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Abstract

Living in an uncertain world, nearly all of our decisions are made with some degree of uncer-

tainty about the consequences of actions selected. Although a significant progress has

been made in understanding how the sensorimotor system incorporates uncertainty into the

decision-making process, the preponderance of studies focus on tasks in which selection

and action are two separate processes. First people select among alternative options and

then initiate an action to implement the choice. However, we often make decisions during

ongoing actions in which the value and availability of the alternatives can change with time

and previous actions. The current study aims to decipher how the brain deals with uncer-

tainty in decisions that evolve while acting. To address this question, we trained individuals

to perform rapid reaching movements towards two potential targets, where the true target

location was revealed only after the movement initiation. We found that reaction time and ini-

tial approach direction are correlated, where initial movements towards intermediate loca-

tions have longer reaction times than movements that aim directly to the target locations.

Interestingly, the association between reaction time and approach direction was indepen-

dent of the target probability. By modeling the task within a recently proposed neurodynami-

cal framework, we showed that action planning and control under uncertainty emerge

through a desirability-driven competition between motor plans that are encoded in parallel.

Author summary

Uncertainty is ubiquitous in our sensorimotor interaction with the external world, and

motor decisions regularly have to be made in the face of it. Even after an action is selected,

there is residual uncertainty, reflecting the subjective belief about whether the current

choice is better compared to the alternative options. Over the past years, several
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experimental studies have reported that in situations affording more than one possible tar-

get of action, individuals delay their decision by moving towards an intermediate location

between the potential targets, a strategy consistent with increasing chances of collecting

more information before making a decision. This spatial averaging behavior suggests that

the brain incorporates uncertainty into the planning and execution of actions. However,

there is no strong consensus on how uncertainty is represented and resolved in the senso-

rimotor system, and affects motor decisions. By training people to perform rapid reaching

movements in the presence of two potential targets, we provide evidence that goal location

uncertainty is resolved within the action-space and through a desirability-driven competi-

tion between motor plans that are encoded in parallel.

1 Introduction

On January 15, 2009, the US Airways flight 1549, a domestic flight from La Guardia airport in

New York City to Seattle, experienced a complete loss of thrust in both engines after encoun-

tering a flock of Canada geese. As the aircraft lost altitude, the air traffic control asked the pilot

if he could either return to La Guardia or to land at the nearby Teterboro airport. Having less

than 5 minutes after the bird strike to land the plane, the pilot had to evaluate the alternative

options before making a final decision. This incident describes a ubiquitous situation, in

which decisions made while acting and without having complete certainty about the outcomes

of the alternative options. How uncertainty about the outcome of actions is represented into

the sensorimotor system and influences motor behavior has, so far, remained elusive. In labo-

ratory-based tasks when participants are faced with similar uncertainty about which option to

select, they often choose a third (and occasionally lower rewarded) alternative option [1, 2]. In

the plane example, the pilot followed a similar strategy by rejecting both options, because he

was not certain that he could make any runway. Instead, he decided to safely glide the plane to

ditch in the Hudson river, an action that saved the passengers’ lives. However, in situations in

which a third option is not available, individuals often delay their choice by moving towards

an intermediate location between the alternative options, waiting to accumulate more infor-

mation before making a decision [3–11]. This spatial averaging behavior is thought to provide

fundamental insight on how the sensorimotor system integrates uncertainty into planning and

execution of actions to achieve the desired outcome. However, despite many years of research,

there is no strong consensus about the mechanism that generates the spatial averaging

behavior.

A critical issue impeding consensus is the locus of uncertainty. One family of theories sug-

gests that the brain deals with goal location uncertainty by generating a single intermediate

movement that is corrected online as more information becomes available [11–13]. Here, the

locus of uncertainty is over the target space. If there are two potential targets for a reach, gener-

ating an intermediate movement allows individuals to come closer to both options, affording

more time to determine the option with the best outcome before making a commitment to

either one. Recent cognitive theories argue against this hypothesis proposing that in situations

affording more than one alternative options, individuals plan in parallel multiple actions that

compete for selection before choosing one to execute [6–8, 10]. This theory is known as

“motor encoding strategy” and suggests that intermediate movements reflect a combination of

distinct (i.e., single-target) motor actions that have been partially planned—only some aspects

of the motor action, such as direction, are planned prior to movement initiation—for each

competing option [14]. The key concept in this theory is that decision and action are not
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separated and serial processes, rather action selection forms an integral part of the decision

making process [15]. Importantly, the locus of uncertainty is over the set of motor plans.

A series of studies attempted to decipher whether the spatial averaging behavior reflects a

single intermediate movement plan or a combination of single-target movement plans. In one

of them, people had to initiate reaching movements towards two potential targets, while the

true target location was revealed only after the movement onset [11]. The study reported that

spatial averaging occurs only for slow movements, when time allows for corrective movements

to be made. In contrast, fast movements were almost exclusively aimed directly to one of the

two targets. These results were interpreted as evidence that the sensorimotor system plans and

executes only a single, flexible motor plan, to optimize for uncertain goals [11]. However,

another recent study used a similar “reach-before-you-know” paradigm and showed that if an

obstacle blocked the movement towards one of the two targets, the intermediate movement

was biased away from the obstacle. Because the location of the obstacle does not affect move-

ments towards an averaged visual-spatial target location, these results appear to favor motor

encoding strategy over planning a single intermediate movement [16].

To understand the mechanism of goal location uncertainty in motor decisions, we need to

decipher what spatial averaging behavior reflects. Does the brain plan and execute a single

motor plan prior to implementing a corrective action towards the cued target, or does it plan

multiple single-target motor plans and execute a weighted average of them? To do so, we

trained participants to perform rapid reaching movements to two potential targets presented

simultaneously in both hemifields. Critically, the actual goal location was not disclosed before

movement onset. Only after the reaching movement exceeded a threshold, the actual goal loca-

tion was revealed. This ensured that the participants were not certain about the current best

action before planning their movements, even after departing from the origin. Dual-target tri-

als were interleaved with single-target trials in which one target was presented either in the left

or the right hemifield. By varying the target probability, we tested how goal location uncer-

tainty influences motor behavior. We found that when both targets had about the same proba-

bility, individuals delayed initiating a movement and aimed towards an intermediate location,

waiting to collect more information before selecting one of the targets—the spatial averaging

strategy reported in previous studies [6, 9, 12]. Alternatively, when one of the targets had

higher probability, reaches had faster responses and launched closer to the likely target. These

findings suggest that target probability influences both planning and execution of actions in

motor decisions with multiple competing options. Surprisingly, the relationship between

approach direction and reaction time was not mediated by the target probability. Instead,

when people waited longer to initiate an action, reaches were frequently slower and launched

towards an intermediate location between the potential goals, regardless of the target

probability.

