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Abstract

The C-terminal binding protein (CtBP) is a NADH-dependent transcriptional repressor that links 

carbohydrate metabolism to epigenetic regulation by recruiting diverse histone modifying 

complexes to chromatin. Here, global profiling of CtBP in breast cancer cells reveals that it drives 

epithelial to mesenchymal transition, stem cell pathways, and genome instability. CtBP expression 

induces mesenchymal and stem cell-like features while CtBP depletion or caloric restriction 
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reverses gene repression and increases DNA repair. Multiple members of the CtBP-targeted gene 

network are selectively down-regulated in aggressive breast cancer subtypes. Differential 

expression of CtBP-targeted genes predicts poor clinical outcome in breast cancer patients, and 

elevated levels of CtBP in patient tumors predict shorter median survival. Finally, both CtBP 

promoter targeting and gene repression can be reversed by small molecule inhibition. These 

findings define broad roles for CtBP in breast cancer biology and suggest novel chromatin-based 

strategies for pharmacologic and metabolic intervention in cancer.

Introduction

Cancer evolves through a multi-step process driven by a global reprogramming of cellular 

gene expression patterns that confers adaptive advantages for tumor growth, proliferation 

and dissemination 1. This phenotypic transformation is accomplished by diverse molecular 

strategies that control programs of cellular function by directing large-scale changes in gene 

expression 2. Although our understanding of how specific genetic mutations can act as 

drivers of cancer is well established, the paradigms addressing how epigenetic changes are 

orchestrated to influence hallmarks of cellular malignancy are only just beginning to 

evolve 3. Epigenetic changes represent potentially reversible covalent modifications to 

chromatin that can be transmitted to subsequent generations in the absence of changes to 

genetic sequence. In combination with DNA methylation, and histone modifications 

(including acetylation, methylation, phosphorylation and ubiquitylation), these covalent 

modifications constitute a “histone code” that is sculpted and interpreted by an assortment of 

chromatin regulatory complexes that bind (“read”), place (“write”), and remove (“erase”) 

chromatin marks to create the living “libretto” that we now refer to as the ‘epigenome’ 3. 

How the spatial and kinetic distribution of these chromatin regulatory complexes are 

coordinated to influence the epigenome has become the focus of extensive investigation 4.

The C-terminal binding proteins (CtBP1/2) are a dimeric family of proteins encoded by two 

paralogous genes, CtBP1 and CtBP2, that play extensive roles in animal cell development 5. 

CtBP homo- and hetero-dimerize in the presence of NADH to recruit various chromatin 

modifying complexes, including histone methyl-transferases (HMTs), histone demethylases 

(HDMs), and histone deacetylases (HDACs) (e.g LSD1, HDAC1/2/4/6/7, G9a and EHMT) 

to chromatin bound sequence-specific transcription factors 5. In this way, CtBP has the 

potential to link metabolic status to specific changes in the epigenetic landscape of the 

nucleus and play a dominant role in determining cellular behavior and fate 6, 7. However, 

with the exception of a small set of tumor suppressor genes (e.g. CDH1 (E-Cadherin), 

CDKN2A (p16), Sirtuin 1 and BRCA1) 6, 8, the genome-wide targets of CtBP in the 

mammalian nucleus remain unknown.

Previously we showed that CtBP repressed the transcriptional expression of the early onset 

breast cancer gene, BRCA1, by recruiting HDAC activity to the BRCA1 promoter to 

antagonize p300 driven histone acetylation 8. In this current work we extend this observation 

by profiling the global association of CtBP with the genome of breast cancer cells by 

combining chromatin immunoprecipitation with deep sequencing (ChIP-Seq) to define 

cellular programs driven by CtBP with clinical importance, and potential for therapeutic 
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targeting. Here we reveal that CtBP plays a prominent role in epigenetic reprogramming that 

drives major hallmarks of cancer through transcriptional mechanisms that are both linked to 

metabolism and susceptible to pharmacologic intervention.

Results

CtBP targets cellular reprograming and genome stability

Recent molecular and morphological studies have shown that most breast cancers can be 

separated into distinct subtypes that segregate along the hierarchy of normal mammary 

epithelial differentiation and development and include, luminal A, luminal B, human 

epithelial growth factor receptor 2 (HER2) positive, basal-like, and claudin low 9, 10. 

Luminal A and B are well-differentiated tumors and usually estrogen receptor positive. The 

basal-like and claudin low subtypes are much more primitive and usually deficient in 

receptors for estrogen and progesterone and HER2 9, 10. This classification has substantial 

diagnostic and prognostic importance. The more primitive tumors (e.g. basal-like and 

claudin low) usually show a more aggressive behavior with worse clinical outcome 9, 10. 

Properties of these tumors include mesenchymal features associated with reactivation of 

embryonic programs that promote epithelial to mesenchymal transition (EMT), acquisition 

of stem cell-like self-renewal attributes, increased genome instability, and the production of 

cellular progenitors with the ability to seed new tumors, often referred to as “tumor initiating 

cells” (TICs) 1112, 13. Such features are recognized as important hallmarks or drivers of 

cancer 1.

