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Background: Inhalational anesthetic-induced burst suppression (BS) is classically
considered a bilaterally synchronous rhythm. However, local asynchrony has been
predicted in theoretical studies and reported in patients with pre-existing focal pathology.

Method: We used high-speed widefield calcium imaging to study the spatiotemporal
dynamics of isoflurane-induced BS in rats.

Results: We found that isoflurane-induced BS is not a globally synchronous
rhythm. In the neocortex, neural activity first emerged in a spatially shifting, variably
localized focus. Subsequent propagation across the whole cortex was rapid, typically
within <100 milliseconds, giving the superficial resemblance to global synchrony.
Neural activity remained locally asynchronous during the bursts, forming complex
recurrent propagating waves. Despite propagation variability, spatial sequences of
burst propagation were largely preserved between the hemispheres, and neural
activity was highly correlated between the homotopic areas. The critical role of the
thalamus in cortical burst initiation was demonstrated by using unilateral thalamic
tetrodotoxin injection.

Conclusion: The classical impression that anesthetics-induced BS is a state of
global brain synchrony is inaccurate. Bursts are a series of shifting local cortical
events facilitated by thalamic projection that unfold as rapid, bilaterally asynchronous
propagating waves.

Keywords: general anesthesia, burst suppression, widefield calcium imaging, thalamocortical interactions,
traveling wave, slow oscillations
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INTRODUCTION

Burst suppression (BS) is an EEG rhythm characterized by
alternating high amplitude electrical discharges separated by
variable periods of low electrical activity with a duration
on the order of seconds (Swank and Watson, 1949). BS
is a dominant brain rhythm under deep general anesthesia
(Derbyshire et al., 1936; Brown et al., 2010; Hagihira, 2015;
Purdon et al., 2015). Anesthetic-induced BS has long been
studied for its effects on neural metabolism and as a potential
agent for neuroprotection (Doyle and Matta, 1999; Engelhard
et al., 1999; Sanders et al., 2005; Ching et al., 2012). Recent
resurgence of interest in the clinical community emerged from
its hypothetical association with perioperative neurocognitive
disorders, particular with post-operative cognitive dysfunction
(Fritz et al., 2016, 2018; Wildes et al., 2019).

Surface EEG recordings have revealed that transitions between
burst and suppression appeared to be globally synchronous
(Akrawi et al., 1996; Urrego et al., 2014; Purdon et al., 2015).
Anesthetic-induced BS therefore has been classically described
as a state of global brain synchrony (Clark and Rosner,
1973; Akrawi et al., 1996; Liu et al., 2011; Urrego et al.,
2014). However, this concept has been recently challenged
(Bojak et al., 2015). Theoretical studies have predicted that the
transition from suppression to burst may arise focally within
the cortex. Subsequent rapid propagation of neural activity over
the cortex gives the superficial appearance of global synchrony
(Bojak et al., 2015). Clinically, asynchronous BS cycling under
anesthesia has been reported in patients with pre-existing brain
pathology, such as corpus callosum hemorrhage (Lambrakis
et al., 1999; Lazar et al., 1999), refractory focal epilepsy (Lewis
et al., 2013), and status epilepticus treated with intravenous
anesthetics (Mader et al., 2014). However, whether asynchronous
BS also occurs in a brain without pre-existing pathology is not
well investigated.

Thalamocortical interactions have been shown to play a
major role in modulating EEG dynamics under anesthesia.
Potentiation of gamma-aminobutyric acid (GABA) transmission
in the thalamus may lead to oscillatory cortical activity during
bursts (Ching et al., 2010, 2012); whereas, mechanisms which
operate on a slower time scale, including metabolic factors (Ching
et al., 2012) and synaptic depression (Liley and Walsh, 2013), may
control the switch between burst and suppression. The interplay
between the fast and slow processes has been predicted to self-
organize into recurrent, semi-periodic cortical traveling waves
(Bojak et al., 2015). Although these theories elegantly explain
the serial EEG changes as inhalational anesthesia deepens (Bojak
et al., 2015; Hagihira, 2015; Purdon et al., 2015), direct evidence
of these traveling wave patterns is limited. High resolution, large-
scale recording of cortical neural activity with active thalamic
manipulation is required to support such predictions.