To better understand the association between reaction time and approach direction, we

modeled the reaching task within a recently proposed computational theory [17, 18]. This the-

ory is an extension of evidence accumulation models [19] and builds on the affordance compe-

tition hypothesis, in which multiple actions are formed concurrently and compete over time

until one has sufficient evidence to win the competition [14, 20]. We replace evidence with

desirability—a continuously evolving quantity that integrates all sources of information about

the relative value of an action with respect to alternatives. It includes information not only

about the uncertainty of goal location, but also about the effort required to perform an action

at any given time and state. The relative desirability of an action varies with time and state and

can be viewed as an internal estimate of our belief about the “attractiveness” of the action with

respect to alternatives. Reaching movements are generated as a mixture of actions weighted by

their relative desirability values. The difference of the desirability values at a given time and
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state characterizes the momentary degree of competition between the two alternative motor

plans. Ambiguous desirabilities indicate that the net evidence supporting one action over the

others is weak, and therefore the competition as to which action to select is high. On the con-

trary, when one action outperforms the alternatives, the net evidence is strong and therefore

the action competition is low. In analogy with the evidence accumulation models [21–23], the

action competition characterizes the momentary degree of choice uncertainty, such as the

stronger the competition, the higher the uncertainty as to which of the two potential reach tar-

gets to act upon. Therefore, the “winning” action determines the selected target and the reac-

tion time, whereas the “losing” actions contribute to the computation of uncertainty—i.e., the

closer the desirability of the non-selected actions to the desirability of the selected one, the

higher the uncertainty about the current best action. This is similar to the “balance-of-evi-

dence” idea used in evidence accumulation models to determine choice uncertainty in percep-

tual judgment tasks [24]. Because desirability is time- and state- dependent, and action

competition is often not resolved after movement onset, selected actions can be changed or

corrected in-flight (i.e., change of mind) in the presence of new incoming information. The

model predicts that both movement direction and reaction time are influenced by the relative

desirabilities of the alternative actions. When the desirability values of the alternative actions

are about the same, decisions are delayed by both moving towards an intermediate location

and by having longer reaction time. In contrast, when one action has higher desirability and

outperforms the alternatives, reaches are initiated faster and move directly to a target. Impor-

tantly, the model predicts that the association between approach direction and reaction time is

not mediated by the target probability. Instead, action competition can increase the uncer-

tainty about the best current action leading to slower responses regardless of target probability.

Overall, model predictions are consistent with human findings suggesting that action planning

and control under uncertainty emerge through a desirability-driven competition between

motor plans that are encoded in parallel.

2 Results

2.1 Reaching strategies for dealing with goal uncertainty

A plethora of studies have showed that when encountering with situations in which there are

multiple potential targets for action, individuals aim towards an intermediate location between

the alternative options to compensate for goal uncertainty [6, 9, 12, 25]. Despite many years of

research, there is no strong consensus on what this spatial averaging behavior reflects. One the-

ory suggests that an intermediate trajectory reflects a “visual encoding” strategy that the brain

plans to compensate for the goal location uncertainty [14, 25]. According to this theory, an

averaged visual-spatial target location is planned and executed. A graphical representation of

the visual encoding process is shown in Fig 1A (left panel). Decision variables, such as expected

reward and action cost are integrated into the target value V. Then, a visual target is generated

by averaging the locations of the two potential targets weighted by the corresponding target

values—i.e., visual target is located closer to the target with the highest value. After a decision

is made, an action towards the visual target location is planned and executed. The location of

the visual target is continuously updated based on incoming information, e.g., changes of the

target probability. Once one of the targets is cued, the trajectory is corrected in-flight to the

actual goal location. The key characteristic of this theory is that decision takes place within the

target space before an action is planned—the brain first specifies the visual target location and

then plans an action to implement the choice. To illustrate the mathematical formulation of

this theory, let’s consider two potential targets that are located at q1 and q2, and each of them is

assigned with probability P1(xt) and P2(xt), and action cost cost1(xt) and cost2(xt)—i.e., effort to
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reach towards the target locations—at a given time and state xt, Fig 1A (right panel). If V1(xt)
and V2(xt) are the normalized values of target 1 and target 2, respectively, such as V1(xt) +

V2(xt) = 1, the visual average target location is computed as:

qgoalðxtÞ ¼ q1V1ðxtÞ þ q2V2ðxtÞ ð1Þ

After selecting the goal location qgoal, individuals need to specify the action plan (i.e., trajec-

tory) to reach to that location. We can simulate this process using feedback control theory to

generate a reach trajectory through optimal waypoints [26]. We define the discrete-time state-

space representation of the reach trajectory as:

xtþ1 ¼ Adxt þ Bdut ð2Þ

yt ¼ Cdxt ð3Þ

where xt is the state of the reaching movement, Ad, Bd are the system dynamic matrices that

describe how the current state xt and the control inputs ut, respectively, affect the future state

xt+1, and Cd is the observation matrix. Let’s assume ywk¼1:M be a set of M waypoints from the

Fig 1. A graphical representation of two alternative hypotheses account spatial averaging behavior. (A): The visual encoding strategy

suggests that the brain evaluates the potential targets based on the decision variables (e.g., expected reward and effort cost) and generates an

averaged visual-spatial target location qgoal(xt) (right panel). The “visual” target is computed as the weighted average of the two potential target

locations (q1 and q2). The reach trajectory (gray continuous trace on the right panel) that aims towards the visual target location can be

simulated using an optimal waypoint (green points) planning algorithm. Once the actual goal is revealed, the movement is corrected in-flight to

the actual target location. Therefore, the reach trajectory consists of an initial phase towards the visual target location (gray trace) and a final

phase towards the correct target location (black discontinuous trace). (B): The alternative hypothesis suggests that the brain plans

simultaneously single-target actions (i.e., control policies) π1 and π2 that compete for selection and uses the decision variables to bias the action

competition. The weighted average of the individuals planned single-target actions produces the motor action πmix that generates the reaching

movement (black discontinuous trace right panel).

https://doi.org/10.1371/journal.pcbi.1009429.g001
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origin to the visual target location qgoal. We can construct a discrete optimal control problem,

such that the output yk passes through the waypoints at specific time instances ymi ¼ y
w
mi

. The

waypoint planning and trajectory generation was used to emphasize that in visual averaging

strategy a single intermediate movement is fully planned prior to movement initiation. Let the

initial state be given by x(t = 0) = xinit. The boundary condition at the end point is determined

by the last waypoint, ywmk (i.e., the final destination, which is the target location qgoal), such as

Cxmk ¼ y
w
mk

. The optimal control problem can be formulated as:

Jqgoalðx; p; y
wÞ ¼

1

2

Xmk

i¼0

xTi Qxi þ pðxiÞ
TRpðxiÞ

� �
þ

1

2

Xk

j¼1

ðCdxmj � y
w
mj
Þ
TK Cdxmj � y

w
mj

� �

ð4Þ

where Q, R and K are square symmetric matrices. The minimization of Eq (4) provides the

optimal policy π(xt), which is a set of actions Uqgoal ¼ ½u1; u2; :::; umk �
T

that generate the trajec-

tory through the k waypoints to reach to the visual target location qgoal (gray trace Fig 1A right

panel). Since the actual goal location will be revealed after departing from the origin, the opti-

mal policy needs to be recalculated after n steps, a strategy known as receding horizon control
[27, 28]. Once the goal location is cued, the movement will be corrected in-flight to the actual

goal. Therefore, a reach trajectory consists of an initial phase that aims towards the visual tar-

get location, and a final phase that aims to the correct target location (black trace in Fig 1A

right panel). Along the same lines, another theory suggests that intermediate movement

reflects a single, deliberate movement plan that is optimal given a partially formed belief about

the true goal location [13]. When the strategic benefits of intermediate movement are miti-

gated by either reducing the time available to correct an action [13] or by increasing the spatial

separation between the potential targets [11, 29], the spatial averaging behavior is largely

abated [30].

An alternative theory argues against the single motor plan strategy, suggesting that the

brain plans in parallel partially prepared actions that compete for selection Fig 1B (left panel)

[10, 20, 31]. According to this theory, decision and action are coupled into a parallel process—

multiple actions are partially prepared in parallel and compete for selection. Expected reward

and action cost are integrated into the action value to bias the competition. A reaching move-

ment is generated as a mixture of the single-target actions weighted by value of the actions.

