).
“It should be noted that relatively low inter-rater agreement is
expected between these two scorers since V4 used traditional
AASM scoring rules whereas V5 used an approach similar to Ray
et al. (2010), O’Reilly and Nielsen (in revision).” Recordings from
4 participants (01-02-0004, 01-02-0008, 01-02-0015, and 01-02-
0016) were not scored by V5 as they “were judged reflecting poor
quality sleep (e.g., alpha intrusion during N2) or intermittent sig-
nal quality/artifact” (O’Reilly and Nielsen, in revision). Hence
these recordings were discarded; spindles in the second dataset
were thus isolated from the EEG recordings of 15 participants
using the annotations of two expert scorers, V4 and V5, with 500
to 1000 spindles per participant. Prior approval for the study was
obtained from the TAMU Institutional Review Board.

The accuracy of parameter estimation by the NLLS estima-
tion algorithm was first validated on a simulated spindle dataset,
as artificial spindles provided known reference values allowing
errors to be quantified. Next, the robustness of the NLLS to vary-
ing levels of additive noise was quantified using “Goodness of Fit”
measures. White Gaussian noise with wide-ranging SNR values
and EEG segments consisting of strong delta components (repre-
sentative of background EEG) were added to a number of simu-
lated spindles. The QPS parameters of the resultant noisy signal
were obtained using NLLS and compared with the parameter
values of the original QPS prior to addition of noise.

The performance of the model with real EEG data in MASS-
C1/SS2 was then evaluated by determining the error in esti-
mated spindle frequency and energy for spindles marked by
both the expert scorers individually and the common spindles
marked by both scorers. Trends in the distribution of param-
eter values across all participants were also analyzed to obtain
a better understanding of how spindle structure varied across
the participants and how spindles marked by two scorers affect
the distribution of these parameter values. The impact of each
QPS parameter on the overall spindle shape was also studied by
tracking variations in parameter values over the spindle value
range. Finally, the ability of QPS parameter values to differenti-
ate between spindles and non-spindle EEG activity was analyzed
by comparing parameter values for sample non-spindle and spin-
dle EEG regions in MASS-C1/SS2 database. The results from

each of the above validation experiments are detailed in the next
section.

Results

Validation of QPS Model on Simulated Spindles
Accuracy of Parameter Estimation
The parameters of a simulated spindle with added white Gaus-
sian noise at an SNR of 10 dB were estimated using the NLLS
algorithm. Both the true and estimated parameter values are
given inTable 1, with the estimated parametersmatching the true
values within a narrow confidence interval. Figure 4 illustrates
the estimated signal (shown in red) superimposed on the noisy
signal (shown in blue).

NLLS Performance in the Presence of White

Gaussian Noise
We computed the following goodness of fit (GOF) measures on
five simulated spindles with spindle like parameter values and
varying SNR values:

1. Sum of Squared Errors (SSE)

SSE =
n

∑

i= 1

(si − ŝi)
2 (6)

TABLE 1 | True and estimated parameters for a simulated spindle.

Parameter True value Estimated value Confidence bounds

a 0 0.003995 (−0.01843, 0.02642)

b 0 0.01055 (−0.1505, 0.1716)

c −20 −19.35 (−20.35, −18.35)

d 0 −0.01817 (−0.0406, 0.004255)

e 75 75.03 (74.87, 75.19)

f 0 0.6464 (−0.3566, 1.649)

FIGURE 4 | Simulated QPS spindle with white Gaussian noise and the

predicted QPS spindle using estimated parameters.
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where, si is the i
th sample of the original signal, ŝi the i

th sam-
ple of the estimated signal and n is the number of samples, in
our case n is 256. An ideal fit will result in an SSE= 0.

2. Rsquare

Rsquare = 1− SSE

SST
(7)

where, SST =
∑n

i=1 (si − s)2 is the total sum of squares about
the mean s. Rsquare measures the proportion of variance
accounted for by the model and should ideally be 1.

