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Abstract

Constraints arise naturally in many scientific experiments/studies such as in, epidemiology, biology, toxicology, etc. and
often researchers ignore such information when analyzing their data and use standard methods such as the analysis of
variance (ANOVA). Such methods may not only result in a loss of power and efficiency in costs of experimentation but also
may result poor interpretation of the data. In this paper we discuss constrained statistical inference in the context of linear
mixed effects models that arise naturally in many applications, such as in repeated measurements designs, familial studies
and others. We introduce a novel methodology that is broadly applicable for a variety of constraints on the parameters.
Since in many applications sample sizes are small and/or the data are not necessarily normally distributed and furthermore
error variances need not be homoscedastic (i.e. heterogeneity in the data) we use an empirical best linear unbiased
predictor (EBLUP) type residual based bootstrap methodology for deriving critical values of the proposed test. Our
simulation studies suggest that the proposed procedure maintains the desired nominal Type I error while competing well
with other tests in terms of power. We illustrate the proposed methodology by re-analyzing a clinical trial data on blood
mercury level. The methodology introduced in this paper can be easily extended to other settings such as nonlinear and
generalized regression models.
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Introduction

In many applications researchers are typically interested in

testing for trends or patterns in mean response among two or more

experimental or study groups rather than just testing if the groups

are different or not. For instance, toxicologists are typically

interested in detecting dose-related trends in mean response such

as trends in tumor incidence as the dose of a toxin increases [1–2].

In cell and circadian biology researchers are often interested in the

phase order of genes participating in cell cycle or the circadian

clock [3–10]. In all such situations researchers are interested in

testing for an order among statistical parameters. By performing

standard statistical procedures, e.g. the F-test in the case of

Euclidean space data, all a researcher can conclude is that there is

at least one group which is different from the rest of the

experimental groups (in the parameter of interest). Such a

conclusion is not very useful if the researcher is interested in

proving that the mean response is increasing with dose of the

toxin. Furthermore, as noted from the simulation study reported in

Figure 1, the power of the standard ANOVA based F-test can be

substantially smaller than the power of a test that is designed to

detect trend in mean response. For example, note that for a total

sample size of 48 (i.e. n = 12 per group), the standard ANOVA

based F-test yields of power of 0.58 whereas the Williams’

constrained test for trend (which will be described in detail later in

this article) yields a power 0.81. Conversely, as also noted in Figure

1, the sample size needed by Williams’ constrained test for a power

of approximately 0.80 is 48 whereas the F-test would require a

total sample size of 76. This simple motivating example illustrates

our point that, in addition to being scientifically relevant, a greater

efficiency can be achieved by using statistical methods that take

into consideration the investigator’s true hypothesis of interest

rather than performing a generic methodology, as often done in

scientific literature.

The field of statistics that deals with statistical methods designed

to test ordered or constrained hypotheses is commonly called order

restricted inference or constrained statistical inference. There

exists a very large body of literature on order restricted

(constrained inference) spanning nearly sixty years with four books

written on the subject, including a recent book by Silvapulle and

Sen [11]. Furthermore, for testing for some commonly encoun-

tered inequalities in the absence of any covariates in high

dimensional data (e.g. gene expression studies), a freely down-

loadable software called ORIOGEN (Order Restricted Inference

for Ordered Gene Expression) (http://www.niehs.nih.gov/

research/resources/software/biostatistics/oriogen/) was devel-

oped in [12,13].
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In many applications it is common for researchers to be

interested in comparing the population means of two or more

experimental conditions or groups after adjusting for covariates.

Depending upon the study design, as in repeated measurement

designs, it is common to use linear mixed effects models to account

for the underlying dependence structure as well as the covariates.

There exists several decades of literature on statistical inference in

linear mixed effects models and numerous books have been

written on the subject [14]. The standard statistical test for

comparing several population means in a linear mixed effects

model framework is the classical F-test which is widely used and is

available in most standard software packages such as SAS, R and

others. However, as noted earlier, by rejecting the null hypothesis

using the standard F-test one can only infer that at least one

population mean is different from the others and hence it may not

be ideal for ordered alternatives.