The key characteristic of this theory is that decision takes place in the action-space through

action competition—i.e., the action that wins the competition determines the selected target

and the reaction time. In a recent work, we modeled the motor encoding strategy within a sto-

chastic optimal control framework by constructing control policies pqjðxtÞ ¼ U
qj ¼

½uqj1 ; u
qj
2 ; :::; u

qj
tend � for every target location that are optimal with respect to a cost function [18]—

j = 1, 2 for the current example described in Fig 1B (right panel). A wide variety of models

have been proposed in the literature about what cost functions the sensorimotor system might

use to generate motor behavior (i.e., trajectories) that matches well experimental data. Such

examples include the minimum jerk model [32], the minimum torque-change model [33], the

minimum end-point variance planning model [34] and the extended LQG model [35]. In the

current study, we used the minimum end-point variance planning as a cost function on the

control system to generate single-target motor plans (i.e., policies). The optimal policy pqjðxtÞ
for reaching to the target location qj from the current state xt is given by minimizing the fol-

lowing cost function:

Jjðx; pqjÞ ¼ ðxTj � SqjÞ
TQTjðxTj � SqjÞ þ

XTj � 1

t¼1

pqjðxtÞ
TRpqjðxtÞ ð5Þ
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where the first term describes the accuracy cost at the end of the movement and the second

term the effort cost from the movement onset to the end of the movement. Also, Tj is the time-

to-arrive to the target location qj starting from the current state xt, and S is a square symmetric

matrix (for more information see [18]). The main question is how to combine the individual

optimal policies pqjðxtÞ into a single policy to be executed. We showed that optimal control

policies associated with the alternative targets can be combined using a relative desirability
function rDðpqjðxtÞÞ for each policy pqj computed at the state xt [18]. The relative desirability

integrates information from disparate sources with different “currencies” (i.e., expected

reward and action cost) into a single value in a manner that is both online and can be updated

during action execution [18]. It is time-varying and depends on the current state of the trajec-

tory, the target probability and the effort cost to implement the control policy from the current

state. It reflects the probability of getting the highest outcome with the least effort if adopting

the policy pqjðxtÞ, Eq (6).

rD ðpqjðxtÞÞ ¼ P ðOutcomepqj ðxtÞ > Outcomepqi6¼j ðxtÞÞ P ðCostpqj ðxtÞ < Costpqi6¼j ðxtÞÞ þ xt ð6Þ

where the first term of Eq (6) describes the probability that policy pqjðxtÞ will produce the high-

est outcome with respect to any other alternative, the second term is the probability that pqj

will consume the lowest effort with respect to any other alternative pqi6¼j , at a current state xt,
and ξt is the error in the relative desirability estimation sampled from a Normal distribution

Nðmx; s2
x
Þ. Note that the effort cost is computed directly from the 2nd term in cost function of

Eq (5).

After computing the relative desirability values, the control policy πmix(xt) that will generate

the reach trajectory (black discontinuous trace in Fig 1B right panel) is given as:

pmixðxtÞ ¼
XK

j¼1

rDðpqjðxtÞÞpqjðxtÞ ð7Þ

where K is the total number of potential targets (K = 2 in the current example showing on the

right panel in Fig 1B). The implementation of this theory within a neurodynamic framework is

presented in the materials and methods section.

This computational analysis revealed that the main difference between the two encoding

strategies is where the uncertainty is resolved. According to the single action strategy, the

uncertainty about the current best action is resolved in the target space. The reaction time

depends on how quickly the brain plans and executes a single motor plan strategy in the pres-

ence of goal location uncertainty. On the contrary, according to the motor encoding strategy,

uncertainty is resolved in the action plan (i.e., policy) space. The reaction time depends on the

competition between the action plans. The faster the competition is resolved, the shorter the

reaction time. The current study aims to decipher what encoding strategy people adopt in

reaching movements with multiple potential goals, in order to understand how the brain com-

putes and utilizes uncertainty into motor behavior.

2.2 Behavioral paradigm

A schematic representation of the experimental setup is shown in Fig 2. Participants were

instructed to perform rapid reaches using a robotic manipulandum under a “reach-before-

you-know” paradigm [6, 36] in which either one (single-target trials) or two (dual-target trials)

potential targets presented simultaneously in opposite hemifields. For dual-target trials, the

cues appeared symmetric around the vertical axis of the screen. By varying the number of
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potential targets and their probabilities, we study how individuals plan and execute actions

under goal location uncertainty. In the equiprobable session, each trial started with partici-

pants fixating on a central cross, followed by the presentation of one or two unfilled blue cir-

cles in the screen Fig 3A. When the fixation cue was extinguished, an auditory cue signaled the

individuals to initiate their responses. Once the reaching movement exceeded a threshold, one

of the targets filled-in black indicating the actual goal location. The unequiprobable session

was similar to equiprobable except for the dual-target trials, in which one of the potential tar-

gets was always assigned with higher probability (0.8) than the alternative one (0.2). The targets

with the high and low probabilities were indicated by unfilled green and red cues, respectively.

In single-target trials (i.e., target probability = 1) which were randomly interleaved with the

dual-target trials in both sessions, a single unfilled blue cue was presented in the left or the

right hemifield. The set of target configurations is shown in Fig 3B. Participants achieved an

overall success rate around 93% and their performance was similar between the two sessions

(93% and 90% respectively).

2.3 Initial approach direction varies with target probability

Target probability is well known to have a strong effect on reaches, where the initial movement

trajectory is aimed between targets. This motor behavior, which has been extensively reported

before [6, 9, 12, 16], indicates that the approach direction of the initial reaches varies with the

target probability, a finding we replicated. Representative single-trial trajectories (thin traces)

from different target probabilities and the corresponding average trajectories (thick traces) for

goal located in the left and right hemifield are illustrated in Fig 4A and 4B, respectively. When

the goal location was known prior to movement onset, reaches were made directly to the goal

target (black traces). Otherwise, reaches were aimed to an intermediate position between the

potential goal locations (blue traces). The “spatial averaging” reach trajectories were reliably

biased towards the side of space with the most likely target (green traces). Hence, individuals

did not pre-select one of the potential targets prior to movement onset. Instead, they delayed

their decisions by moving towards an intermediate location to collect more information before

taking the final action. We compared the approach direction across participants, number of

Fig 2. A graphical representation of the experimental setup from two perspectives. Participants (a) were seated directly in front

of a Phantom haptic robot (c), with their index fingers inserted in a finger-tip adaptor (b) and their midline aligned with the center

of an LCD monitor (d). Reaching movements took place in the x − y plane, +y being towards the screen and +x being towards the

right hand side of the screen. The distance from the head of the individuals to the finger starting position along the y axis was about

dsubject = 0.30 m and slightly varied across participants. The distance from the finger starting position to the screen display was

ddisplay = 0.35 m.

https://doi.org/10.1371/journal.pcbi.1009429.g002
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Fig 3. Task design and experimental paradigm. (A): A reaching trial started with a fixation cross presented on the center of the screen for

about 1.5 s. Then, either a single or two unfilled cues were presented simultaneously in both visual fields. After 300 ms the central fixation cross

was extinguished (“go-signal”), and the participants had to perform a rapid reaching movement towards the target(s) within 1 s. Once the reach

trajectory crossed a trigger threshold (red discontinuous line), one of the cues (or the single cue) was filled-in black indicating the actual goal

location. Responses before the go-signal or reaches that exceeded the maximum movement time (1 s) were aborted and not used for further

analysis. (B): The color of the cues in the dual-target trials indicated the target probabilities—blue cues corresponded to equiprobable targets,

whereas green and red cues corresponded to targets with 80% and 20% probability, respectively. Single cues always had blue color. (C): The

distance between the origin and the midpoint of the two cues was dreach = 0.2m. The distance between the two targets was dseparation = 0.30m.