3. Degree of Freedom adjusted Rsquare (Adjusted Rsquare)

AdjRsquare = 1− SSE(n− 1)

SST(v)
(8)

where, v = n − m; v is the residual degree of freedom and m
the number of coefficients, In our case,m is 6 and v equals 250.

4. Root Mean Squared Error (RMSE)

RMSE =
√
MSE =

√

SSE/v (9)

Figures 5A–D plot the four GOF measures for a range of SNRs
in the five simulated spindles. As seen, all four GOF measures
approach their ideal values with increasing SNR. To determine
the impact of the initial parameter values used in the NLLS algo-
rithm on the final converged values, we also executed the NLLS
algorithm using a range of different initial conditions for the

FIGURE 5 | GOF measures calculated over a range of SNR values for

five simulated spindles (A) Sum of Squared Error (B) R-Squared Error

(C) Adjusted R-Squared Error (D) Root Mean Squared Error.

same spindle. Figures 6A–D show that the parameter estimates
still converge at all SNRs despite variation in initial conditions
indicating the robustness of NLLS algorithm. As expected, both
Figures 5, 6 show that parameters estimated with the NLLS
converged to their true values with higher SNR.

NLLS Performance in the Presence of Delta Noise
We also evaluated the performance of NLLS in estimating QPS
model parameters in the presence of strong delta components,
since real EEG spindles have these components. The QPS model
shown in blue in Figure 7A was simulated using the true param-
eter values from Table 2. A random EEG segment with delta
components was then retrieved from the raw EEG recording of
MASS-C1/SS2 participant 1, amplified by a factor of 2 and then
added to the simulated QPSmodel from Figure 7A. The resulting
signal is shown in red in Figure 7A. The NLLS algorithm was
then used to estimate the parameters of the resulting signal with
strong delta components. The QPS model generated using these
estimated parameters is shown in red in Figure 7B superimposed
on the original simulated noise-free spindle in blue. As seen from
Figure 7B, there is no marked difference between the simulated
QPS model and predicted QPS model in the presence of delta
noise.

The accuracy of the QPS model parameters in the presence
of delta noise was evaluated by adding 190 raw EEG segments

FIGURE 6 | GOF measures calculated over a range of SNR values for a

single spindle but with different initial values for NLLS (A) Sum of

Squared Error (B) R-Squared Error (C) Adjusted R-Squared Error (D)

Root Mean Squared Error.
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FIGURE 7 | (A) Simulated QPS spindle along with the spindle with added delta components (B) Simulated QPS spindle along with the predicted QPS spindle from

the noisy spindle with added delta components.

TABLE 2 | True and estimated parameter values in the presence of delta

noise.

Parameter True Mean estimated Minimum Maximum

value value value value

a 5 4.990 4.722 5.290

b 4 4.122 1.369 8.025

c −30 −29.998 −47.685 −14.420

d 1 0.903 −5.363 7.342

e 70 70.098 67.138 77.264

f 5 4.220 −28.004 20.876

with delta components to the simulated model from Figure 7A.
The parameter values of the QPS model for these noisy signals
were then estimated using NLLS and compared to its actual value.
Table 2 shows the mean, minimum and maximum estimated
parameter values and the range of estimated values as computed
by NLLS in the presence of delta noise. The percentage differ-
ence between the true parameter value and the mean estimated
parameter value is less than 3% for all parameters except for
parameters d and f , where the percentage difference is 9.7 and
15.6% respectively.

The boxplot in Figure 8 shows the distribution of estimated
parameter values in the presence of delta noise. The true param-
eter value is indicated using a blue square. The distribution of
parameter values is shown using a red box, with the whiskers
encompassing ±2.7σ of the data set. As seen from Figure 8 and
Table 2, the greatest variation is seen in the values of parameters
c and f , indicating a lower accuracy in estimating these models
parameters in the presence of delta noise.