In this study, we used high-speed widefield calcium imaging
to maximally cover bilateral cortices in order to comprehensively
study the spatiotemporal dynamics of neural activity during
isoflurane-induced BS. We found evidence against the concept
of global synchrony. Cortical transition from suppression to
burst was initiated at a spatially shifting, variably localized focus.

Whole cortex transition was rapidly completed by fast neural
waves that propagated throughout both hemispheres, typically
within 100 milliseconds. Neural traveling waves recurred in a
delta frequency within the burst periods, and some of them
only propagated locally, forming complex regional patterns.
Wave dynamics were highly correlated between homotopic
cortices, and propagation patterns from each hemisphere often
mirrored each other. Finally, we confirmed that thalamic activity
modulated suppression-to-burst transitions at the cortices, as
silencing one thalamus with tetrodotoxin (TTX) shifted the
spatial distribution of cortical onset sites away from the TTX-
injected hemisphere.

MATERIALS AND METHODS

Experimental Animals
All experimental procedures were approved by the Jilin
University Animal Care and Use Committee. General anesthesia
of adult male Sprague Dawley rats (200–350 g) was induced
with isoflurane. The concentration was subsequently titrated to
an anesthesia depth of burst suppression during maintenance,
usually within 1–2%, guided by concurrent cortical local field
potential (LFP) monitoring (Rampil and Laster, 1992). Body
temperature was maintained at 37◦C with a regulated heating
pad. The heart rate, SpO2, and the end tidal carbon dioxide
(EtCO2) were monitored with a small animal capnography and
were sustained throughout the experiment (heart rate: 250–350
pulses per minute). The head was fixed in a stereotaxic frame.

Calcium Dye Staining
The calcium indicator Oregon Green 488 BAPTA-AM (OGB-1,
Life Technologies, Grand Island, NY, United States) was used for
widefield recording of neuronal activity. We chose OGB as our
calcium indicator (Paredes et al., 2008) because of its ultrashort
rise time in comparison to genetic-encoded calcium indicators
(Chen et al., 2013), which facilitates differentiating the onset
time of bursts across the cortical surface. Convection enhanced
delivery was employed to bulk load the entire neocortex with
OGB-1 (Ma et al., 2014). In brief, 50 µg of OGB-1 was diluted
in 5 µL of DMSO-F127 then in 50 µL of artificial cerebrospinal
fluid. 8 µL of OGB-1 solution was injected in the neocortex via
a glass electrode (50–100 µm opening) placed ∼1 mm below
the brain surface at a rate of 100 nl/min, using a micro-pump
(WPI, Sarasota, Florida). A ∼ 5 × 8 mm craniotomy window
was then opened over each stained hemisphere between bregma
and lambda, and the exposed brain was covered with silicon oil
(12,500 centistoke) to preserve cortical moisture.

Optical Imaging and LFP Recording
A high-speed camera (J-MC023MGSY, Lighting Mind Inc.,
Changchun, China) using a tandem lens (50 × 50 mm)
arrangement was focused 300–400 µm below the cortical surface.
A 470 nm LED light (Thorlabs, Newton, NJ, United States) was
employed as the illumination source for the calcium-sensitive
dye. The illumination was directed using fiber-optic light guides.
A 510 nm long-pass filter was placed before the camera to
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record the calcium fluorescence. Camera frame rate was set to be
40–120 Hz to achieve high temporal resolution in order to study
burst onsets and propagation pathways. For each animal, up to 6
of 20-s calcium imaging sessions were performed on each animal
to avoid photobleaching and phototoxicity. A glass electrode (50–
100 µm tip opening) filled with 0.9% NaCl solution was inserted
300–500 µm below the cortical surface to record LFP. The LFP
was amplified, band-pass filtered (1–500 Hz) and digitized at
1000 Hz with bl420E+ system (Taimeng Technology Co., Ltd.,
Chengdu, China). The frame indicators provided by the camera
were also recorded by the bl420E+ system to synchronize LFP
and optical imaging data.

Data Analysis
The LFPs were used to detect individual bursts (Liou et al.,
2019). Candidates of burst were first systematically searched by
screening for periods when LFP signals went beyond ±3 root
mean square. Each candidate period needed to be more than
500-ms apart to be considered independent. All burst candidates
were further visually reviewed, manually merged, or removed by
consensus among the researchers.