In the absence of any covariates, especially continuous

covariates, Mukerjee [15] noted that the usual tests for order

restrictions on the means of independent normal populations can

be extended to the case when normal populations are correlated as

in a repeated measurements design. Later Silvapulle [16]

generalized the methodology of [15] to some unbalanced designs

with incomplete data. He noted that within-subject correlations

make it difficult to generalize some tests into repeated measure-

ment models. Earlier, Singh and Wright [17] considered order-

restricted inference on fixed effects in a two-factor mixed model.

They presented an analogue to the usual F-test for homogeneity

and obtained several closed-form results.

It was not until [18–20] that statistical inference under

inequality constraints in linear mixed effects models was formally

addressed. In particular [18] developed an asymptotic likelihood

ratio test (LRT) for linear mixed effects model under homosce-

dastic errors. Since the asymptotic null distribution of LRT

depends upon nuisance parameters, they also provided suitable

bounds for the distribution using central chi-square distributions

with appropriate degrees of freedom. Although these bounds are

convenient, our simulation studies suggest that they could

potentially be too conservative, especially when the sample sizes

are small. Also, the basic assumption made in [18] is that the

random effects as well as random errors of the linear model are

homoscedastic and normally distributed. In practice this may not

necessarily be true. Motivated by the need for a methodology that

is robust to non-normality and heteroscedasticity, in Section 2 we

provide a general framework using the MINQUE ([14], [21,22])

and EBLUP type residual based bootstrap [23] to test for any

arbitrary linear inequality among means in a linear mixed effects

model with possibly heteroscedastic errors.

We present the methodology in Section 2. Results of our

simulation study are reported in Section 3. The proposed

methodology is illustrated in Section 4 using data from a clinical

trial comparing succimer treatment to placebo in children exposed

to mercury [24].

Statistical inference under constraints

2.1 The model and notations
Let

Y~X1h1zX2h2zUjze ð1Þ

Figure 1. Results of a simulation study to compare power and sample sizes of F-test in One-way ANOVA with the constrained
inference Williams’ type test where the critical values are derived using 10,000 bootstrap samples. The power of the Williams test was
estimated by averaging 1000 simulated where the critical values are estimated using 10,000 bootstrap samples. The power for F-test was determined
using PROC POWER in SAS (9.0). The null hypothesis was that the means of the four dose groups were equal (and zero) and the alternative hypothesis
was that the means of the four dose groups have an increasing trend with dose. Data representing the four dose groups were simulated from normal
populations with dose means taken to be 0, 0.1, 0.5 and 1, respectively. The actual values of the doses are irrelevant for the two methods described
here. The population standard deviation for the four populations was taken to be 1. Corresponding to the 14 different patterns of total sample sizes,
namely, 20, 24, 28, 32, 36, 40, 44, 48, 52, 60, 76, 80, 100, 116, the powers of the two methods are plotted. The Type I error was set to 0.05.
doi:10.1371/journal.pone.0084778.g001
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denote a linear mixed effects models where h1 is the vector of

treatment effects of the order p1|1, X1 is a design matrix of the

order N|p1 consisting of 0s and 1s, X2 is a known matrix of

covariates of the order N|p2 with corresponding (unknown)

regression parameter vector h2 of the order p2|1, and U is a

N|c matrix of known design constants. For convenience, we

denote X~ X1 : X2ð Þ and U~ U1 : U2 : ::: : Uq

� �
, where Ui is of

order N|ci, with
Xq

i~1

ci~c, and h~ h01,h02
� �’

of order p|1,

where p~p1zp2. The observation vector Y is of the order N|1

and the unobservable random vectors j~ j01 : j02 : ::: : j0q

� �’
and e

are independently distributed with mean 0 and covariance

matrices T and S, respectively, with

T~Cov j01 : j02 : . . . : j0q

� �
~diag t2

1Ic1
: . . . : t2

qIcq

� �
. Each ji,

i~1,2,:::,q, is a random vector of order ci|1: Motivated by

applications and for generality we assume a heteroscedastic error

structure for S, where S~diag s2
1In1

: s2
2In2

: . . . : s2
kInk

� �
and

s2
1,s2

2,:::,s2
k are unknown variances with

Xk

i~1

ni~N.