We profiled the binding of CtBP across the genome of the human breast cancer cell line 

MCF-7, a well differentiated estrogen receptor positive luminal subtype, using antibodies 

that recognize epitopes common to both CtBP1 and CtBP2 (Fig. 1). Genome wide ChIP-seq 

analysis identified a total of 6607 binding sites for CtBP with a FDR<0.00001. 1823 of these 

binding sites were in promoter regions (Table 1). Consistent with the established role for 

CtBP in animal cell development 14, ontology analysis of the 1823 gene promoters 

demonstrates that CtBP interacts with gene networks that have broad roles in cellular 

homeostasis including cellular macromolecule metabolic processes, RNA processing, gene 

expression, and cellular metabolic processes (Supplementary Table S1). However, a large 

number of CtBP targeted genes belong to categories that are important in malignant tumor 

transformation and progression, including embryonic development, cellular response to 

DNA damage, cell cycle, cell proliferation, cell death, cell adhesion and chromatin 

modifications (Fig. 1a). CtBP binding sites located outside of promoter regions are also 

nearby genes that show a similar distribution of these categories (Supplementary Figs. S1a–

d). In particular, many of the CtBP target genes belong to functional gene categories that 

play major roles in driving the more aggressive mesenchymal phenotypes of basal-like and 

claudin low tumors including genome instability, EMT, and stem cell-like/tumor initiating 

cell (TIC) pathways 10, 13 (Fig. 1b). The core list of 30 CtBP bound genes in Figure 1b (10 

from each category, each with Z-scores > 30.17), include multiple genes that have been 

previously shown to play major roles in breast cancer etiology, genetic susceptibility and 

tumor progression 15, 16. It was therefore selected for use in subsequent validation studies.
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In silico analysis of consensus binding motifs centered under CtBP peaks shows a large 

enrichment of transcription factor binding sites (TFBS) for ETS, CREB, STAT and 

EGR1/SP1 families of transcription factors (Fig. 1c and Supplementary Fig. S2). Notably, 

these motifs are over-represented in the promoters of both bi-directional and DNA repair 

genes including BRCA1, PALB2, FANCD2, FANCM and RAD51C 17, 18 (also see Fig. 1b). 

In addition, the ETS-pathway has been identified as a major program in basal-like breast 

cancers 19. This finding suggests that CtBP recruitment is likely to be coordinated through a 

common promoter context to control specific cellular programs.

CtBP is often found in complexes with the histone demethylase, LSD1, where it plays a 

broad role in both repressive and activating transcriptional programs in various cell 

types 20–22. In breast epithelia, LSD1 represses invasion and metastasis 23. However, 

comparison of the targets of CtBP and LSD1 in MCF-7 and human ES cells reveals less than 

a 7% and 10% overlap, respectively (Fig. 1d). This indicates that the major functions of 

CtBP in epigenetic regulation are likely to involve complexes that are distinct from LSD1 

targeting in mammary epithelial cells.

CtBP promotes EMT and enhances tumor initiating cell traits

Though CtBP predominantly produces repression of target genes, both the dimeric state of 

CtBP and composition of the CtBP-containing complex are major determinants of whether 

CtBP will repress or induce gene expression 21, 24, 25. An analysis of the relative enrichment 

of CtBP targeted genes in molecular signatures of EMT 26 shows a significant (P=9.5 E-11) 

overlap with genes that are differentially repressed (down-regulated) compared to activated 

(up-regulated) during EMT (Fig. 2a). Similarly, CtBP bound genes are significantly more 

enriched (P=7.37E-10) in the genes that are differentially repressed in the cancer TIC/Stem 

cell signature 12 (Fig. 2a). These findings implicate a predominant role for CtBP in driving 

both EMT and stem cell-like attributes through transcriptional repression.

To obtain a general impression of the correlation between CtBP promoter occupancy and 

gene expression, microarray analysis was used to compare gene expression patterns in 

control versus MCF-7 cells that had been depleted of CtBP by RNAi (Fig. 2b). This screen 

identified 1585 genes that showed significant (P< 0.05) up-regulation and 1248 genes that 

showed down regulation by either direct or indirect CtBP influence. Using the FDR cutoff 

described above, 179 of the up-regulated and 100 of the down-regulated genes were 

identified as CtBP targets by ChIP-seq. Although the specific functional distribution of 

differentially expressed gene classes is similar to the ChIP-seq distribution shown in Figure 

1a (Supplementary Fig. S7), the modest size of the overlap is likely a reflection of direct and 

indirect influences of CtBP depletion in combination with the insensitivity and low dynamic 

range of hybridization-based array technology 27. Therefore, to generate a more accurate 

view of the relationship between CtBP occupancy and gene expression, a total of 71 genes 

(30 genes from Figure 1b and 41 additional genes collected from gene categories described 

in Figure 1; in total representing 26% of the EMT overlap and 38% of the TIC overlap in 

Figure 2a) were selected for validation by quantitative mRNA expression (qRT-PCR) and 

quantitative chromatin immunoprecipitation. Both cells depleted of CtBP by RNAi and cells 

over-expressing CtBP were analyzed and compared (Fig. 2c and Supplementary Figs. S3–
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S6). By this analysis, 56% of the validation genes showed significant (P<0.05) up-regulation 

following CtBP depletion while 14% showed down-regulation (Supplementary Figs. S4–

S6). Conversely, 46% of genes in cells over-expressing CtBP showed significant repression 

(P<0.05) while 15% showed upregulation. 100% of genes tested by quantitative ChIP 

showed a significant peak (P<0.05) and 90% (27 of 30) genes showed a significant decrease 

(P<0.05) of CtBP binding following CtBP gene depletion by RNAi (Supplementary Figs. S3 

and S6). These data show that many of the genes identified by ChIP-seq analysis are likely 

to be bona fide functional targets of CtBP.