Optical data were processed and analyzed by customized
MATLAB code. The raw data was first spatially convolved with a
Gaussian kernel (σ = 3 pixels) to improve the signal-to-noise ratio
(S/N). The calcium imaging data was then calculated as dF/F,
where F was the baseline fluorescence during suppressions and
dF was the signal change during bursts.

The S/N of bursts was examined to ensure data quality. For
each pixel, the signal amplitude was defined as the peak amplitude
of calcium fluorescence change during bursts and the noise
level was defined as the s.d. of the calcium fluorescence trace
during the suppressions. Pixels with S/N < 5 were excluded from
further data analysis.

The calcium signals of the pixels overlapping with the LFP
electrodes were programmatically screened to count the number
of calcium waves and measure interpeak intervals. For each burst,
local burst onset time at each pixel was defined as the time
when its calcium signal reached half of its peak fluorescence
intensity during the first calcium wave. The geometric center of
the earliest 10% pixels was defined as the cortical burst onset
site. Time required to propagate throughout a hemisphere was
defined as the duration that from 10 to 90% of pixels reached
onset threshold.

Burst onsets and propagation patterns were compared
between bilateral hemispheres. Cross-hemisphere delay was
defined as the difference in the burst onset time of each
hemisphere. Similarity of propagation patterns between bilateral
hemispheres was determined by two independent reviewers
who were not involved in the data collection. A burst was
only considered bilaterally similar if both reviewers considered
the propagation patterns of each hemisphere mirroring each
other. Burst dynamic similarity between the bilateral hemispheres
was compared to intra-hemisphere similarity, quantified by
correlation coefficients of calcium signals. The cortical surfaces
were therefore divided into 4 quadrants. Pairs of quadrants were
categorized according to their topological relations: ipsilateral,

homotopic, and remote. Average calcium signals within each pair
category were then correlated and compared.

TTX Injection
To study the effects of thalamic activity on cortical dynamics
during isoflurane-induced BS, bilateral calcium imaging was
first performed to record the spatiotemporal dynamics of BS at
baseline. Then, TTX (0.3 mM, 1 µL in 0.9% NaCl saline) was
injected into either of the thalami, which has been previously
shown to electrically silence 1–1.5 mm3 of the thalamic tissue
(Sacchetti et al., 1999). The injections targeted the ventrobasal
complex (2.6 mm posterior to Bregma, 2.8 mm lateral to
the midline, and 5.8–6.0 mm ventral to the surface of the
cortex1). The injection pipettes were removed afterward to restore
imaging field. Then, simultaneous LFP and widefield calcium
imaging were performed. Frequencies of BS cycling during
5 to 15 min before TTX injections were compared to 5 to
15 min afterward.

RESULTS

Cortical Burst Onsets Are Focal, Variably
Located and Followed by Rapidly
Propagating Waves
Adult male Sprague–Dawley rats were anesthetized with
isoflurane, titrated based on the cortical LFP to achieve an
anesthesia depth that produced a BS rhythm. A total of 153
bursts in 5 animals were successfully recorded with concurrent
cortical LFP recording and unihemispheric widefield calcium
imaging (Figure 1). On average, there were 24.1 ± 5.2 bursts per
minute, with each burst lasting 1.26 ± 0.61 s (all data presented
in this manuscript as mean ± s.d). The mean LFP amplitude of
the bursts was 0.67 ± 0.21 mV. The onsets of LFP discharges
coincided with a sudden surge in calcium fluorescence at the
electrode-sampled cortex (Figure 1A). Both of the power spectral
density of LFP and calcium traces showed concentrated power in
the slow-delta range (Figure 1B).

To test whether the onset of bursts exhibited global synchrony,
we compared each pixel’s burst onset time in the first wave of
each burst, defined as when its calcium signal reached half of
its maximum. We found a significant variation of burst onset
time across the hemispheric surface (Figures 1C–E). Calcium
signals first emerged at a cortical focus, termed the cortical onset
site, and subsequently propagated across the whole field of view
(Figure 1C). The cortical onset sites, however, were not restricted
in a single region (Figures 1C,D). Analysis of 153 bursts
in 5 animals showed that their spatial distribution appeared
non-ordered (Figure 1E). Despite of focal onsets, subsequent
propagation of calcium signal across the hemispheric surface was
contiguous and rapid, giving the superficial resemblance of global
synchrony. Average temporal delay from 10 to 90% of the field of
view reaching the onset thresholds was 53.8 ± 24.9 ms (n = 153
bursts; Figures 1F,G).