The trigger threshold—i.e., distance between the origin and the location that the actual goal location was revealed—was set to dthreshold = 0.05m.

https://doi.org/10.1371/journal.pcbi.1009429.g003

Fig 4. Reach trajectories for different target probabilities. (A): Representative single-trial trajectories (thin traces) and the corresponding

average trajectories (thick tracres) from single- (black trace) and two-target trials with equal (blue trace) and unequal (green trace) probabilities,

when the actual goal was located in the left hemifield. (B): Similar to A but for actual goal located in the right hemifield. Target probability

influences the reach trajectories. When people were certain about the goal location, reaches were aimed directly to the target. When they were

uncertain, reaches were launched to an intermediate location between the targets and then corrected in-flight to the cued target location. The

spatially averaged behavior was biased towards the likely target.

https://doi.org/10.1371/journal.pcbi.1009429.g004
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targets and probabilities and found that it is directly correlated with the target probability (best

fit linear regression model; R-square = 0.967, p-value = 0.00258 of the linear coefficient) Fig

5A. Our findings suggest that when people are faced with multiple competing options, they

both delay their decision and move towards an intermediate location between the targets, a

strategy consistent with increasing chances of collecting more information before making a

choice.

2.4 Reaction time depends on the initial approach direction

The dual effects of target probability on reach trajectory and timing suggest that uncertainty is

incorporated into both acting (trajectory generation) and planning processes. Intuitively, it is

reasonable that target probability influences action planning to delay initiating action when

uncertain about the best option. This predicts reaction time (RT) would be a direct function of

target probability. On average, this prediction is validated as illustrated in Fig 5B for single-tar-

get trials, two-target trials with equal probability and two-target trials with unequal probability,

with RT averaged across participants (best fit quadratic regression model; R-square = 0.98, p-

value = 0.0197 of the quadratic coefficient). However, the initial approach direction is also cor-

related with the target probability, raising the question whether the association between RT

and target probability is related to the target probability itself or to the initial approach direc-

tion. A trial-by-trial analysis showed that the effect on initiation timing was indirect and actu-

ally mediated by a latent variable influencing both RT and approach direction of a trajectory.

By plotting RT vs. approach direction separately for the two sessions, we found that changes in

Fig 5. Approach direction and reaction time. (A): Approach direction and (B) reaction time across participants, number of targets

and probabilities. Positive and negative approach directions correspond to reaches launched closer to the right and left target,

respectively. Approach directions around 0˚ correspond to reaches aimed towards the midline location between the two targets. (C):

Reaction time as a function of the approach direction in equiprobable (blue trace) and unequiprobable (green trace) sessions (D):

Boxplots of the RT residuals (i.e., difference between actual and predicted RTs) for the 5 different target probabilities. Error bars

correspond to standard error (SE), solid lines show the regression fitting (linear in panel A, quadratic in panel B and cosine in panel C)

and the colored shadow areas illustrate the confidence interval of the regression results.

https://doi.org/10.1371/journal.pcbi.1009429.g005
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RT are independent of target probability and accounted for by approach direction. Fig 5C

shows RT as a function of the initial approach direction across all participants and trials sepa-

rately for the two sessions. Importantly, RT increases with reaches to intermediate locations

regardless of the target probability (approach direction was sorted into 10 consecutive bins

and then mean RT was computed in each bin; best fitting cosine curve model; R-

square> 0.878, p-value < 0.0038 in both sessions). To ensure that this effect was not due to

some inherent constraints induced by the experimental setup—i.e., reaches aimed to the center

of the screen have longer RTs than reaches aimed to peripheral targets—we varied the target

location between 0.10 m to 0.20 m from the midline in the equiprobable session and computed

the RT in the single-target trials. No significant association was found between target location

and RT (p-value > 0.197 of the regression coefficients for linear and curvilinear regression

analysis, S4 Fig).

To further explore the association between approach direction and RT, we tested how

much of the variation in RT is explained by approach direction and how much is explained by

target probability. To do so, we modeled the relationship between approach direction and RT

in the equiprobable condition by fitting a nonlinear regression model across all trials (cosine

curve fitting across all trials and participants, R-square = 0.138, p-value<10−28) and then we

used this model to predict RT from any given approach direction across all different target

probabilities in both equiprobable and unequiprobable conditions. Fig 5D illustrates the box-

plots of the RT residuals (i.e., difference between actual RTs and predicted RTs) for all different

probability values. The results showed that there are no significant changes on RT residuals

across target probabilities indicating that RT is independent of the target probability (one-way

ANOVA F(4,1466) = 1.96, p = 0.097). This finding suggests that the association between RT

and target probability illustrated in Fig 5B is not directly related to the target probability itself.

Instead, it is related to the approach direction. For instance, reaches exhibit longer RTs in two-

target trials with equal probability than in single-target trials, because the first condition

involves more reaches to intermediate locations than the latter one that involves mainly direct

reaches to the target locations. Overall, our findings suggest that changes in RT are indepen-

dent of target probability, and the approach direction and RT are driven by trial-by-trial varia-

tions in a latent variable, which we identify with relative desirability as we describe in the

following section.

2.5 Action selection and reaction time emerge through action competition

Our results require a decision computation that would produce joint changes in trajectory and

RT as a function of trial-by-trial fluctuations in a latent variable. We developed a theory [17,

18] that predicts exactly these effects using relative desirability as the latent variable. The rela-

tive desirability is a dynamic variable that describes how desirable is to perform an action with

respect to the alternatives at a given time and state. It is related to choice uncertainty, since if

one action has higher desirability value and outperforms the alternatives, the action competi-

tion is low and hence there is less uncertainty as to which option to act up. In this theory,

action decisions are made through a continuous competition of parallel prepared actions

(motor encoding strategy) by dynamically integrating all sources of information about the

quality of the alternative options. The neurodynamic implementation of this theory for a dual-

target trial is presented in Fig 6. The framework consists of a set of dynamic neural fields

(DNFs), which mimic the neural processes underlying spatial sensory input, expected out-

come, reach cost (i.e., effort) and reach planning [17]. Each DNF simulates the dynamic evolu-

tion of firing rate activity within a neuronal population. The functional properties of each
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DNF are determined by the lateral interactions within the field and the connections with other

fields [37, 38].

The “reach planning” field employs a neuronal population code over 181 potential move-

ment directions to plan motor actions towards these directions. It receives one-to-one excit-

atory inputs from the “spatial sensory input” field that encodes the angular representation of

the targets and the “expected outcome” field that represents the expected outcome of aiming

to a particular direction. Each neuron in the reach planning field is projected to a stochastic

optimal control system. Once the activity of a reach neuron i exceeds a threshold γ at the cur-

rent state xt, the corresponding controller initiates an optimal policy πi(xt) to move the “hand”

towards the preferred direction of that neuron (see Materials and methods section for more

details). The reach planning field receives also inhibitory inputs from the “reach cost” field

that encodes the effort required to implement each policy π(xt) at the current state. The nor-

malized activity of the reach planning field represents the desirability of the motor actions at

any time and state, and acts as a weighting factor on them. It reflects how “desirable” it is to

move to a particular direction with respect to the alternatives. Because desirability is time- and

state- dependent, the weighted mixture of individual actions automatically produces a range of

behavior, from direct reaching movement to weighted averaging.

Fig 7A illustrates the activity of the planning field as a function of time for a representative

dual-target trial with equiprobable targets. Initially, the field activity is in the resting state.