Let A denote a r|p matrix of known constants, such that

g~Ah is an r|1 estimable linear function (i.e.C(A0)(C(X0),
where C denotes the column space of a matrix). The problem of

interest is to test hypotheses of the form:

H0 : g~0 versus HA : g§0, (2)

where the inequalities are component-wise, with at least one strict

inequality. For example, if one is interested in testing a simple

order HA : h11§h12§:::§h1p1
among the components of h1, then

A~ A1 : 0½ � where 0 is the null matrix of suitable order and

A1~

1 {1 0 0 . . . 0

0 1 {1 0 . . . 0

..

.

..

.

0 0 0 . . . 1 {1

0
BBBBBBB@

1
CCCCCCCA
:

The matrix A can be suitably defined in the case of simple tree

order h11§h1i, i§2, or the umbrella order

h11§h12§h13:::§h1rƒh1rz1ƒh1rz2:::ƒh1p1
, for some r, etc.

2.2 The likelihood ratio test
Suppose j and e are independently and multivariate normally

distributed with log-likelihood function denoted by L(h,T,S). Let

(ĥh,T̂,Ŝ) denote the maximum likelihood estimators (MLE) of

(h,T,S) under no constraints and let (~hh,~T,~S) denote the restricted

MLE (RMLE) under the alternative hypothesis (2). Then the

likelihood ratio test (LRT) statistic is given

bySlrt~2½L(~hh,~T,~S){L(ĥh,T̂,Ŝ)�. Following the arguments in [18]

asymptotically, under the null hypothesis, we obtain the following

limiting distribution for LRT:

lim
n??

P Slrtwcð Þ~P
Xm

i~0

wix
2
i wc

 !
: ð3Þ

The weights wi in (3) involve unknown variance components

t2
1, t2

2,:::, t2
q and s2

1, s2
2,:::, s2

k. Since in practice one does not know

the variance components, one may plug in the estimated values for

the unknown variance components in the above limiting

distribution [11]. Such plug-in estimators do not perform well

unless the sample size is very large. Furthermore, as the number of

treatment groups increases, the computation of the weights wi in

(3) is a challenging problem. Recognizing this challenge, simple

central chi-square distribution based bounds for the limiting

probability in (3) were derived in [18]. These probabilities can be

used for deriving bounds for the asymptotic p-values.

2.3 The residual bootstrap based test
There are three differences between our approach and the

above LRT approach. Firstly, rather than using the RMLE which,

at each step of the iteration, projects the unconstrained estimator

ĥhonto the set of constraints in the alternative hypothesis, we use

the algorithm described in [25]. The estimation algorithm in [25]

is identical to the pool adjacent violators algorithm (PAVA) when

the constraint is a simple order, otherwise it is a modification of

PAVA. Our choice of PAVA is motivated by the fact that RMLE

can potential fail under some conditions [25]. Briefly, the PAVA is

implemented as follows. Consider a sequence of three numbers

X1, X2 and X3, and suppose in theory these numbers are expected

to be non-decreasing. However, suppose the observed values are 3,

1 and 4, respectively. The expected order is violated by the first

two numbers and therefore the PAVA averages the two violators,

resulting in the ordered numbers (3z1)=2,(3z1)=2 and 4.

Depending upon the situation, one could use weighted averages

rather than simple average. As noted in the flow chart provided in

Figure 2, our constrained estimation algorithm is flexible as one

can replace PAVA type estimator [25] by the orthogonal

projection estimator along the lines of [18]. Details of our

algorithm (Algorithm A.1) are provided in the Appendix S1.

Secondly, as noted above, because the asymptotic distribution of

the LRT is non-trivial to use in practice we use a computationally

simple non-parametric bootstrap to derive the p-values. Lastly, as

an alternative to LRT statistic we use a Williams’ type test statistic

[26–28]. Intuitively, the Williams’ test for monotonic order is a

generalization to the idea of standard t-test with the exception that

the numerator is the difference between the estimates of the largest

parameter and smallest parameter, where the estimates are

obtained by using the PAVA.

Let ĥhPAVA
1 ~ ĥhPAVA

11 ,ĥhPAVA
12 ,:::,ĥhPAVA

1p1

� �’
denote the PAVA type

constrained estimator derived according to the algorithm proposed

in this paper (Figure 2). Then as in [29] we may define Williams’

type test statistic [26–28] for various order restrictions. In the

following we provide the test statistic for three commonly

encountered order restrictions. In each case the null hypothesis

is H0 : h11~h12~:::~h1p
1
. For the others one may appeal to the

general framework provided in [26].