1http://labs.gaidi.ca/mouse-brain-atlas
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FIGURE 1 | Calcium imaging at burst onset at a single hemisphere. (A) Left panel: field of view. The white arrow and red box indicate where the LFP and calcium
fluorescence, displayed on the right, were recorded, respectively. Right panel: LFP and calcium fluorescence traces and their corresponding spectrograms. The
spectrograms were normalized to the reference period marked by the green box. Calcium dynamics during the onsets of the two bursts, marked with red bars I and
II, are further displayed in Panel C. A black box indicates a section of data which was shown with expended time scale in below. (B) The power spectrum of Ca and
LFP traces during bursts shown in A. (C) The spatiotemporal evolution of calcium signals during the two burst onsets. Each burst first emerged at a small focus and
subsequently propagated contiguously throughout the whole field of view. Notice the two bursts had separate cortical onset sites. (D) The spatial distribution of
cortical onset sites of the first wave of 42 bursts recorded in one animal. (E) The spatial distribution of cortical onset sites of 153 first waves in five animals. Each
color represents one animal. The center of each animal’s imaging window is superimposed on each other. Cortical onset sites did not distribute into any single
dominant region. (F) Rapid propagation of burst activity over a hemisphere. Percentage of pixels that crossed their burst thresholds was plotted against time. Each
gray line represents the recruitment process of an individual burst. The thick black line represents the average recruitment process of 153 bursts in 5 animals.
(G) The distribution of burst propagation time.
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Bursts Consist of Multiple Propagating
Waves With Variable Degrees of
Propagation
Each burst typically consisted of more than one calcium wave
(Figure 2A). Among the 153 bursts, we observed 412 calcium
waves at the electrode-sampled cortex, with each burst containing
2.69± 1.30 waves with an average interpeak interval 0.42± 0.16 s
(Figure 2B, 1.72–3.84 Hz). If the waves were coherent across
the cortical surfaces within each burst, in other words, if
the propagation pattern was conserved from the first to the
subsequent waves, the neural activity would still be considered
globally synchronous.

However, that was not the case; each subsequent wave of
an individual burst had a unique site of onset and propagation
pattern in comparison to the first wave (Figure 2C). Indeed,
subsequent waves exhibited dynamic variability and spatial
complexity (Figure 2D). Although the first waves generally
propagated across the entire imaged cortices, subsequent waves
often aborted their propagation and therefore were spatially
limited (Figure 2D). While the initial wave in each burst (n = 153)
propagated across the entire hemisphere, 36.7% (n = 95/259)
subsequent waves displayed limited propagation (chi-square
test, p < 0.001).

Burst Propagation Sequences Are
Preserved Between Hemispheres
Next, we compared burst propagation patterns between the
two hemispheres. LFPs with concurrent bi-hemispheric widefield
calcium imaging were recorded in a separate group of 5 rats
(n = 170 bursts). We found a high degree of interhemispheric
synchrony (Figure 3A). The average correlation coefficient
between the average calcium signal and individual pixels was
0.848 ± 0.112 (n = 26641 pixels), again giving an impression
of bilateral synchrony (Figure 3B). However, using a finer time
scale, we detected temporal delays between the hemispheres
and unilateral onsets for each event. Among the 170 recorded
bursts, 40% (n = 68) had focal onset in the right hemisphere,
37.6% (n = 64) had focal onset in the left hemisphere and 22.4%
(n = 38) had had ambiguous laterality (Figure 3; chi-square
test, p < 0.001). Cross-hemisphere delay was 64.35 ± 52.39 ms,
comparable to the propagation speed within one hemisphere,
indicating that, on average, a similar number of synapses needed
to be crossed in each scenario (Figure 1E).

Brain lesion studies have shown that the corpus callosum
plays an essential role in coordinating burst suppression cycling
between the two hemispheres (Lazar et al., 1999). We therefore
expected neural activity between homotopic cortices to be tightly
locked, generating a similar spatial sequence of burst propagation
between the two hemispheres. In agreement with our hypothesis,
138 out of 170 bursts had onset sites and subsequent propagation
sequences that mirrored each other in both hemispheres (e.g.,
Figures 3C-II,III,IV,V); however, there were still 32 out of 170
bursts showing uncorrelated interhemispheric sequences (e.g.,
Figure 3C-I, chi-square test, p < 0.001). Overall, the correlation
coefficients of calcium signals between homotopic cortex pairs

were comparable with those between neighboring cortices
ipsilaterally (Figures 3D–F, see figure legends for statistics).