Global depletion of CtBP increases DNA repair

CtBP bound sequences are enriched in transcription factor binding sites found in the 

promoters of genes involved in DNA repair (Fig. 1b–c). Many of these are derepressed 

following CtBP depletion (Fig. 2c and Supplementary Fig. S4). These findings, in 

combination with the previously reported repressive effects of CtBP on BRCA1 

expression 8, suggests that CtBP levels may have a strong influence on DNA repair. To test 

this, comet assays were performed on MCF-7 cells exposed to oxidative DNA damage 

before or after CtBP gene depletion by RNAi (Fig. 2d). Analysis reveals that cells depleted 

of CtBP show significantly increased DNA repair (P=6.0 E-09) compared to control cells 

(Fig. 2e). In contrast, gene depletion of BRCA1 by RNAi has the opposite effect (decreased 

DNA repair), though with lower relative significance (P=1.50 E-05) (Supplementary Fig. 

S8). These findings establish a substantial role for CtBP in governing transcriptional 

programs that control genome stability.

CtBP drives acquisition of mesenchymal traits

To assess the functional influence of CtBP on the acquisition of mesenchymal traits, we 

compared the effect of CtBP expression on the properties of two cell lines at opposite poles 

of the hierarchy of mammary differentiation (Fig. 3). MCF-7 cells serve as a representative 

of luminal differentiation while MDA-MB-231, an estrogen receptor negative and highly 

metastatic cell line, is representative of the claudin low subtype. In both cell lines CtBP 

depletion induces derepression of most of the 30 CtBP-targeted genes in Figure 1b, however 

gene depletion seems to derepress a substantially larger portion of the MDA-MB-231 cells 

than the MCF-7 (80% versus 53%) (Figs. 3a–b and Supplementary Fig S4). In contrast, 

CtBP over-expression has a more substantial influence on the repression of the 30 CtBP 

targets in MCF-7 compared to MDA-MB-231 (43% versus 6%) (Figs. 3a–b and 

Supplementary Fig S5). CtBP is associated with a variety of chromatin modifying 

complexes 5. At the BRCA1 promoter, loss of CtBP results in increased BRCA1 promoter 

acetylation and increased BRCA1 expression 8. However, in the absence of direct empirical 

information or further study of the specific forms of CtBP complexes in different cell types 

or knowledge of the differential promoter recruitment of HATs, HDACs, HMTs, and 

HDMs, it is not possible to readily predict what modifications will be altered and in what 

direction at each individual CtBP target. Regardless, CtBP gene depletion produces 

substantial changes in both H3 and H4 histone acetylation at most of the 30 CtBP gene 

targets (Fig. 3c and Supplementary Fig. S9).
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A well characterized attribute of the acquisition of mesenchymal features and EMT is 

increasing vimentin expression accompanied by decreasing E-cadherin expression 11. To 

profile the influence of CtBP on these properties, the change in the E-cadherin/Vimentin 

ratio 28 was measured (Fig. 3d). In both MCF-7 cells and MDA-MB-231 cells, CtBP gene 

depletion increased the ratio of E-cadherin/Vimentin while CtBP expression lowered it, 

consistent with the ability of CtBP to drive the mesenchymal phenotype in both 

mesenchymal and luminal cells. Furthermore, the role of CtBP in driving mesenchymal 

features is well illustrated by the ability of enforced CtBP expression to substantially 

increase MCF-7 mobility in wound healing assays (Fig. 3e).

EMT has recently been shown to activate programs that promote the acquisition of stem 

cell-like properties 11. This often occurs in progenitor cells with increases in CD44 as 

opposed to CD24 expression 11. The influence of CtBP on stem-like features of MCF-7 and 

MDA-MB-231 was measured by profiling changes in the CD44/CD24 ratio 10 following 

enforced CtBP expression or CtBP gene depletion (Fig. 3f). In both cell lines, expression of 

CtBP increased the CD44/CD24 ratio consistent with the attributes of cells with progenitor/

stem cell-like features, while CtBP depletion decreased that ratio (Fig. 3f). Thus CtBP 

appears to be able to drive the mesenchymal phenotype in mammary cells regardless of what 

position they are along the spectrum of mammary differentiation.

CtBP links cellular metabolic status to genome stability

Pharmacological manipulation of endogenous NADH levels influences BRCA1 expression 

through CtBP, with higher levels of NADH causing BRCA1 repression 8. To ask whether 

manipulation of endogenous NADH levels by carbohydrate over-loading could influence 

expression of CtBP-targets, we grew MCF-7 cells in high or “diabetic” levels of glucose 

(450 mg/dl) versus normal concentration (100 mg/dl) (Fig. 4). CtBP dimerization, nuclear 

localization, and stability are enhanced when bound to NADH 7, 29. As demonstrated by 

both immuno-histochemistry and Western blot analysis, MCF-7 cells grown in low levels of 

glucose, demonstrate decreased levels of NADH relative to NAD+, and show lower nuclear 

accumulation of CtBP in comparison to cells grown under conditions of high glucose (Figs. 

4a–c). These changes are, in turn, associated with increased nuclear levels of BRCA1 

protein, decreased levels of CtBP loading at the BRCA1 promoter, compensatory increases 

in relative histone 3 acetylation 8 (Figs. 4c–e and Supplementary Fig. S10a); and a 

significant increase in the expression of BRCA1 mRNA and other CtBP-targeted genes 

important in DNA repair (Fig. 4f and Supplementary Fig. S10b). Finally, as predicted, cells 

incubated under high glucose condition show a demonstrably reduced DNA repair capacity 

that is not due to differences in cell cycle entry (Figs. 4g–h and Supplementary Fig. S10c).