After targets onset, two neuronal populations selective for the targets are formed and compete

Fig 6. Model architecture of the “reach-before-you-know” task. The neural fields consist of 181 neurons and their spatial dimension spans

the semi-circular space between 0˚ and 180˚. Each neuron in the reach planning field is connected with a stochastic optimal control system.

Once the activity of a neuron exceeds a threshold γ, the corresponding controller generates a sequence of reach actions towards the preferred

direction of the neuron. The reach planning field receives excitatory inputs from the spatial sensory input field that encodes the angular

representation of the potential targets, and the expected outcome field that encodes the expected outcome of the competing targets (blue, red

and green Gaussian distributions correspond to cues with 0.5, 0.2 and 0.8 target probability, respectively). It also receives inhibitory inputs

from the reach cost field that encodes the effort required to implement the available sequences of actions—i.e., move to a particular direction

from the current state. The normalized activity of the reach planning field encodes the “desirability” of theM available sequences of actions

(i.e., neurons with activation level above the threshold γ) at a given time and state and acts as a weighting factor on each individual sequence

of actions. Because the relative desirability is time- and state- dependent, a range of behavior from weighted averaging (i.e., spatial averaging

trajectories) to winner-take-all (i.e., direct reaches to one of the cues) is generated.

https://doi.org/10.1371/journal.pcbi.1009429.g006
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through mutual inhibitory interactions, while integrating information about the target proba-

bility and action cost to bias the competition. Once the activity of one of them exceeds a

response threshold, the corresponding target is selected and a reaching movement is initiated.

Frequently, the neuronal activity of the unselected target is not completely suppressed before

movement onset, resulting in reaches towards intermediate locations between the targets (top

inset in Fig 7A). After the movement onset, the two neuronal ensembles retain activity and

compete against each other until the goal onset.

To get better insight on the model computations consider two neurons, one from each pop-

ulation, centered at the target locations. Fig 7B depicts the activity of each neuron (i.e., which

reflects its current desirability value) as function of time for a dual-target trial with equal (blue

traces) and unequal (green traces) target probability. The neuron that exceeds the response

threshold first (continuous traces) dictates the reaction time and the selected target. Intuitively,

if the race between the neurons is a close call (blue traces), the net evidence supporting that

one action is more desirable than the alternative is weak, resulting in higher uncertainty and

intermediate movement directions. On the other hand, if the race was a landslide (green

traces), one alternative outperforms the other resulting in lower uncertainty and direct move-

ments to one of the targets. Going back to the population analysis, the “winning” population

determines the reaction time and the selected target, whereas the “losing” one contributes to

the computation of the momentary uncertainty about the current best action—i.e., the larger

the difference between the desirability values of the alternative actions the lower the uncer-

tainty about the current best action. Note that in the absence of action competition (i.e., sin-

gle-target trials), the activity of the neuron exceeds the response threshold faster than when

two actions compete for selection (black trace). Hence, reaches have shorter reaction time and

aim directly to the goal location. Overall, the theory is analogous to the normative race models

in perceptual decisions in which two accumulators integrate sensory evidence in favor of two

alternative options [23, 39]. The accumulator that reaches its upper bound faster dictates the

Fig 7. Simulated neural activity and reach behavior. (A): A representative example of the simulated model activity as a function of time in the reach

planning field for a dual-target trial with the actual goal located in the left visual field. The red discontinuous lines indicate the target onset, the

movement onset, and the goal onset. The corresponding reach trajectory is shown in the upper inset. (B): Simulated activity of two planning neurons

centered at the location of the cued (continuous traces) and the uncued (discontinuous traces) target, from a representative single-target trial (black

trace) and two dual-target trials with equal (blue traces) and unequal (green trace) probabilities. A reach movement is initiated when the activity of

one of the neurons exceeds the response threshold (gray discontinuous trace). When only a single target is presented, the neuronal activity ramps up

quickly to the response threshold resulting in faster reactions and direct reaches to the target. However, when two targets are simultaneously

presented, the neurons compete for selection through inhibitory interactions resulting often in slower reaction times and spatially averaged

movements. If one of the alternatives is assigned with higher probability, the competition is biased to the likely target leading to faster responses.

https://doi.org/10.1371/journal.pcbi.1009429.g007
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reaction time and the choice, whereas the losing accumulator contributes to the computation

of uncertainty that the choice is correct (balance-of-evidence hypothesis [40]).

We simulated the two equiprobable and unequiprobable sessions within the computational

theory (350 trials for each session, 2 x 350 = 700 trials total), using the parameter values pre-

sented in S1 Table. Representative single-trial trajectories (thin traces) for different target

probabilities and the corresponding average trajectories (thick traces) for goal located in the

left and right hemifield are illustrated in Fig 8A and 8B, respectively. The model predicts that

intermediate movements are launched (blue traces) when the goal location is unknown, and

are biased towards the target with the highest probability to be cued for action (green traces).

When the actual goal is known prior to movement initiation, reaches are aimed directly to the

goal location (black traces). Therefore, consistent with the human behavior, the target proba-

bility is correlated with the approach direction Fig 9A (best fit linear regression model: R-

square = 0.999, p-value = 0.000013 of the linear coefficient) and RT Fig 9B (best fit quadratic

regression model: R-square = 0.993, p-value = 0.007 of the quadratic coefficient). We also

tested trial-by-trial association between RT and approach direction and found the same inde-

pendence from target probability, Fig 9C (approach direction was sorted into 9 consecutive

bins and then mean RT was computed in each bin; best fit cosine curve model in both sessions:

R-square = 0.984, p-value = 0.00006). In particular, simulated reaches aimed towards an inter-

mediate location between the potential targets had longer RT than reaches launched closer to

one of the competing options regardless of the target probability. This is explained by the

inhibitory interaction between the neuronal ensembles that slows down the reach onset and

leads to spatial averaging movements, if the population of the unselected action is not

completely suppressed at the movement initiation. Finally, we performed the same analysis

with the human experiment to explore whether the association between RT and approach

direction is mediated by the target probability. In particular, we modeled the association

between RT and approach direction in the simulated equiprobable session across all trials

(cosine curve fitting across all trials, R-square = 0.60, p-value = 0.00001) and then we used this

model to predict RT from any give approach direction across all different target probabilities

Fig 8. Simulated reach trajectories for different target probabilities. (A): Representative single-trial simulated reach trajectories (thin traces) and the

corresponding average trajectories (thick tracres) from single- (black trace) and two-target trials with equal (blue trace) and unequal (green trace)

probabilities, when the actual goal located in the left hemifield. (B): Similar to A but for actual goal located in the right hemifield. Consistent with the

human behavior, initial simulated movements are launched towards an intermediate (i.e., averaged) spatial location (blue traces), when the actual goal

is unknown prior to movement onset. The spatial behavior is biased by the target probability (green traces). When the actual goal is known before

movement initiation, reaches are aimed directly to the target location (gray traces).

https://doi.org/10.1371/journal.pcbi.1009429.g008
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in both equiprobable and unequiprobable sessions. Fig 9D shows the boxplots of the RT resid-

uals (i.e., the difference between predicted RT and actual RT) for different target probabilities.