Simple order (Ha : h11ƒh12ƒ:::ƒh1p
1
)

W~
ĥhPAVA

1p1
{ĥhPAVA

11ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ĥh1p1

{ĥh11

� �r , ð4Þ

where Var ĥh1p1
{ĥh11

� �
is the estimated variance of the contrast

ĥh1p1
{ĥh11

� �
.
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Figure 2. Flow chart for constructing test statistic.
doi:10.1371/journal.pone.0084778.g002

Figure 3. Flow chart for deriving Bootstrap data under the null hypothesis.
doi:10.1371/journal.pone.0084778.g003
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Simple tree order (Ha : h11ƒh1i, i§2).

W~ max
i§2

ĥhPAVA
1i {ĥhPAVA

11ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(ĥh1i{ĥh11)

q ð5Þ

where Var(ĥh1i{ĥh11) is the estimated variance of the contrast

ĥh1i{ĥh11.

Umbrella order (Ha : h11ƒh12ƒ:::ƒh1r§h1rz1:::§h1p
1
).

W~ max
ĥhPAVA

1r {ĥhPAVA
11ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var(ĥh1r{ĥh11)

q ,
ĥhPAVA

1r {ĥhPAVA
1p1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var(ĥh1r{ĥh1p1
)

q
8><
>:

9>=
>; ð6Þ

where Var(ĥh1j{ĥh1k) is the estimated variance of the contrast

ĥh1j{ĥh1k.

The bootstrap methodology to obtain the p-values is described

in the flow chart in Figure 3 and the details are provided in

Algorithm A.2 in the Appendix S1. Although in this paper we are

using the Williams’ type statistic W, one may use a likelihood ratio

type statistic (or any other constrained test statistic of user’s choice)

instead of W but use residual bootstrap described in this paper for

deriving the p-values. Such a strategy may result in a better power

for some patterns of the mean parameters. Thus the framework

developed in this paper is fairly flexible.

Simulation study

3.1 Study design
We evaluated the Type I error and power of the proposed

EBLUP bootstrap test for the case of simple order using the

proposed statistic (4). We compared our method with the

asymptotic likelihood ratio test [18] using the upper bound in

the equation (4.6) of [18] for deriving the critical values. We

considered a variety of patterns of parameters and covariance

matrices as follows:

Normally distributed data. The data were simulated using

model (1) with the number of subjects per each treatment

n:n1~n2~ . . . ~np1
, N~p1n, X1~Ip1

6Jn, a N|p1 design

matrix consisting of 0’s and 1’s, X2~Jp1
6u, where u was

generated as a n|1 vector, with its components uniformly

distributed in [0, 2], h2~2, a corresponding regression parameter,

U~Jp1
6In, j, a n|1 vector of independent subject random

effects, and Jk, a k|1 vector of 1s. The random vectors j,e were

independently and normally distributed with means 0 and

covariance matrices T and S, where T~Cov jð Þ~t2In. Simula-

tions were performed for p1 = 3, 5 treatment groups, n~10,50
subjects per each treatment and five different patterns of treatment

means h1: (P1) (0,0,..., 0), (P2) (0,..., 0, a), (P3) (0, a,..., a), (P4) (a,

2a,..., p1a), (P5) (0, a,..., a, 2a).

Here different values of a in the interval [0, 2] were chosen

arbitrarily to get a sense of power for a variety of patterns. Note

that pattern (P1) corresponds to the null pattern for computing

Type I error. Patterns (P2) to (P5) are patterns of h1 where the

components satisfy a simple order constraint h1ƒh2ƒ . . . ƒhp for

evaluating the power of the two test procedures. Two different

structures of S were considered, namely, homoscedastic error

structure with S~s2IN and heteroscedastic error structure with

S~diag s2
1In : s2

2In : . . . : s2
p1

In

h i
, where p is the number of

treatments, and s2
1,s2

2,:::,s2
p1

are unknown variances with

Figure 4. Normal quantile-quantile plots of studentized residuals from regressing log organic mercury in the placebo and succimer
groups.
doi:10.1371/journal.pone.0084778.g004