CtBP gene networks distinguish aggressive breast cancer

The embryonic properties linked to EMT, including cellular plasticity, dedifferentiation, de-

regulated cell growth, and genome instability, are common features associated with more 

aggressive molecular subtypes of breast cancer 30, 31. To ask whether CtBP-target genes 

define networks that are more associated with aggressive subtypes of breast cancer, we 

profiled the expression of CtBP target genes in publically available breast cancer patient 

gene expression data sets (Fig. 5a). Analysis by unsupervised hierarchical clustering 
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identified a large class or cluster of CtBP-targeted genes that are selectively downregulated 

in the basal-like and claudin low subtype of cancers (Fig. 5a). Moreover, ANOVA 

analysis 10 of expression of the CtBP-targeted gene categories (Fig. 1b), shows that down 

regulation of many of the genes within the EMT and Stem Cell/TIC categories significantly 

distinguish (P-values between 1.08E-11 and 1.17 E-140) basal-like and claudin low from the 

other subtypes (Fig. 5b and Supplementary Fig. S11). GRHL2 has recently been shown to 

play a dominant role in EMT by regulating cell polarity and is a strong discriminator of 

claudin low subtypes 32, 33. FOXA1 potently distinguishes basal-like and claudin low from 

the more luminal subtypes and has recently been shown to actively repress the basal-like 

phenotype 34, 35 (Figs. 1b, 5b and Supplementary Fig. S11). Similarly, gene set enrichment 

analysis (GSEA) 36 of the genes altered by CtBP RNAi depletion using micro-array analysis 

(Fig. 2b) also reveals substantial CtBP dependent participation in multiple pathways 

important in breast cancer biology (Supplementary Figs. S12a–g)37. Moreover, the clinical 

relevance of the CtBP-targeted gene list is further supported by analysis of two independent 

breast cancer gene expression studies revealing that patients, whose tumors can be classified 

as showing differential expression of CtBP-target genes, have significantly shorter 

metastasis free survival by Kaplan-Meier analysis (Fig. 5c).

High CtBP predicts poor survival in breast cancer patients

The data presented thus far suggests that CtBP is likely to play a substantial role in the 

etiology and progression of human breast cancer. To examine CtBP expression in patient 

tissues, tumor samples from two independent breast cancer cohorts were stained for CtBP 

protein expression by immuno-histochemistry using antibodies against CtBP (Fig. 6a). In 

normal breast CtBP, nuclear immuno-reactivity is generally light and non-uniform with 

many nuclei showing little or no CtBP staining, while in patients with basal-like, triple-

negative breast cancer, CtBP1 staining is much more intense (Fig. 6a). When digitally 

scored for CtBP nuclear staining to measure percent of nuclei with scores of 0–3 (nuclear 

intensity) or a score weighted by nuclear size (nuclear score), triple negative breast cancer 

shows a nuclear intensity and nuclear score that is 25 and 22 times higher than normal breast 

respectively (Fig. 6a). This system was then used to score the first patient tissue cohort (the 

training set) (Fig. 6b). When this scoring system was used to segregate patient samples into 

3 groups of low (nuclear score <100; nuclear intensity <2); medium (nuclear score 100–300; 

nuclear intensity 2–5) and high (nuclear score >300; nuclear intensity >5) CtBP score, there 

was a clear trend showing an inverse relationship between CtBP staining and patient median 

survival by Kaplan Meier analysis (Fig. 6b). Using the same parameters these trends were 

reproducible in a second independent cohort (Patient validation set) of equivalent size (Fig. 

6c). This suggests that elevated CtBP can function as a surrogate biomarker for altered 

epigenetic regulation in breast cancer patients who may progress to more advanced disease.

Reversal of CtBP function by small molecule Inhibition

CtBP is a potent epigenetic regulator that responds to cellular metabolism through its 

interaction with NADH. Therefore, pharmacological targeting of CtBP may, in principle, 

provide a means of derepressing its transcriptional targets. Though CtBP is a member of the 

d-2-hydroxyacid dehydrogenase family, its true substrate is not known 38. Recent studies 

indicate that 2-Keto-4-methylthiobutyrate (MTOB), an intermediate in the methionine 
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salvage pathway, can bind CtBP and reverse repression of the proapoptotic gene, BIK, in 

colon cancer cells 39, 40. To test if MTOB could disrupt expression of CtBP target genes in 

breast cancer, both MCF-7 and MDA-MB-231 were incubated in the presence and absence 

of MTOB and the 30 CtBP targeted genes (Fig. 1b) were screened for changes in gene 

expression (Figs. 7a–b and Supplementary Fig. S13), and promoter occupancy (Figs. 7d–e 

and Supplementary Figs. S14–S15). MTOB treatment caused significant derepression 

(P<0.05) of 40% of these genes in MCF-7 and 46% in MBA-MD-231. Approximately 3% 

and 10% of genes, respectively, were repressed (Figs. 7a–b and Supplementary Fig. 13). The 

concordance of the MTOB effect between the two cell lines was 70% (21/30) indicating that 

MTOB action is relatively independent of breast cancer subtype and epithelial programming 

(Fig. 7b and Supplementary Fig. S13). However, though it is difficult to know the extent to 

which this derepression is due to direct targeting of CtBP occupancy or to indirect effects; 

incubation with MTOB caused a significant displacement (P<0.05) of CtBP from 67% of the 

promoters in MCF-7 and only 30% from promoters in MDA-MB-231 (Fig. 7d and 

Supplementary Fig. S14). The lower MTOB-induced CtBP displacement in MDA-MB-231 

could be due to the lower level of CtBP binding found at these genes (Supplementary Fig 

S3). This could explain, in part, why the concordance between changes in CtBP occupancy 

and gene expression is significantly higher for MCF-7 (>70%) compared to MDA-MB-231 

(50%) following MTOB treatment (Figs. 7a–d and Supplementary Figs. S13–S15). 