Validation of QPS Model on Real Spindles
Accuracy of Energy and Frequency Estimation
The QPS model was tested on real spindles by estimating
model parameters for spindles in the EEG data of 15 partici-
pants obtained from the MASS-C1/SS2 database. Since actual

FIGURE 8 | Boxplot depicting spindle parameter values in the presence

of random delta components.

spindle parameter values were not known, the QPS model was
validated by computing the energy and frequency of the QPS
generated spindle and comparing it to the spindle energy and
frequency. Energy was calculated by computing the area within
the envelope. As the envelope of the QPS generated spindle
is given by parameters a, b, and c, comparing the energy of
the generated spindle allowed us to validate the accuracy of
these model parameters. The frequency of the QPS generated
spindle was obtained from the parameter estimate (e/2π) and
the spindle frequency obtained from the most dominant peak of
the frequency spectrum.

The boxplot in Figure 9 shows the distribution of energy and
frequency error using scorers V4, V5, and both V4 and V5; here
the whiskers correspond to ±2.7σ. Assuming normal distribu-
tion, the frequency error of ∼99.3% of the data set is ≤4.6% for
scorer V4 and ≤6.9% for V5. The energy error is ≤15.9% for V4
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FIGURE 9 | Box plot depicting percentage error in model energy and

frequency using data from MASS-C1/SS2 participants.

and ≤31.4% for V5. The low variation in frequency error among
the scorers as seen in the figure is due to the tighter constraints on
frequency values in spindle-marking rule; whereas, the ambigu-
ous definition of spindle amplitude leads to a higher variation
in energy error in the two scorers. The subject-specific scoring
criteria used by V5 which was based upon each subject’s mean
peak spindle amplitude meant that their marked spindles fell in a
different and narrower amplitude range to the range of spindles
marked by V4; this resulted in a low average inter-scorer agree-
ment between V4 andV5 and higher error rate for the QPSmodel
for V5 marked spindles. The relatively low percentage frequency
error of the QPS model suggests that it accurately captures the
frequency content of spindle. On the contrary, there is a rela-
tively higher energy error as our model attenuates faster than
what occurs in actual spindles as seen in Figure 2.

Table 3 shows the mean percentage error in energy and fre-
quency of spindles as scored by scorers V4 and V5 and the mean
percentage error in energy and frequency of spindles marked in
common by both these scorers. As seen, the overall average mean
error in energy and frequency for all participants is the lowest for
spindles marked by both the scorers (last row of Table 3). Fur-
thermore, the same observation holds true for the mean error
in energy and frequency for most of the individual participants.
Reliable spindle scoring is typically achieved by using only spin-
dles marked by multiple scorers. The lower error rate for com-
monly marked spindles indicate that the QPS model provides an
accurate representation of “reliably” marked spindles.

Detailed Validation on MASS-C1/SS2 Database
Figures 10A–F show the distribution of parameter values for all
participants using scorers V4, V5, and both V4 and V5. Here, the
whiskers correspond±2.7σ of the data set. As seen, parameters d
and e have an identical distribution for both scorers, V4 and V5.
This indicates that there is greater agreement among the scorers
in the frequency and phase content of the signal. Furthermore,

TABLE 3 | Mean percentage error in energy and frequency of spindles.

MASS-C1/SS2

Participant #

Mean energy error Mean frequency error

V4 V5 V4 and V5 V4 V5 V4 and V5

1 4.204 10.474 4.045 1.379 2.764 1.389

2 5.383 10.606 5.079 1.631 2.198 1.610

3 4.059 4.059 4.114 1.602 1.602 1.730

5 5.150 11.524 5.032 1.866 3.090 1.916

6 4.849 11.866 4.685 1.880 4.668 2.085

7 8.567 15.262 7.907 3.023 3.292 2.197

9 5.510 14.340 5.492 2.249 3.618 1.543

10 6.127 15.683 6.242 2.080 5.092 2.022

11 4.509 11.640 4.798 1.569 2.258 1.522

12 8.209 13.598 7.689 2.138 4.087 2.069

13 5.030 12.380 4.850 2.000 1.902 1.299

14 5.380 13.420 5.469 1.639 2.367 1.561

17 3.568 12.662 3.579 1.640 2.886 2.022

18 8.520 11.478 7.020 2.813 3.356 2.549

19 5.144 10.021 5.362 1.677 2.423 1.795

Average 5.614 11.934 5.424 1.946 3.040 1.821

for all parameters, the spindles marked in common by both V4
and V5 show a distribution pattern similar to that of V4. The
lower agreement among the scorers regarding spindle amplitude
is due to the different scoring criteria used by the scorers. V4 used
standard AASM scoring rules while V5 used a subject-specific
amplitude threshold to score spindles (Ray et al., 2010).