Thalamic Activity Modulates Cortical
Burst Onsets
Prior electrophysiology studies have shown that >30% of
thalamic neurons were active during suppressions compared with
<5% of cortical neurons (Steriade et al., 1994). This divergence
suggested a differential role of the thalamus and cortex in BS
rhythmogenesis. In order to explore the role of the thalamus,
we injected TTX unilaterally into the VB complex. The VB
complex was chosen due to its dense reciprocal connections with
the somatosensory cortex, which constitutes a significant part of
our field of view. After unilateral VB complex TTX injection,
cycling of BS continued (Figure 4A), although its frequency
was modestly reduced (25.44 ± 5.49 to 22.10 ± 5.81 bursts
per minute, n = 5 animals; p = 0.033 two tailed paired t-test).
However, the spatial distribution of cortical burst onset sites
underwent a dramatical change (Figures 4B–E). Instead of evenly
distributed between the two hemispheres, TTX injection caused
the cortical burst onset sites to shift away from the hemisphere
whose thalamus was inactivated (Figures 4B–E, n = 226 versus
183 before versus after TTX injection, 5 animals, chi-square test,
p < 0.001). The onset laterality modulation was not detected
in control experiments, during which 0.9% saline was injected
into the VB complex (Supplementary Figure 1, n = 60 versus
57 before versus after saline injection, 2 animals, chi-square
test, p = 0.455).

Thalamic TTX injection did not qualitatively change neural
propagation patterns once a burst started. Propagation of the
subsequent calcium waves remained spatially contiguous in both
hemispheres, and, within a burst, multiple calcium waves still
displayed individually unique propagation patterns, analogous to
that before the TTX injection, as shown in Figure 4C.

DISCUSSION

Our study refutes the classical hypothesis that anesthetic-
induced BS is a state of global brain synchrony. The cortical
transition from suppression to burst is a focal event with rapid
bilateral propagation. The rapidity of whole cortex recruitment
creates a false impression of global synchrony. While onset
and directionality of each wave showed marked variability,
the spatial sequences of burst propagation remained tightly
correlated between both hemispheres. We also found that an
intact thalamocortical loop was a major driver for the initiation of
bursts. This study provides a clear picture of the spatiotemporal
dynamics of anesthetic-induced BS in a mesoscopic scale,
filling the knowledge gap between clinical studies, surface EEG
recordings, and our understanding of burst mechanisms on a
cellular level. Given that BS can arise from a variety of different
mechanisms and anesthetics, we cannot necessarily extrapolate
our findings to all types BS and our findings may be model- and
anesthesia-specific.

Our first key finding was that cortical dynamics were
dominated by rapidly propagating waves under deep isoflurane
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FIGURE 2 | Recurrent calcium waves with asynchrony during bursts. (A) Left: the field of view. A vertical red rectangle and a horizontal green rectangle represent
two intersecting linear regions of interest (LROI). The calcium signals from each of these LROIs are further displayed in Panel (D). Right: the calcium signal recorded
from the intersection of the two LROIs. The spatiotemporal evolution of four calcium waves are further displayed in Panel (C). The dashed lines indicate the timing of
images displayed in Panel (C). (B) Left: the distribution of waves per burst. Right: the distribution of inter-wave intervals within bursts. (C) The propagation patterns
of four calcium waves within a burst. Notice the variation of cortical onset sites and propagation patterns. (D) The calcium signals from the LROIs. Three bursts are
displayed, with the upper left one corresponding to the burst displayed in Panel (A). The top black traces: the average calcium signals of all pixels. The bottom color
panels show the vertical anterior-posterior (A-P) and horizontal central-lateral (C-L) propagation of calcium waves from the LROIs. The red arrows provide examples
where waves propagated only locally.

anesthesia. These complex waves, first discovered by wide-
field voltage imaging studies (Lippert et al., 2007), have been
considered a hallmark of disinhibited cortex (Huang et al.,
2004; Pinto et al., 2005; Smith et al., 2016; Liou et al., 2017).