Nonetheless, these data suggest that the predominant mode of MTOB action is through its 

eviction of CtBP from occupied promoter regions. Finally, treatment with MTOB 

antagonizes the mesenchymal phenotype (Figs. 7e–f). Addition of MTOB to both MCF-7 

and MDA-MD-231 increases the pro-epithelial E-cadherin/Vimentin ratio while reducing 

the pro-mesenchymal CD44/CD24 ratio, with a more significant trend (P<0.05) in MCF-7 

(Figs. 7e–f). Taken all together, these findings provide substantial evidence that 

pharmacological targeting of CtBP to disrupt malignant cellular reprogramming may be a 

feasible “epigenetic strategy” for therapeutic intervention.

Discussion

The evidence of a link between obesity and diabetes and increased mortality from breast 

cancer is incontrovertible 41–44. An important feature of the dysfunctional energetics 

associated with obesity and diabetes and malignant transformation, is elevated carbohydrate 

metabolism, a central component of the Warburg Effect 45, 46. This elevated level of 

carbohydrate metabolism, whether due to the over-nutrition of obesity or the Warburg Effect 

of cancer bioenergetics, results in increased levels of NADH 47–49. In this study we propose 

CtBP is a key downstream epigenetic effector of elevated NADH. Therefore through CtBP, 

changes in cellular metabolic status can drive genome-wide changes in chromatin through 

targeted recruitment of CtBP that facilitates the acquisition of epigenetically reprogrammed 

properties that promote genome instability, dedifferentiation, and the transformation to a 

more mesenchymal phenotype.

Though this study provides one of the first to profile the binding of CtBP throughout the 

mammalian genome; how, when, and where the different CtBP complexes target and 

coordinate the recruitment of specific chromatin modifiers, and their subsequent effect on 

the epigenome remain to be defined. These epigenetic networks and programs are likely to 
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differ by cellular process and cell type and are likely to reflect a hierarchy of CtBP 

complexes formed under specific cellular conditions and environments as we have seen in 

comparing the mesenchymal MDA-MB-231 cell line, with the luminal MCF-7 (Figs. 3, and 

7). This difference has been demonstrated in prior studies where loss of CtBP had a much 

great effect on mitotic fidelity in MDA-MB-231 than MCF-7 50. Future studies to correlate 

global alterations in histone and DNA modification with changes in CtBP levels (via either 

genetic or metabolic disruption) in multiple breast cancer subtypes will be necessary to 

better define the mechanism underlying these differences.

Approximately 5–10% of breast cancers are secondary to inherited mutations of cancer 

predisposing genes. It is striking that, of the known and newly identified breast cancer 

predisposing genetic mutations, a substantial number are targeted for repression by CtBP, 

including PALB2, BRIP1, RAD51C and BRCA1 16. Thus the observation that many patients 

develop breast cancers with features of inherited disease without demonstrating mutation in 

genes characteristic of the disease 51, is consistent with a role played by CtBP-regulated 

pathways in such tumors. Notably, decreased expression specifically of DNA repair proteins 

is associated with shortened time to recurrence in triple-negative breast cancer 52. This is 

consistent with the demonstration, in this current study, of the impact of CtBP targeting on 

genome stability. Nearly one third of the Fanconi Anemia complementation group is 

targeted by CtBP. Therefore, it is not surprising that loss of CtBP expression or function 

results in a significant improvement in DNA repair in breast cancer cell lines (see Figs. 1d, 

and 2d–e). Most importantly, targeting by CtBP suggests that these hereditary risk factors 

for breast cancer may be worsened by lifestyle factors influencing metabolic imbalance.

Finally, many of the new driver mutations identified by recent systematic sequencing of 

cancer genomes has uncovered several genes with functional roles in epigenetic 

regulation 53. CtBP represents a novel class of versatile, multi-potent epigenetic regulators 

that is likely to play many different roles in cancer etiology and progression. The finding 

that MTOB can act as a small molecular inhibitor that can reverse genomic targeting by 

CtBP, provides a proof of principle that pharmacological manipulation of CtBP is feasible. 

Thus epigenetic targeting through CtBP promises to be a new and exciting area of future 

therapeutic intervention. New efforts will have to be directed at finding compounds that will 

function in the nanomolar to micromolar range. Given that weight gain and obesity represent 

modifiable cancer risk factors linked to lifestyle, a better understanding of CtBP will fuel 

new ideas and creative strategies for combined behavioral and therapeutic approaches to 

cancer treatment and prevention.

Methods

Reagents

Hydrogen peroxide is from Invitrogen as 30% stock. MTOB (4-methylthio-2-oxobutyric 

Acid) is from Sigma-Aldrich and was dissolved in medium to 250mM and diluted to 10mM 

final concentration in cell culture. The antibody to CtBP used for ChIP was purchased from 

Santa Cruz Biotechnology and is cross-reactive with both CtBP1 and CtBP2. The anti-

CtBP1 specific antibody and anti-CtBP2 specific antibody were purchased from BD 
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biosciences. Anti-acetylated histone H3, anti-acetylated histone H4 antibodies and anti-

γH2AX antibody were obtained from Millipore.

Cell culture and tissues

Both MCF-7 cells and MDA-MB-231 cells were maintained in regular DMEM 

supplemented with 10% (v/v) FBS, penicillin-streptomycin (Invitrogen) and insulin. In 

addition, the regular DMEM has 4.5g/L glucose and is considered as high glucose culturing 

(HG) compare to 1.0g/L glucose DMEM medium(LG). The low glucose cultured cells were 

used for experiments only after 3 month of continuous culture in low glucose medium.