Table 1. Type I errors for homoscedastic normally distributed
data.

p1 n t2 Asymp-LRT Proposed method

3 10 1 0.03 0.05

3 50 1 0.01 0.03

3 10 0.2 0.05 0.04

3 10 2 0.04 0.05

3 50 2 0.01 0.03

5 10 1 0.02 0.03

5 10 0.2 0.02 0.04

5 10 2 0.02 0.04

doi:10.1371/journal.pone.0084778.t001
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N~p1n. The patterns of T and S considered in our simulations

are as follows:

N Homoscedastic case: We fixed s~1 and considered three patterns

of t2, namely t2~0:2,1,2.

N Heteroscedastic case: We fixed t2~1 and, as commonly done, we

chose the error variance to be a function of the mean, namely

s2~ s2
1,s2

2, . . . ,s2
p1

� �
, where s2

i ~h2
i . In the case of null

hypothesis, i.e., hi~0Vi, we chose s2
i ~0:1Vi:

Log-normally distributed data. All results are based on

500 simulation runs. We used 500 bootstrap runs to generate the

null distribution for the proposed bootstrap test. In all simulations

the nominal value for Type I error was taken to be 0.05.

3.2 Results
Complete simulation scenarios and results are presented in

Tables 1–6. Both tests operate at the desired nominal Type I error

rate, although sometimes the asymptotic likelihood ratio test tends

to be slightly conservative. Generally the proposed test is

substantially more powerful than the asymptotic likelihood ratio

test. In some cases the gains in power are as much as 0.36, e.g.

0.78 vs. 0.42 for heteroscedastic normally distributed data with

p1~5, n~10, h1~ 0,0,0,0,0:4ð Þ.

Illustration

We illustrate the proposed methodology using data from

patients in a randomized placebo-controlled, double-blind clinical

trial the Treatment of Lead-exposed Children trial, or TLC [30].

In TLC, 384 children aged 12–33 months were assigned to the

placebo group and 396 to the succimer group. In the succimer

group, up to three 26-day courses were administered. Cao et al.

Table 2. Power for homoscedastic normally distributed data.

p1 n h1 t2 Asymp-LRT Proposed method

3 10 0 0.00 1.25 1 0.82 0.84

3 10 0 1.26 1.26 1 0.82 0.84

3 50 0 0.55 0.55 1 0.85 0.89

3 10 0 0.73 1.45 1 0.86 0.89

5 10 0 0.00 0.00 0.00 1.27 1 0.65 0.86

5 10 0 1.24 1.24 1.24 1.24 1 0.58 0.86

5 10 0 0.37 0.74 1.11 1.48 1 0.80 0.90

5 10 0 0.81 0.81 0.81 1.62 1 0.74 0.93

doi:10.1371/journal.pone.0084778.t002

Table 3. Type I errors for heteroscedastic normally
distributed data.

p1 n s2 t2

Asymp-
LRT

Proposed
method

3 10 0.1 0.10 2.37 1 0.04 0.03

3 10 0.1 0.20 0.20 1 0.03 0.04

3 10 0.1 0.09 0.36 1 0.03 0.03

3 50 0.1 0.10 0.01 1 0.01 0.03

3 50 0.1 0.02 0.02 1 0.02 0.04

5 10 0.1 0.10 0.10 0.10 0.16 1 0.01 0.04

5 10 0.1 0.20 0.20 0.20 0.20 1 0.01 0.04

5 10 0.1 0.11 0.44 0.99 1.76 1 0.01 0.04

5 10 0.1 0.11 0.11 0.11 0.45 1 0.02 0.05

doi:10.1371/journal.pone.0084778.t003

Table 4. Power for heteroscedastic normally distributed data.

p1 n h1 t2

Asymp-
LRT

Proposed
method

3 10 0 0.00 1.54 1 0.82 0.88

3 10 0 0.45 0.45 1 0.81 0.82

3 10 0 0.30 0.60 1 0.82 0.80

3 50 0 0.00 0.10 1 0.70 0.74

3 50 0 0.15 0.15 1 0.86 0.92

3 50 0 0.08 0.16 1 0.95 0.93

5 10 0 0.00 0.00 0.00 0.40 1 0.42 0.78

5 10 0 0.45 0.45 0.45 0.45 1 0.68 0.81

5 10 0 0.33 0.66 1.00 1.33 1 0.96 0.88

5 10 0 0.34 0.34 0.34 0.67 1 0.71 0.82

doi:10.1371/journal.pone.0084778.t004

Table 5. Type I errors for log-normally distributed data.