The results showed similar trend with the human data—i.e., target probability does not have a

strong effect on the RT—but contrary to the human data, the RT residuals of the simulated

reaches exhibit small, but statistically significant, changes with target probability (one-way

ANOVA, F(4,595) = 6.82, p< 0.00002). A post-hoc multiple comparison analysis showed that

RT residuals were statistically significant different (p< 0.05) only between single target trials

and two-target trials with equal probability. One potential explanation of the difference

between the human and the simulated RT residuals is that simulated reaches do not take into

account the history of previous trials. Instead, it assumes that every trial is independent on the

previous ones. On the other hand, in the human experiment, two-target trials were interleaved

with single target trials, and therefore, even when participants were instructed to perform

direct reaches to single targets, their reaching behavior might be influenced from previous

two-target trials. The lack of this sequential effect in the computational model can explain the

small, but statistically significant, difference on the RT residuals between single target trials

and two-target trials with equally probable targets. Overall, the model predicts that the degree

of action competition influences the initial approach direction and reaction time of the reach-

ing movements. This suggests that action selection, reaction time and uncertainty about the

best current action emerge through a common mechanism of desirability-driven competition

between parallel prepared actions.

Fig 9. Approach direction and reaction time of the simulated reaches for motor encoding strategy. (A) Approach direction and (B) reaction

time of the simulated reaches across number of targets and probabilities. (C): Reaction time as a function of the approach direction in the

simulated equiprobable (blue trace) and unequiprobable (green trace) sessions. (D): Boxplots of the RT residuals (i.e., difference between actual

and predicted RTs) for the 5 different target probabilities. Error bars correspond to standard error (SE), solid lines show the regression fitting

(linear in panel A, quadratic in panel B and cosine in panel C) and the colored shadow areas illustrate the confidence interval of the regression

results.

https://doi.org/10.1371/journal.pcbi.1009429.g009
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2.6 Reach behavior does not reflect a single motor plan strategy

So far, our findings are in favor of the motor encoding strategy. However, spatial averaging

behavior could be also explained within the family of single motor plan strategies, such as

visual averaging encoding or performance optimization strategies. From a computational per-

spective, these strategies have the advantage that the brain does not need to allocate resources

to forming motor representations of all potential targets [41]. However, the main critique

against the performance optimization strategy is that it does not actually address how such

optimized movements may themselves be computed or explain the neural representation on

which they are based [30]. Behaviorally, single motor plan strategies can predict some compo-

nents of motor behavior in rapid reaching movements, such as the initial approach direction

—e.g., reaches are aimed towards a visual average location between the targets, weighted by

the target probabilities. It can also be argued that they can explain the reaction time as a func-

tion of the target probability presented in Fig 5B, if we hypothesize that participants performed

frequently direct reaching movements to the high probability target while ignoring the low

probability target. Therefore, the average reaction time on the unequiprobable trials would be

shorter than the equiprobable trials. The last component of motor behavior that remains to be

tested is whether a single motor plan strategy, without an action competition mechanism, can

explain the association between reaction time and approach direction.

To do so, let’s see what would happen if reaching movements were generated by a mecha-

nism that does not include action competition. Instead, participants first decided where to

move and then generated a single action towards this direction. In this case, RT would depend

on the time that it takes to specify the visual target location and the time to plan a reaching

movement towards this target location. To simulate this hypothesis, we sampled RT and

approach direction from a Normal distribution with parameters the mean and the standard

deviation of the reaching movements in each condition (i.e., target probability). For instance, in

the two target trials with equal probability, ifMDir50� 50
and SDDir50� 50

are the mean and the stan-

dard deviation of the participants’ approach direction in this condition, we generated the

approach direction from a Normal distribution N � ðMDir50� 50
; SDDir50� 50

Þ. Similarly, reaction

time is generated by a Normal distribution N � ðMRT50� 50
; SDRT50� 50

Þ, whereMRT50� 50
and

SDRT50� 50
are the mean and the standard deviation of the participants’ RT in the two target trials

with equal probability. Although the lack of action competition can predict the correlation

between approach direction and target probability Fig 10A (linear regression model; R-

Fig 10. Approach direction and reaction time of the simulated reaches for a hypothetical single motor plan strategy. (A): Approach direction

and (B) reaction time of the simulated reaches across number of targets and probabilities. (C): Reaction time as a function of the approach

direction in the simulated equiprobable (blue trace) and unequiprobable (green trace) sessions. Error bars correspond to standard error (SE), solid

lines show the regression fitting (linear in panel A, quadratic in panel B and cosine in panel C) and the colored shadow areas illustrate the

confidence interval of the regression results. The single motor plan strategy fails to predict human behavior in motor decisions with competing

targets.

https://doi.org/10.1371/journal.pcbi.1009429.g010
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square = 0.98, p-value = 0.00118), as well as the association between RT and target probability

Fig 10B (quadratic regression model; R-square = 0.987, p-value = 0.0126), it fails to predict that

RT varies with the approach direction regardless of the target probability Fig 10C (cosine curve

fitting; R-square = 0.656, p-value = 0.194 in the equiprobable session and R-square = 0.885, p-

value = 0.024) as we found in the human data analysis. In other words, reaches that are aimed

towards intermediate locations have not always longer RTs than reaches that aimed towards the

target locations. Therefore, single motor plan strategies, in which people first decide where to

move and then generate an action to implement their choice, cannot account for motor behav-

ior in reaching movements with multiple competing targets, since they do not have a mecha-

nism to predict the association between reaction time and approach direction.

3 Discussion

3.1 General

Uncertainty is ubiquitous in our interactions with the external world, and motor decisions reg-

ularly must be made in the face of it. Having to decide between competing options, there is

often uncertainty that reflects our belief that a particular action is better, in the sense it is more

likely correct or has a higher expected outcome than its alternatives. Over the past years, many

studies have looked at how uncertainty emerges in decision making [23, 42–50]. Additionally,

normative models, which include drift diffusion, evidence-accumulation, and race models

[51–56], have been extended to understand the computations underlying choice uncertainty

[23, 49]. Although parsimonious, most of the previous experimental studies are highly

restricted and limited to perceptual choices made solely on the basis of the accumulation of

sensory evidence and before individuals perform an action. They have primarily focused on

the “decide-then-act” paradigms, in which individuals are completely motionless during delib-

eration, and generate an action only after committing to their final choice—although recent

studies modeled evidence accumulation that continues after movement onset to account for

“change-of-mind” that occurs during action execution [48, 49, 57]. In the “decide-then-act”

studies, uncertainty is construed as reflecting the effective amount of sensory evidence at deci-

sion time, which is not adequate to account for choice uncertainty in motor decisions that are

made while acting. For instance, sequential decisions within the context of foraging tasks

involve continuous choices about which targets to act on and in what order [58]. In these

tasks, target selection is made while acting and is often shaped by a balance between rewards

and effort costs. Similarly, in a recent study people had to track a moving target, and occasion-

ally, they were presented with a new target to which they could freely choose to switch at any

time [59]. Decisions had to be made while acting by evaluating the advantage of switching an

action or continue tracking the same target. Other studies explored the mechanisms of motor

decisions by designing “go-before-you-know” paradigms, in which individuals had to initiate

movements towards multiple potential targets, without knowing the actual goal location [6, 7,

10, 11]. In all these experimental paradigms, decisions evolve in dynamic and complex envi-

ronments, in which the value and the availability of the options can change with time and pre-

vious actions, entangling decision process with action selection process. Here, individuals have

to decide while acting among competing actions based on a variety of decisions variables, such

as reward, effort, prior history, bias, etc. In these studies, uncertainty should be state- and

time-dependent and reflect all the decision variables that affect our belief that an action is

more desirable than the alternatives.

In the current study, we adopted this enriched view to explore how goal location uncer-

tainty is encoded and resolved in motor decisions required during reaching to multiple poten-

tial goals. We hypothesized that the locus of uncertainty is over the set of single-target motor
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plans, which are generated concurrently and compete for selection. To test this hypothesis, we

designed a “reach-before-you-know” experiment in which individuals were instructed to per-

form rapid reaches to one or two potential targets presented simultaneously in both hemifields.