ChIP and ChIP-seq

All ChIP experiments were carried out as described 8. The detailed procedure is provided in 

the Supplementary Methods.

ChIP-seq data analysis

The detailed ChIP-seq data analysis is provided in the Supplementary Methods. Briefly, the 

36-mer short-read tags were mapped to the human genome (UCSC HG19). Enrichment of 

tags in a 250 bp target window relative to a 200 kb surrounding window (local background) 

was gauged by a model based on the binomial distribution. The hotspots are defined by a z-

score calculated using the target window and the background window signals both centered 

on the tag. In addition, ChIP hotspots were refined into 150 bp peaks using a peak-finding 

procedure. The sequencing data from matching input samples are used for the processing of 

the ChIP data, as a measure of background signal.

Motif discovery and enrichment analysis

A motif discovery analysis was performed on selected DNA sequences using MEME 54 on 

parallel clusters at the NIH Biowulf supercomputing facility. DNA sequences for MEME 

input were from the top 1500 (by tag density) hotspots among all CtBP binding hotspots. To 

limit the computational load, only the 200 bp regions with the highest tag density were used 

instead of the entire width of a hotspot in cases where the hotspot spanned greater than 200 

bp. The width of motifs to discover was set to 6 and 20 for minimum and maximum, 

respectively. To identify motifs for known transcription factor binding, individual position-

specific probability matrices against the Transfac database were queried using the TomTom 

software (http://meme.nbcr.net/meme/cgi-bin/tomtom.cgi). Statistically significant matches 

were retrieved that share the majority of specific nucleotides in the sequence motifs. To 

generate consensus read densities for positions relative to transcription start sites (TSS), the 

total number rd* of read tags summed over all Refseq annotated TSS normalized to the 

length L of the genome and the total number N of aligned reads (rd* = rd* L/N) was profiled 

such that rd*=1 approximately corresponds to an un-enriched distribution of reads.

Gene expression and Microarray analysis

The total RNA from 3 biological replicates of control MCF-7 cells and CtBP knockdown 

MCF-7 cells were prepared using the RNAeasy kit (Qiagen) following the manufacturer’s 

protocol. Synthesis of cDNA from total RNA and hybridization/scanning of microarrays 
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were performed with Affymetrix GeneChip products (HGU133plus2) as described in the 

GeneChip manual. Raw data files (.CEL) were converted into probe set values by RMA 

normalization. Following RMA-normalization, Bioconductor packages was applied in R 

statistical environment to generate a list of genes that are differentially expressed between 

control cells and CtBP knockdown cells and p<0.05 was considered as significant. The data 

was stored as NCBI GSE36529.

Comet assay

Comet assays were performed according to Olive et al 2006 55. Briefly, a single-cell 

suspension was prepared using enzyme disaggregation. The cells were exposed to neutral 

lysis buffer (2% sarkosyl, 0.5M Na2EDTA, 0.5 mg/ml proteinase K (pH 8.0); equilibrated at 

4 °C) for overnight at 37°C. Following electrophoresis the cells were stained by SYBR 

Green and the images were obtained using fluorescent microscopy. The tail moment was 

calculated by the following formula: Tail moment=tail length x percentage of Tail DNA. 

Percentage of Tail DNA= aT×iT/(aT×iT+aH×iH), where aT = the tail area, iT = average 

intensity of tail, aH = the head area and iH = average intensity of Head. Comet Score™ was 

used to analyze the comet pictures.

Immunofluorescence staining of cells

Cells were grown on cover-slips and fixed in 3.5% paraformaldehyde. For γH2AX staining 

the cells were incubated with Alexa Fluor® 488 Goat Anti-Mouse IgG for 1hr. Cells were 

irradiated at 10 Gy to induce DNA damage.

Immunohistochemistry staining of tissues

Detailed methods for immunohistochemistry is provided in the Supplementary Methods. 

Formalin-Fixed, Paraffin-Embedded (FFPE) tissues were de-paraffinized by submerging the 

slides in Xylene. Antigen retrieval was performed in buffers containing 100mL of 1mM 

EDTA pH 8.0. Staining was developed using secondary antibody conjugated with horse-

radish peroxidase (HRP) (Dako EnVision + System-HRP Labelled Polymer Anti-Rabbit or 

Anti-mouse and counterstained with hematoxylin.

Analysis of Tissue Microarrays

Immunohistochemically stained tissue slides were converted to digital slide images by 

scanning the slides on an Aperio ScanScope XT slide scanner. High resolution digital slide 

images were then archived into Aperio’s digital pathology information management system 

“Spectrum”. Digital slide images were analyzed using Aperio’s IHC Nuclear Image 

Analysis algorithm to assess the nuclear staining for CtBP in MCF7 cells and quantify the 

intensity of individual cells. Values and colors are assigned to individual cells based on the 

intensity of nuclear staining with a classification of 0 (blue), 1+ (yellow), 2+ (orange) and 

3+ (red). Nuclear intensity was calculated from the sum of the product of the % of cells with 

3+ and 2+ scores divided by the sum of the product of % cells with 1+ and 0 scores. Nuclear 

score was calculated as the product of nuclear area (um2) and the nuclear intensity. Archival 

FFPE tissues from breast cancer patients were obtained from the surgical pathology archive 

of the University of Chicago for tissue microarray (TMA) construction. The study was 
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approved by the Institutional Review Boards University of Chicago and East Carolina 

University. Pathological features, including histological diagnosis, grade, tumor size, and 

axillary lymph node metastasis, were abstracted from the pathology report. There were 

survival data on 98 to 100 breast cancer patients from each data set with a median follow-up 

of 8.3 years.