The error bar in Figures 11A–F, with whiskers represent-
ing ±2σ show the distribution of parameter values across all the
15 participants using spindles that have been marked in common
by scorers V4 and V5. As seen, the mean values of parameters a
and b fall within the narrow range of (2.5, 3) and (0, 1). Addi-
tionally, the mean values for parameter e fall within the spindle
characteristic frequency range of 11–16Hz for all participants.
The low variance of parameters a and b for scorers, as given in
Table 4, is in line with spindle amplitude and shape scoring crite-
ria. The table also indicates that parameters c, d, e, and f have the
most variation. The variance in e is representative of the 11–16Hz
spindle frequency range. Parameters a, b, and e give spindles the
characteristic waxing and waning shape as defined in the AASM
guidelines whereas c, d, and f are more likely to account for the
intra- and inter-participant variability in the spindle structure.
d is more likely to account for the intra-participant variability
whereas c and f could impact the inter-participant variability in
the spindle structure.

Effect of QPS Model Parameters on Spindle
Shape
To evaluate the effect of variation of each QPS parameter on
the shape of a marked spindle from the MASS-C1/SS2 database,
we linearly increased the value of each of the six parameters of
the fitted QPS spindle while keeping the value of the other five
parameters constant.We thus regenerated newQPS spindles with
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FIGURE 10 | Box plot depicting the comparison of spindle parameter values using different scorers for parameters (A) a (B) b (C) c (D) d (E) e and (F) f

using data from MASS-C1/SS2 participants.

FIGURE 11 | Error bar depicting the distribution of values for parameters (A) a (B) b (C) c (D) d (E) e and (F) f for each MASS-C1/SS2 participant. Here,

the whiskers represent 2σ.
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TABLE 4 | Variance of parameter values for all participants.

Parameters V4 V5 V4 and V5

a 0.195 0.575 0.168

b 1.115 3.946 1.087

c 14.252 44.246 15.265

d 21.727 20.761 22.027

e 16.790 20.640 14.928

f 25.677 57.356 24.456

five constant parameters and a linearly increasing sixth parame-
ter. Instead of choosing an arbitrary constant parameter value,
the mean value of the other five parameters of spindles from par-
ticipant 1 of MASS-C1/SS2 (01-02-0001) scored by scorer V4 was
used.

Parameter a
Figure 12A presents the generated QPS spindle for different val-
ues of parameter a. The plots demonstrate that increasing the
value of a increases the peak to peak of the generated spindle
but does not impact the sinusoidal content of the signal. As a
increases from a = 1.89 to 2.76, the peak to peak value increases
from 13.1 to 31.4, thus signifying that the amplitude of generated
QPS spindle has a strong positive correlation to the value of a.

Parameter b
Figure 12B shows generated QPS spindles with varying values
of parameter b. It can be observed that parameter b values
of −1.27,−0.63, and 0.686 changes the peak to peak value of
the generated spindles to 28.6, 27.1 and 27.2 respectively, but
the relative change in peak to peak value is not as pronounced as
the variation caused by change in a. Figure 12B further illustrates
that b produces asymmetry in the spindle, with the spindle
shifting along the time axis.

Parameter c
Figure 12C presents the generated QPS spindles for different
values of parameter c. The plots indicate that parameter c con-
trols the rate of decay while producing minute variations in the
peak to peak value of generated QPS spindles. The decay rate
decreases with increasing value of c. For instance, Figure 12C
shows that the fastest decay rate occurs with the lowest value of
c (c = −14.2), but as c approaches 0 (c = −2.77), the generated
spindle loses its characteristic “spindle-like” shape. Only a small
number of spindles in the MASS-C1/SS2 database had values of c
approaching 0 (0.5% of all spindles), indicating a low proportion
of cases showing a large fitting error.