To elucidate the computations underlying uncertainty, we modeled the task within a recently

developed computational theory [17, 18]. It is based on the idea that decisions are made

through a continuous competition between neuronal populations that plan individual actions

to the available goals, while dynamically integrating information into a common currency—

named relative desirability—to bias the competition. The desirability reflects the belief about

the quality of the action and acts as weighted factor on each individual action. The neuronal

population that first exceeds a response threshold dictates the reaction time and the selected

target. The competing population that did not exceed the threshold contributes to the compu-

tation of the momentary degree of uncertainty about the current best action; the closer the

“losing” population to the threshold the higher the uncertainty about the selected action.

When the activity of the losing population is not completely suppressed, reaches are aimed

towards an intermediate location between the targets. Because desirability is time- and state-

dependent, the momentary degree of uncertainty about the best current action can change in-

flight in the presence of new incoming information affecting motor behavior and leading to

“change-of-mind”.

The model predicts a direct association between target probability with initial approach

direction and reaction time. When both targets are equally probable, the competition between

the two populations is frequently a close call, which means that the net evidence supporting the

selected action is weak and hence the uncertainty about the current best action is high. This

results in slower reaction times and spatially averaged movements to an intermediate location

between the potential goals. On the contrary, when one of the targets is assigned with higher

probability, the competition is biased to the likely target. In this case, the net evidence support-

ing the selected action is strong and therefore the uncertainty about the current best action is

low. This results in faster reaction times and more direct reaches to the selected target. Interest-

ingly, the model predicts that the longer it takes to initiate an action, the more likely it is that

the losing population will still be active at the movement onset, resulting in higher uncertainty

about the current best action and spatially averaged movements. Hence, reaction time and

approach direction are not fully mediated by the target probability, but they are influenced by

the relative desirability (and consequently the choice uncertainty) of the alternative actions.

Consistent with the model predictions, individuals adopted a spatial averaging behavior to

compensate for the multiple potential goals. Although this behavior has been reported before

[6, 12, 36], the pattern of compensation is better described as buying more time for decisions.

When people are uncertain about the current best option, they delay the decision both by mov-

ing towards an intermediate location between the targets and by having a longer reaction time.

In contrast, when they are certain about the best option, they initiate movements quickly and

aim directly to the selected option. In line with the model predictions, trial by trial reaction

time was correlated with the approach direction regardless of the target probability. Longer

reaction times were often associated with weak information about the current best option (i.e.,

strong competition between the desirabilities of the actions). This might suggest that the brain

learns to use decision time as a proxy for estimating choice uncertainty (see also [2, 23, 60]).

3.2 From signal-detection theory to evidence accumulation to desirability

competition

Over the past several years, two prevailing theories have been extensively used to study the

computations of uncertainty in decision making; signal-detection theory (SDT) [61, 62] and
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evidence accumulation models (EAMs) [22, 63–66]. According to SDT theory, a choice is

made (e.g., “direction right” vs. “direction left” in a random dot motion task) by comparing a

decision variable (DV) against a criterion. Choice uncertainty is determined by the distance of

the DV to the criterion. When the evidence strongly supports one option over the other, the

distance is larger and the uncertainty about the selected option (i.e., choice uncertainty) is

lower [67, 68]. Despite the important contribution of SDT to understanding how uncertainty

emerges in decision making, it can predict neither the time it takes to make a decision nor the

effects of decision time in choice uncertainty as reported by a series of experimental studies

(including our work) [47, 69]. To overcome this inherent limitation of the SDT theory, EAMs

were proposed to model a variety of decision tasks. EAMs conceive decision making as a pro-

cess of noisy accumulation of evidence in favor of the different available options. A decision is

made when evidence in favor of one option becomes sufficiently strong (for a review see [70]).

The main advantage of EAM over SDT is that it is capable of explaining the association

between choice and RT across many domains including perceptual decisions [65, 67, 71, 72],

value-based decisions [55, 73, 74], recognition memory tasks [64, 75] and go/no-go tasks [76,

77]. To account for uncertainty in two-choice decisions, evidence is accumulated by two inde-

pendent counters [78]. The counter that first reaches the amount of evidence required to make

a decision determines choice and decision time (i.e., reaction). The level of choice uncertainty

is determined by the balance-of-evidence—i.e., the difference in the accumulated evidence

between the two counters (the smaller the difference, the higher the degree of uncertainty

about the selected option) [21, 22, 24, 40]. Although EAMs have been successfully used to

model a variety of cognitive and perceptual decision tasks, they do not include a mechanism

for generating motor behavior (e.g., reaches, saccades), with few exceptions, such as a recent

study that augmented the drift diffusion model with an action system [15]. However, this

embodied model is limited in that it involves only one accumulator, and uses a simplified

action model to generate trajectories with constant velocities. Because of that, it cannot make

predictions on how choice uncertainty emerges and how it is associated with behavioral mea-

surements, such as reaction time and approach direction. Additionally, another study com-

bined a single motor plan framework with an evidence accumulator to explain intermediate

movements in reaching tasks with switching goals prior to movement initiation [13]. The

model suggests that intermediate movements reflect a single, deliberate movement plan cho-

sen to maximize task performance based on constraints and motor cost. Despite the fact that

the model can predict many key aspects of spatial averaging behavior in tasks with competing

goals, it cannot predict the association between reaction time and approach direction that we

reported in our study, since it uses only one evidence accumulator to model the uncertainty

about the target location. Overall, while EAMs are sufficient for primarily decisions, in which

individuals first make a choice and then generate an action to implement the choice, modifica-

tions are required for decisions while acting.

Building on evidence accumulation models, we designed and introduced a neurodynamical

framework that includes circuitry for generating reaching movements during the decision-

making process. It employs a mechanism to integrate information from disparate sources (i.e.,

spatial location of the target, target probability, effort-cost) dynamically and while acting.

However, it is quite different from the traditional EAMs. The competition is based on the rela-

tive desirability of the alternative actions, instead of the accumulated sensory evidence in favor

of one option over the others. Desirability is related to the action and provides a more general

measure to evaluate an alternative, since it includes information not only about the option

itself, but also the action required to achieve that goal. Analogous to the “balance-of-evidence”

(i.e., the absolute difference in the state of the two accumulators) in EAMs [24], the momen-

tary degree of choice uncertainty is determined by the “balance-of-desirability” at a given time
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and state—i.e., the difference between the relative desirability values of the alternative actions.

Therefore, the key difference between our model and the normative EAMs is that the locus of

uncertainty is over the “action-space” (i.e., relative desirability of the alternative actions) while

EAMs attribute uncertainty to the “evidence-space” in perceptual decisions (i.e., difference of

accumulated evidence for the chosen option and alternatives) or to the “target-space” in the

value-based decisions (i.e., difference between the expected reward between the alternative tar-

gets). Additionally, our theory does not assign populations of neurons to the potential targets.

Instead, the alternative actions emerge within a distributed neuronal population by integrating

information from multiple sources. Consequently, it can easily handle not only binary deci-

sions, but also decisions between multiple competing goals. Traditional EAMs have also been

extended to handle decisions with more than two choices in perceptual and value-based deci-

sions [55, 79, 80], although there is an ongoing debate about the right way to generalize these

models in multialternative decision tasks (different extensions of the sequential sampling mod-

els can lead to significant different behavioral and neurobiological properties) [55, 81, 82].

Finally, the most important difference between the EAMs and our theory is that we can make

predictions not only about the decision process, but also about the spatial and the temporal

characteristics of the reaching movements. By integrating the neurodynamical framework

with stochastic optimal control theory, we can simulate motor behavior (i.e., reaches) from the

movement initiation to the final goal location. Hence, we can make predictions on how uncer-

tainty about the current best action influences not only reaction time (i.e., action planning),

but also approach direction and velocity of reaches (i.e., action generation) at any given time

and state.