Analysis of Breast Cancer Gene Expression Profiles

Expression patterns of the 1,823 genes identified by CtBP ChIP-Seq were examined in a 

previously published breast cancer containing microarray and patient clinical data set 

available from the University of North Carolina (UNC) which includes 337 human breast 

tumors (UNC337) and is available in the Gene Expression Omnibus (GEO) under accession 

number GEO:(GSE18229) 10. All data sets were median centered within each data set and 

standardized to zero mean and unit variance before downstream analysis 10. ANOVA 

analysis of representative gene expression in tumor samples was determined using the 

UNC337 gene expression dataset. To determine if the overlap of CtBP target gene lists with 

other referenced gene lists, is statistically significant in Venn Diagrams, a hypergeometric 

distribution was calculated to derive the statistical P-value based on 37630 TSSs in refseq 

(HG19, USCS). Analysis of patient survival associated with gene expression from breast 

cancer datasets was performed using BRB ArrayTools Version: 4.1.0 - Beta_3 Release. 

Affymetrix data sets were downloaded from the NCBI Gene Expression Omnibus (GEO; 

http://www.ncbi.nlm.nih.gov/geo/). Expression data were loaded into BRB ArrayTools 

using the Data Import Wizard. U133A probe sets for the individual gene signatures were 

identified by using the Affymetrix NetAffx Analysis Center Batch Query tool (http://

www.affymetrix.com/analysis/index.affx). Expression data were filtered to exclude any 

probe set that was not a component of the signatures tested, and to eliminate any probe set 

whose expression variation across the dataset was P>0.05. Kaplan-Meier analysis was 

performed using the Survival Risk Prediction tool, specifying two risk groups, with fitting to 

a Cox proportional hazard model with p-value ≤ 0.05. Distributions of the hazard ratios and 

the logrank test P-values was determined based on 1000 Bootstrap samples where each 

bootstrap sample consists of 50% of cases randomly selected from the whole set 56.

Statistical analysis

All the error bars represent the standard deviations of the mean from at least 3 independent 

biological replicates unless otherwise indicated. Comparison between two groups was done 

using a 2-sided Student’s t test. P-value<0.05 was considered statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Global targeting of genome stability and developmental pathways by CtBP differentiation 

(a) Gene ontology analysis indicates that CtBP targets numerous cancer related pathways 

linked to DNA repair, chromatin modifications, cell adhesion and other pathways important 

in developmental processes. (b) ChIP-Seq profiles of the binding of CtBP to selected genes 

that are key genetic drivers of human malignancy including genome stability, epithelial-to-

mesenchymal transition (EMT) and stem cell/tumor initiation cell (TIC) pathways in MCF-7 

cells. Red indicates genes encoded 5′-3′ on the upper strand while green indicates genes 

encoded 5′-3′ on the lower strand. (c) Binding motifs enriched under CtBP ChIP-seq peaks 

revealed by in silico analysis. (d) The large majority of promoter binding sites for CtBP are 

distinct from those bound by LSD1 in MCF-7 and human ES cells.

Di et al. Page 16

Nat Commun. Author manuscript; available in PMC 2013 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. CtBP downregulated targets control differentiation and DNA repair
(a) Venn diagrams showing the overlap between CtBP targets and genes down-regulated 

and up-regulated in established EMT and Cancer tumor initiating cell (TIC)/stem cell gene 

signatures. P-values indicate the significance of overlap determined from hypergeometric 

distribution analysis. (b) Unsupervised hierarchical clustering of microarray analysis 

(HGU133plus) of differentially expressed (P<0.05) genes in control and MCF-7 cells 

depleted of CtBP by RNAi. Venn diagram shows the overlap of repressed and induced genes 

with CtBP targets identified by ChIP-seq. (c) Hierarchical clustering of the expression of 

multiple CtBP targets belonging to the gene classes, described in Figure 1, measured by 

quantitative real-time PCR in cells over-expressing CtBP (CtBP) and cells depleted of CtBP 

by RNAi (CtBP KD) compared to GFP control and non-targeting RNAi respectively. 

Bracket indicates CtBP repressed genes that were uniformly upregulated by CtBP depletion 

and repressed by CtBP overexpression. Corresponding expression values with error bars are 

provided in Supplementary Figures S4–S6 (d) Comet assay of MCF-7 cells before and after 

oxidative DNA damage by peroxide treatment and following 2 hour recovery in control cells 

and cells depleted of CtBP by RNAi. (e) Analysis of change in tail moment in control and 

CtBP depleted cells following DNA damage and recovery. The error bars represent the 

standard deviation of the mean from 2 independent experiments. Scale bar = 20 microns.
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Figure 3. CtBP drives acquisition of mesenchymal traits in mammary epithelial cells
(a) Gene expression pattern of CtBP target genes controlling genome stability, EMT and 

Stem cell pathways in MCF-7 cells (top) and MDA-MB-231 cells (bottom) overexpressing 

CtBP or depleted of CtBP by RNAi as indicated. (b) Unsupervised hierarchical clustering 

comparing of the 30 gene validation set expression (see Figure 1b) in cells overexpressing or 

depleted of CtBP. Expression values with error bars are shown in Supplementary Figs. S4–

S5. (c) Promoter Histone H4 acetylation profile (K5, K8, K12) of genes shown in (a) in 

MCF-7 cells (top) and MDA-MB-231 cells (bottom) following CtBP depletion by RNAi. 