Parameter d
Generated QPS spindles with varying values of parameter d are
shown in Figure 12D. A dashed black line has been added in the
individual plots of Figure 12D to indicate the value of t at which
the spindle attains the maximum peak amplitude value. These
plots demonstrate that the variation in parameter d induces a
phase shift in the generated spindle. Since parameters a, b, c,
e, and f are fixed, all three spindles shown here have the same

amplitude and frequency with only the position of the maximal
value shifting due to d (phase shift).

Parameter e
The value of parameter e and the corresponding QPS model gen-
erated spindle can be seen in Figure 12E. The figures indicate that
increasing the value of parameter e increases the frequency of the
generated spindle without affecting its amplitude, thus corrobo-
rating that parameter e corresponds to the angular frequency of
the spindle [see the Accuracy of Energy and Frequency Estima-
tion section]. Discarding outliers, we found all values of e to fall
within the characteristic spindle frequency range of 11–16Hz.

Parameter f
Figure 12F shows the value of parameter f and the corresponding
QPS spindle. The initial frequency was fixed at a constant value
of 13.2Hz. As seen here, parameter f values of−11.2,−3.62, and
4.4 changes the model frequency to 13.5, 14, and 14Hz respec-
tively. The figures indicate that increasing the value of parameter
f inducesminor variations in the frequency of generated spindles,
thus signifying that the intra-spindle variation in the frequency of
the QPS spindle is correlated to the change in f .

Variation of Parameter Values in an Overnight
Recording
Figure 13 provides the variation in the QPS parameter values for
the spindles marked by scorer V4 in the overnight recording of
MASS-C1/SS2 participant 3 (01-02-0003). As expected from the
results in Table 4, the least variation over the night’s spindles can
be seen in parameters a and b, whereas the most variation is in
c, d, e, and f . Interestingly all parameters show a cyclic rise and
fall over the course of the night. Figure 13B shows a decrease in
the variation of parameter b and increase in its minima during the
middle of the recording. Figure 13D also shows a decrease in the
variation of parameter d, however this occurs later in the record-
ing and is accompanied by a visible dip in the maxima values
instead. Parameters a and b on the other hand show an increase
in the peak-to- peak values during the middle of the recording.
Figure 13 gives an example of how the QPS parameter values of
spindles in an overnight recording can be tracked to better under-
stand the natural physiological variations that can occur during
the night.

Comparison of QPS Spindle and Non-spindle
Parameters
In our final experiment, the NLLS algorithm was applied to ran-
dom non-spindle EEG regions. These were obtained by randomly
selecting 500 segments of unmarked EEG data that were 1 second
in duration using the two scorers, V4 and V5. The data included
all the 15 MASS-C1/SS2 participants and were classified into two
groups. The first group contained non-spindles from only sleep
stage two (Group 1), whereas the second group contained non-
spindles from all sleep stages (Group 2). Special focus was paid
to stage two data (Group 1) as spindles are typically observed in
EEG during sleep stage two. The resulting set of parameter values
given by NLLS were then compared to those obtained from QPS
spindles.
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FIGURE 12 | Variation of QPS spindles with varying values of (A) a (B) b (c) c (D) d (E) e and (F) f. Here, the parameter values are changed incrementally and

the resulting effect on the QPS model is observed.

Table 5 shows the results from a two-sided non-parametric
t-test comparing parameter values from QPS spindles and
non-spindles using the mean spindle parameter values as
obtained in the Detailed Validation on MASS-C1/SS2 Database
section. Here, h = 0 indicates that the null hypothesis (parameter
values from spindles and non-spindles come from distributions
with equal means) cannot be rejected at a significance level of
1%. The p-value for each parameter is also shown in Table 5. As
seen, parameters a and cwere significant at the 0.01 level for both
scorers and the two groups. With Group 2 non-spindles, b, e, and
f were also significantly different from spindles for scorer V5 but
not for V4.