p1 n s2 t2

Asymp-
LRT

Proposed
method

3 10 0.10 0.10 0.04 1 0.02 0.03

3 10 0.10 0.20 0.20 1 0.03 0.05

3 10 0.10 0.01 0.04 1 0.03 0.03

3 50 0.10 0.02 0.02 1 0.01 0.01

3 50 0.10 0.01 0.03 1 0.01 0.01

5 10 0.10 0.10 0.10 0.10 0.16 1 0.02 0.04

5 10 0.10 0.04 0.04 0.04 0.04 1 0.02 0.03

5 10 0.10 0.01 0.04 0.09 0.16 1 0.02 0.05

5 10 0.10 0.01 0.01 0.01 0.04 1 0.03 0.03

doi:10.1371/journal.pone.0084778.t005
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[24] measured and analyzed mercury levels in pre-treatment to

investigate whether succimer, a mercaptan compound known to

reduce blood lead concentration in children, also reduces blood

mercury concentration. At the baseline, blood mercury levels were

quantified in 657 samples (338 succimer and 319 placebo). At 1-

week post treatment, total mercury concentration was quantified

in 623 samples (313 succimer and 310 placebo). After 5 months of

treatment, blood mercury levels were quantified in 61 samples: 30

succimer treated children and 31 placebo treated children. To

investigate the efficacy of succimer treatment relative to placebo,

Cao et al. [24] tested for an increasing trend over time in the

difference between the mean mercury concentrations in the

succimer group and the placebo group, after adjusting for child’s

age, sex, race and the study center. The authors concluded that

there was no significant trend in the mean difference in mercury

concentrations in the succimer group and the placebo group.

Since their analysis ignored the covariance structure induced by

repeated measurements, we reanalyzed the data using the

proposed methodology which accounts for the repeated measure-

ments in the data. We fitted a linear mixed effects model with log

organic mercury as a dependent variable, treatment, race, gender,

center and age as fixed effects, and subject as a random effect. The

normal quantile-quantile plots (Figure 4) of resulting studentized

residuals in the placebo and succimer groups suggest that the data

are potentially non-normally distributed.

Denoting the difference in the mean log mercury levels at the tth

time between placebo and succimer groups as by ht (t = 1 for

baseline, t = 2 for 1-week and t = 3 for 5-months) we tested the

following hypothesis:

H0 : h1~h2~h3versus

Ha : h1ƒh2ƒh3,

with at least one strict inequality. The three UMLEs were 0.59,

0.92, 0.73 and the MINQUE-based constrained estimates were

0.59, 0.82, 0.82. Using the proposed test we obtained a bootstrap

p-value of 0.109. Thus, we are not able to reject the null

hypothesis in favor of a trend in the difference in means. These

results are consistent with conclusions of [24], that succimer

chelation for low level organic mercury exposure in children has

limited efficacy.

Summary and Concluding Remarks

Inequality constraints arise naturally in many applications, such

as toxicology, where researchers are interested in studying dose-

response of a chemical, or gene expression studies in oncology,

where a researcher may be interested in understanding the

changes in gene expression according to cancer stage. We

proposed a new method to test for inequality constraints. Since

the method uses Rao’s MINQUE theory (cf. [22]) for estimating

variance components and PAVA for estimating the means, it does

not necessarily require normality. In the simple order restriction,

our extensive simulation studies suggest that the proposed

methodology provides a better control of type I error than the

asymptotic likelihood ratio test of [18] when the data are non-

normally distributed. Our proposed methodology seems to control

the Type I error at the desired nominal level.

In the manuscript we considered one-dimensional order

constraints. In toxicology, researchers are often interested in

dose|time response surfaces, which results in a two-way

classification that can be expressed as a constrained inference

problem with constraints on rows and columns of a matrix. The

proposed testing procedure can be easily extended to deal with

such cases.

Supporting Information

Appendix S1 Description of Algorithms A.1 and A.2.
(DOCX)
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