This is because unopposed excitation, conducted by cortico-
cortical projections, permits a chain reaction in space, emerging
as rapid propagating waves (Golomb and Amitai, 1997; Liley
et al., 2002; Kramer et al., 2005). In our study, once bursts

Frontiers in Systems Neuroscience | www.frontiersin.org 6 January 2021 | Volume 14 | Article 599781

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-14-599781 December 30, 2020 Time: 15:37 # 7

Ming et al. Mesoscopic Dynamics of Burst Suppression

FIGURE 3 | Bi-hemispheric calcium imaging of bursts. (A) The field of view. Four colored circles show 4 ROIs whose calcium signals are shown on the right. The first
waves of five bursts are highlighted with gray bars. A, Anterior; P, Posterior; L, Left; R, Right. (B) The correlation coefficient map between the calcium signals
recorded from each pixel and the averaged calcium signal of all pixels. Corr Coef: Correlation Coefficient. (C) The onset and propagation of five bursts. Burst I:
unilateral onset with non-mirrored propagation. Bursts II and III: bi-hemispheric onsets and mirrored propagation. Bursts IV and V: unilateral onset with mirrored
propagation. (D) The bilateral hemispheres were divided into 4 quadrants, which formed 3 categories of quadrant pairs according to their geometric relationships:
ipsilateral, homotopic, and remote. (E) Averaged calcium fluorescence of the 4 quadrants. The correlation coefficients between any 2 of the 4 signals were reported
on the right. (F) A MATLAB-generated box plot of signal correlation of quadrant pairs. One-way ANOVA test (p < 0.001, F = 29.54, degree of freedom = 27) and
Tukey–Kramer post hoc analysis indicates that the correlation coefficient between ipsilateral quadrants and homotopic quadrants are comparable (p = 0.544) and
significantly higher than that between remote quadrants (p < 0.001 for both IS and HS).

were triggered, cortical calcium signals arose sequentially in
space and recruited both hemispheres rapidly, usually within
<100 milliseconds. The existence of neural propagating waves
was compatible with the novel idea that inhalational anesthetics,
despite traditionally considered as CNS depressants due to
their hyperpolarizing effects on individual neurons (Nicoll and
Madison, 1982; Patel et al., 1999; Hemmings et al., 2005), may
cause paradoxical neocortical hyperexcitation at a circuit level
(Kroeger and Amzica, 2007; Ferron et al., 2009). Isoflurane
has been shown to preferentially inhibit interneuron activity
and inhibitory postsynaptic potential amplitudes in brain slice
studies (Ferron et al., 2009). In vivo studies showed that cortical
responses to thalamic inputs are also enhanced and prolonged
(Detsch et al., 2002; Sellers et al., 2015).

Cortical burst onset sites, while not spatially conserved, were
more often found at the edges of the imaging window rather than
in the center. This should not be interpreted as a preferred region
of burst onsets. Due to the curvatures of the cortices, the imaging
window could not entirely cover both cortices, particularly the

temporal and entorhinal regions. Bursts which first developed at
regions outside the imaging window would arrive first at the edge
of the imaging window because of their contiguous propagation
patterns, therefore increasing the probability that we would find
cortical onset sites at the edge of the imaging windows.

Our study showed that a single burst could host multiple
cortical propagating waves. The distribution of the interwave
intervals fell within a delta range, confirming a rhythmic
neuronal depolarization in the superficial cortical layers. Some
prior anesthetic studies also showed that brief alpha oscillation
may exist in the frontal region within each burst (Purdon et al.,
2015). However, this was not identified in our study, which could
be caused either by the low-pass effect of the calcium indicator or
the source of the optical signals, which arose preferentially from
the more superficial cortical levels. Advanced imaging along the
z-axis direction and multi-channel depth electrodes would be a
future direction of study to clarify this issue.

Within each burst, although the first wave always propagated
throughout both cortices, subsequent waves could be spatially
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FIGURE 4 | Unilateral thalamic VB complex TTX injection slowed down BS
cycling, shifted cortical onset sites, but preserved burst propagation.
(A) Cortical LFP recordings showed slowdown of BS cycling caused by TTX
injection. Top inlets: 1-min LFP recordings 6 min before versus 6 min after TTX
injection. (B) The spatial distribution of the onset sites before and after TTX
injection. TTX was injected in the right thalamus. (C) Propagation of one
example burst after TTX injection. Note: the spatial continuity of calcium signal
propagation across the cortical surface. The propagation pattern of the last
calcium wave was different than the first calcium wave. (D) Laterality of
cortical burst onset sites before versus after TTX injection in one animal.
Bilaterally simultaneous onsets are assigned to bursts that have
cross-hemispheric delay no greater than 1 frame. (E) Summary of the cortical
onset laterality study in 5 animals.