Expression values and errors bars including the remaining 30 gene validation set are 

provided in Supplementary Fig S9. (d) E-Cadherin/Vimentin expression ratio in cells 

overexpressing CtBP or depleted of CtBP by RNAi. (e) Wound healing assay shows MCF-7 

control cells and cells overexpressing CtBP1. Vertical line indicates center of wound in the 

scratch assay. White bar, 250 microns. (f) CD44/CD24 expression ratio in MCF-7 and 

MDA-MB-231 cells overexpressing CtBP or depleted of CtBP by RNAi. The error bars 

represent the standard deviation of the mean from 3 independent experiments (a, d, f) or 2 

independent experiments (c). Single asterisk (*) indicates P <0.05) and double asterisk (**) 

indicates P<0.01.
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Figure 4. Calorie restriction decreases CtBP activity and increases DNA repair
(a) CtBP Immuno-histochemical staining of MCF-7 cells grown in high glucose (4.5 g/L) 

and lowglucose (1.0 g/L). Scale bar = 25 microns. Inset is 2 fold magnification. (b) NAD+/

NADH ratio in lysates of MCF-7 cells grown in high and low glucose. (c) Western blot 

analysis of BRCA1 and CtBP2 expression in high and lowglucose treated cells. NPM1 was 

used as loading control. I= insulin. (d) ChIP profile of CtBP binding to the BRCA1 

promoter in cells grown in high glucose versus low glucose as indicated. (e) ChIP profile of 

relative histone 4 lysine acetylation after normalization to ChIP for total histone 4. (f) qRT-

PCR expression of BRCA1 and BRIP1 mRNA in high and low glucose treated cells with and 

without insulin. (g) phospho-gamma H2AX foci profile of cells following ionizing radiation 

at 0, 3 and 6 h. Scale bar = 10 microns. (h) Relative rate of DNA repair expressed as relative 

rate of decrease in foci per cell over time. The error bars represent the standard deviation of 

the mean from 3 independent experiments (b, d, f, h) or 5 independent experiments (e).
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Figure 5. CtBP targets distinguish clinically aggressive subtypes of breast cancer
(a) Unsupervised hierarchical clustering of CtBP target genes in publically available breast 

cancer gene expression studies (UNC337). Highlighted rectangle indicates group of CtBP-

bound genes that are downregulated/repressed preferentially in the basal-like subtype. (b) 

ANOVA profiling of one representative each of the genome stability (BRIP1), EMT 

(GRHL2) and TIC/Stem cell (OVOL2) gene groups, described in Figure 1b, using the 

UNC337 patient gene expression data set. P-values were calculated by comparing mean 

expression across all subtypes. (c) Patients whose tumors differentially express CtBP-bound 

genes show worse clinical outcome (metastasis-free survival) by Kaplan-Meier analysis. 

Patient gene expression data obtained from the Gene Expression Omnibus (GSE11121 and 

GSE2034) were separated into 2 groups based on differential expression CtBP target genes 

(red), and were analyzed by Kaplan Meier analysis. The 95% confidence interval for median 

HR=2.08 is [1.420, 3.070]. The 95% confidence interval for median HR= 2.70 is [1.490, 

5.411]. P-values and hazard ratios (HR) were derived as described in materials and methods.
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Figure 6. Eleveated CtBP protein in patient breast cancers predicts lower median survival
(a) CtBP1 immuno-histochemical staining of normal breast tissue and tissue from triple-

negative breast cancer patients, analyzed for staining intensity using the Aperio nuclear 

algorithm software and then scored for nuclear intensity and nuclear score (weighted by 

nuclear area). Scale bar = 25 microns. (b) Relative survival of a training patient cohort (98) 

scored with low (<100 or <2.0), median (100–300 or 2–5) and high (>300 or > 5) scores for 

CtBP staining analyzed for survival trends by Kaplan-Meier analysis. Median survival for 

all 3 groups are shown. (c) CtBP scoring of a second independent breast cancer patient 

cohort (validation set) showing a similar inverse correlation between CtBP score and median 

survival.
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Figure 7. Small molecule inhibition reverses gene repression by CtBP eviction
(a) Gene expression pattern of CtBP target genes controlling genome stability, EMT and 

Stem cell pathways in MCF-7 cells (left) and MDA-MB-231 cells (right) with and without 

treatment with 10 mM MTOB. (b) Heat map of gene expression of the 30 gene validation 

set (Figure 1b) in MCF-7 (left) and MDA-MB-231 (right) cells treated with and without 

MTOB. Gene expression values and error bars including the remaining 30 genes are 

provided in Supplementary Fig. S13. (c) CtBP qChIP profiles of genome stability, EMT and 

Stem cell pathways genes in MCF-7 (top) and MDA-MB-231 (bottom) cells treated with or 

without MTOB. (d) Heat map of ChIP intensities of 30 gene validation list in MCF-7 and 

MDA-MB-231 cells treated with or without MTOB. Quantitative ChIP values and error bars 

are provided in Supplementary Fig. S14. (e) E-Cadherin/Vimentin ratio in MCF-7 and 

MDA-MB-231 cells treat with and without MTOB. (f) CD44/CD24 ratio in MCF-7 and 

MDA-MB-231 cells treat with and without MTOB.. The error bars represent the standard 

deviation of the mean from 3 independent experiments(a, e, f) or 2 independent 

experiments(c). Single asterisk (*) indicates P <0.05 and double asterisk (**) indicates 

P<0.01.
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Table 1

Genome-wide binding sites for CtBP

Binding Site # Sites

Promoter (<2.5 kB of TSS) 1823

Downstream peaks 916

Distal upstream peaks 1559

Intron 2056

Exon 253

Binding site distribution of CtBP in MCF-7 cells with Z-score ≥ 30. TSS= transcription start site.
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