Table 6 shows the results from a two-sided non-parametric
t-test using different sets of initial conditions for spindles and
non-spindles. Given the wide range of possible non-spindle
waveforms, the NLLS was initiated with all parameters = 0
for non-spindles, whereas the NLLS was initialized with the
mean spindle parameter values for spindles. As seen in Table 6,
all parameters show significant difference for both the scorers
and the two groups; with the only exception being Group 1
non-spindles for parameter c of scorer V4.

The dependency of the NLLS on the initial conditions lim-
its the parameters of QPS function from accurately differentiat-
ing between spindles and non-spindles, as seen from the results
in Tables 5, 6. We expected a significant difference in parame-
ter e values for spindles and non-spindles. However when the
initial value of parameter e for both non-spindles and spin-
dles was set at 90, the value corresponding to the spindle fre-
quency, parameter e values for non-spindles converged to a
local minimum close to that value; significant differences in
parameter e values could thus not be observed in the results
from scorer V4. The difference in parameters a and c for all
the groups using both scorers indicates significant difference
in the amplitude variations of QPS spindles and non-spindles.
Using different initial conditions for non-spindles resulted in
significantly differences for all parameter values from those
of spindles.

Discussion and Conclusions

In this paper we proposed a new method to model the instanta-
neous frequency and amplitude variations occurring within sleep
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FIGURE 13 | Variation in values of parameters (A) a, (B) b, (C) c, (D) d,

(E) e, and (F) f of MASS-C1/SS2 participant 3 during an overnight

recording.

TABLE 5 | Results of two sided t-test comparing parameters obtained

from QPS spindles and non-spindles using same initial conditions.

Parameters V4 (Group 2) V5 (Group 2) V4 (Group 1) V5 (Group 1)

h p h p h p h p

a 1 0 1 0 1 0 1 0

b 0 0.112 0 0.052 0 0.263 1 0

c 1 0 1 0 1 0 1 0

d 0 0.051 0 0.429 0 0.559 0 0.379

e 0 0.809 1 0.003 0 0.550 1 0

f 0 0.063 1 0 0 0.011 1 0

spindles. Our proposed QPS model is able to account for the
non-stationarity observed in sleep spindles within the analysis
window by accurately approximating the frequency and logarith-
mic amplitude of the signal using quadratic functions of time.
Our results illustrate that QPS successfully models the various
intra-spindle characteristics within its six parameters. Parameter
estimation using standard NLLS methods resulted in good con-
vergence and was robust in the presence noise, both of which are
vital given the presence of background EEG. The relative error
in frequency estimates was less than 5% when compared to the
dominant peak in the spindle frequency spectrum for a majority
of the participants.

The reversibility between the determined parameters and sig-
nal waveform is also an important characteristic of the QPSmod-
eling. As seen in Figures 4, 7, it is possible to regenerate a cleaner
version using the QPS parameters. Unlike other techniques, the
QPSmodel also provides the instantaneous phase, which is indis-
pensable in signal reconstruction. The results in the Validation of
QPS Model on Simulated Spindles section show that it possible
to use the QPS to regenerate cleaner versions of spindles in EEG
with large artifacts and background noise. The noise component

TABLE 6 | Two sample t-test result comparing parameters obtained from

QPS spindles and non-spindles using different initial conditions.

Parameters V4 (Group 2) V5 (Group 2) V4 (Group 1) V5 (Group 1)

h p h p h p h p

a 1 0 1 0 1 0 1 0

b 1 0 1 0 1 0 1 0

c 1 0.003 1 0 0 0.331 1 0

d 1 0 1 0 1 0 1 0

e 1 0 1 0 1 0 1 0

f 1 0 1 0 1 0 1 0

identified in the spindles could then be used to de-noise adjacent
areas of the sleep EEG.