restricted. Failure of global propagation suggested that the
cortical network gradually lost its excitability after burst onset.
This phenomenon has been attributed to synaptic vesicle
depletion or glutamate receptor downregulation (Kroeger and
Amzica, 2007; Bojak et al., 2015), although adaptative potassium

currents can curb network excitability within the same time
scale and produce incompletely propagating waves as well
(Liou et al., 2020).

Our bilateral propagation study aligns with the prediction of
clinical lesion studies that cross-hemisphere burst propagation
is mediated by corpus callosum projections (An et al., 1996;
Lambrakis et al., 1999; Lazar et al., 1999). Wide-field voltage
imaging in rodents with congenital corpus callosum agenesis,
as expected, failed to coordinate bi-hemispheric dynamics
under both awake and anesthetized states, although the depth
of anesthesia was not specifically controlled in that study
(Mohajerani et al., 2010).

Our finding that cortical burst onset was a thalamus-driven
process aligns with prior clinical observation. Somatosensory
inputs were first reported to trigger bursts under deep
isoflurane anesthesia (Yli-Hankala et al., 1993). Follow-up
studies confirmed that visual (Hartikainen K. et al., 1995)
and auditory inputs (Hartikainen K.M. et al., 1995) were
also adequate to trigger bursts. In those scenarios, the inputs
from the sensory relay nuclei of the thalami provided the
initial trigger to the corresponding cortical regions, eliciting
a transition from suppression to burst, leading to subsequent
rapid propagation across the cortices. Our proposal that cortical
bursts are modulated thalamic activity is compatible with
in vivo intracellular electrophysiology findings that thalamic relay
neurons display more autonomous activity than cortical neurons
during anesthetics-induced BS (Steriade et al., 1994). Our finding
is also supported by a recent human EEG study that neural
information flows from the bilateral thalami to the neocortex
during BS (Japaridze et al., 2015).

The differential roles of the thalamus and cortex in burst onset
were expected as neurophysiological effects of general anesthetics
were regionally variant (Christophe et al., 2005; Velly et al.,
2007). However, the variability of cortical onset site is intriguing.
Random regional fluctuations in cortical cellular energy state
(Ching et al., 2012) and synaptic calcium dynamics (Kroeger and
Amzica, 2007; Liley and Walsh, 2013) might explain variability
in onset location and shifting susceptibility to burst events. On
the other hand, the variability of cortical onset sites may result
from the propagation directionality and reflect regional variance
in thalamic drive. The higher order thalamic nuclei, which are
more autonomous and project more widely to the cortex than
the primary relay nuclei, may trigger more bursts, resulting in
a wide distribution of cortical onset sites (Ramcharan et al.,
2005). Although isoflurane-treated brain slices without dedicated
preservation of subcortical inputs could still maintain BS cycling
with supplementary carbachol (Lukatch et al., 2005), in vivo
burst generation and cycling could be dominated by interactions
between the cortex and thalamus (Steriade et al., 1994).

The brain rhythm presented in this study, by adopting the
definition proposed by Steriades et al., can also be labeled
as “slow oscillation,” with the neurons cycling between on
and off states at a frequency less than 1 Hz (Steriade et al.,
1993). Indeed, rodent studies that employed isoflurane to
model slow oscillation have revealed similar spatiotemporal
properties of cortical dynamics (Sanchez-Vives, 2020),
including focal onset followed by cortex-wide propagation
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waves (Stroh et al., 2013; Aedo-Jury et al., 2020). However, in
clinical anesthesiology, “slow oscillation” has been specifically
reserved to label an EEG pattern that is qualitatively different
from the rhythm presented in this study (Purdon et al.,
2015). Caution needs to be taken due to the cross-discipline
differences in terminology.

In conclusion, our study provides a comprehensive,
mesoscopic view of the spatiotemporal dynamics of isoflurane-
induced BS. As studies in anesthesia have provided many unique
perspectives in understanding cognition, we believe that advances
in understanding anesthetic-induced brain rhythms could have
increasing contribute to the field of systems neuroscience.
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