Characterizing sleep spindles using the QPS parameters could
help restrict the inconsistency in scoring due to the differing sub-
jective interpretation of scorers, which will in turn assist in the
proper training and tuning of accurate sleep spindle detectors.
As seen in Table 4, parameters c, d, and f had the most variation.
The broadAASMdefinition for sleep spindles currently leaves the
manual marking of spindles in EEG data open to some interpre-
tation, leading to low inter-expert agreement for spindle scoring.
Thus, the accuracy of sleep spindle detectors when trained and
tested using data scored from a single scorer can fall significantly
when tested using data scored by other experts. Spindle scoring
reliability is typically reduced by having multiple scorers detect
spindles manually and accepting only commonly marked spin-
dles. The frequency (1.8%) and energy (5.4%) error estimates
for the QPS model were lowest for the spindles marked by both
scorers (Table 3), indicating that it provides a more accurate
representation of the “reliably” marked spindles. Providing guid-
ance on an acceptable range for all QPS parameters in the spindle
scoring criteria using spindles marked by multiple scorers can
help reduce scoring inconsistencies.

Accurately characterizing the structure of sleep spindles
could enable researchers develop a better understanding of the
relationship between sleep spindles and various physiological
phenomena such as sleep “stability,” memory formation and
other pathological problems, e.g., depression, epilepsy, Parkin-
son, Alzheimer and schizophrenia (Wei et al., 1999; Bódizs et al.,
2005; Fogela and Smith, 2011; Wamsley et al., 2012; Tezer et al.,
2014). The relationship of spindle amplitude and frequency, from
parameter a and e with these phenomena have been researched.
However, their impact on the rate of decay of the spindle enve-
lope (c), the phase shift (d) and frequency variation (f ) have not
been studied to date. The QPS parameters offer quantitative rep-
resentations of spindle structure that can be interpreted visually,
as presented in the Effect of QPS Model Parameters on Spindle
Shape section. Variations in these parameters can be analyzed to
determine if they are disorder, scorer or participant specific.

Additional potential uses of the QPS model include the gen-
eration of a wide range of simulated spindles to help accurately
train automatic detectors as well as manual scorers. The simu-
lated QPS spindles can also be utilized to provide a reference to
define more precise scoring rules, normalize real spindles from
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multiple participants and also compare real spindles against to
track naturally or pathologically occurring variations.

The similarity in distribution patterns and limited range of the
QPS parameter values (Figure 11) indicate that there is potential
in their use in an automatic spindle scoring algorithm. The results
in the Comparison of QPS Spindle and Non-Spindle Parameters
section however show that NLLS estimation are highly depen-
dent on the initial conditions used. The parameter values showed
significant difference between the two groups when different ini-
tial conditions were used for spindles and non-spindles. However
when the same initial conditions were used for both groups, sur-
prisingly only the amplitude based parameters a and c were sig-
nificant and not the frequency based e. These results indicated
that the QPS model can only be used for spindle detection if
preceded by a priori parameter estimation to obtain the initial
conditions to be used in the NLLS for each epoch or an alternative
QPS parameter estimation technique, e.g., an analytical method,
that does not depend on initial conditions is utilized instead of
the NLLS algorithm.

In this study, parameter estimation was performed using
the NLLS algorithm. Results obtained with NLLS need to be
compared with other parameter estimation techniques. Further-
more, as discussed above NLLS results can depend on the cho-
sen initial conditions. Like other recursive methods, the NLLS

algorithm can be computationally expensive. Future work will
include identifyingmore robust algorithms for parameter estima-
tion including analytical methods, thus overcoming the burden
of initial conditions and ensuring global convergence. Simpli-
fied as well as expanded versions of the QPS model with more
parameters also need to be explored as they may enhance the
characterization of spindle structure.

We also intend to use the QPS parameters to develop
an accurate sleep spindle detection algorithm, taking into
account the limitations stated above and test it on spin-
dles from the MASS-C1/SS2 database. The accuracy of the
automated detector will be compared to existing spindle detec-
tor available through the Spyndle toolbox. Finally, as men-
tioned earlier, the QPS model opens up the potential to
examine in detail the impact of sleep abnormalities and
disorders as well as other physiological processes on sleep
spindles.
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