How target uncertainty affects the planning of reaching actions is explained by the action

competition mechanism implemented in the reach planning field. Therefore, the reach plan-

ning field, the spatial sensory input field and the expected outcome field would be sufficient to

explain most of the key findings in the current study. However, the stochastic optimal control

component is required to explain the characteristics of action execution, such as the signal-

dependent noise on the reaching movements, the curved trajectories, the velocity profile of the

reaching movements, the association between the initial approach direction and the velocity of

movements (see S1 Text) and others. At a glance, the reach cost field, which encodes the effort

cost required to implement the single policies, does not seem to have an important role in the

model, since both targets are equidistant from the origin. It requires about the same effort to

arrive in both targets before movement initiation. However, once departing from the origin,

the effort to move towards the two targets varies and depends not only on the current location

of the trajectory, but also on the current direction and the movement velocity. Therefore, the

reach cost field is also an important component in action execution for “penalizing” effortful

actions.

3.3 Multiple motor plans versus single motor plan strategy

The key point of our theory is that the brain plans multiple competing actions before deciding

which one to execute. Although a growing body of behavioral [6, 10, 16, 31, 36, 41, 83] and

neurophysiological studies [14, 84–89] provide evidence that the brain builds parallel actions

that compete for selection, other studies argue against this hypothesis showing that premotor

areas encode a single action plan [90] and decision and action are separate processes—i.e.,

planning and execution of action occur after a decision is made [11, 13, 91–96]. According to

this theory, the spatial averaging behavior observed in dual-target trials does not necessarily

reflect “motor averaging”. Instead, it could be equivalently interpreted as evidence of a single

action towards a weighted averaged target location (i.e., visual averaging encoding) [10, 14, 25]
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or a single optimal and deliberate movement plan to maximize task performance (i.e., perfor-

mance optimization encoding) [13]. Both of these single action theories are adequate to

explain part of the averaging behavior reported in tasks with multiple potential targets. How-

ever, they are not sufficient to explain the relationship between approach direction and RT—

i.e., RT increases with reaches aimed to an intermediate location regardless of the target proba-

bility. If decision and action were two separate cognitive processes, RT would be a function of

the time required to plan the single motor action and the time required to initiate that action.

In this case, there is no mechanism to explain the effect of approach direction to RT. This effect

can be modeled only within two competing modules that integrate sources of information in

favor of the alternative actions (see an analogous case for perceptual decisions in [23]).

Recent studies challenge the motor averaging hypothesis presenting evidence against the

parallel preparation of multiple competing actions. One of these studies argued that planning

and initiation of an action are mechanistically independent [97]. Using a reach-before-you-

know task, Haith and colleagues showed that reaction time does not reflect the time at which

the competition between the parallel planned actions is resolved—i.e., there is no causal rela-

tionship between planning and initiation of actions. Instead, reaction time is determined by an

independent initiation process. It is likely that action initiation occurs at a fixed delay after the

action planning. However, this study did not account for multiple potential targets that are

simultaneously presented prior to movement initiation. Instead, the individuals had to per-

form center-out reaches to one of eight peripheral targets arranged in a circle, and occasionally

to initiate a movement before knowing the actual position of the target. Therefore they did not

need to plan multiple actions that compete for selection. Another recent study showed that

dynamics associated with competing reach actions, such as grip force, are not averaged [98].

However, this finding does not provide evidence against the hypothesis that the brain gener-

ates in parallel actions that compete for selection, and then averages the directions of the indi-

vidual actions. In other words, we cannot reject the hypothesis that reach parameters, such as

direction of reaching movements, are averaged to generate a single initial movement, whereas

other parameters, such as grip forces, are not averaged. In fact, the affordance competition

hypothesis, which is the base of action competition, states that the brain plans in parallel par-
tially prepared actions (i.e., it does not determine all the reach parameters, but only aspects of

the actions, such as movement direction) that compete for selection.

Additionally, other psychophysical studies argued that the spatial averaging behavior

reflects an optimization based on task constraints and motor cost [11, 13]. When the benefits

of intermediate movements are mitigated by reducing the time available to make online cor-

rective movements or by increasing spatial separation between targets, the spatial averaging

behavior is abated and reaches more frequently aim to the target locations (for a review see

[30]). However, the action competition model presented in our study can explain the lack of

spatial averaging behavior in these two conditions. We have showed, in our original study, that

desirability is state- and time- dependent, and so the weighted mixture of individual motor

policies automatically produces a range of behavior, from winner-take-all (i.e., direct move-

ments to the target locations) to weighted averaging [17, 18]. We also showed that action com-

petition depends on the geometrical configuration of the targets, such as intermediate

movements are reduced with the target separation (see Fig 5 in [18]). When two targets are

placed in distance, the reaching policies associated with them differ significantly and therefore

the competition is often resolved immediately after movement onset, consistent with a neuro-

physiological study in non-human primates (NHPs) [8]. On the contrary, when two targets are

placed in close proximity, the individual reaching policies are similar to each other resulting

frequently in intermediate movements (see Fig 5 in [18]). In a similar manner, it is likely that

the competition is often resolved prior or immediately after movement onset, when
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individuals have limited the time to make online corrective movements. Therefore, although

spatial averaging is largely abated, when targets are not in close proximity or when time is not

allowed to correct movements, this motor behavior can be also explained within the motor

encoding strategy as an early resolve of the action competition (even prior to movement initia-

tion). Hence, we can argue that the spatial characteristics of reaching behavior cannot disam-

biguate whether reaches reflect a single motor plan strategy or a multiple motor plan strategy.

Our study explored both the spatial and temporal characteristics of reach behavior showing

that approach direction and reaction time are correlated independently of the target probabil-

ity. This finding cannot be explained without a competition mechanism providing further evi-

dence in favor of the motor encoding strategy.

However, although we believe that our results are best explained by a desirability-driven

action competition process, it may be possible that the association between RT and approach

direction reflects some kind of target competition process. For instance, the performance opti-

mization theory proposed by Haith et al. in [13] can be extended to model the target selection

process as a competition of two noisy internal accumulators (one for each target) which could

act on some combination of sensory signals and target expectancies—internal signals of which

target is more likely to appear. The two accumulators compete for selection until one of them

wins the competition. Then, a single action is initiated towards the average location of the two

targets weighted by the activity of the accumulators. The accumulators must take more time to

solve the competition when there is uncertain expectancy of the target, because intermediate

trajectories have longer RTs. However, in this model the certainty of expectancies should vary

with target probability, unless participants get confused about which block they are in, or expe-

rience some attentional lapse on some fraction of trials. Within this fraction of trials, the target

expectancies from irrelevant conditions might be accumulated, and this would produce longer

RTs when this leakage occurs. In other words, the effect could be generated by some atten-

tional noise in setting target expectancies.

3.4 Future directions for elucidating the mechanism of choice uncertainty

One of the key findings in our study is that choice uncertainty is represented in the action-

space through a desirability driven-competition between motor plans that are encoded in par-

allel. This finding is based on a neurodynamical theory that adopts the motor averaging

hypothesis and captures the motor behavior in reaching movements with goal location uncer-

tainty. According to this theory, the momentary degree of uncertainty is determined by the

balance-of-desirability—i.e., the difference between the relative desirability values of the com-

peting actions—and is encoded by the same brain areas the plan actions. Brain monitoring

studies can further elucidate the mechanisms of choice uncertainty in motor decisions that

evolve while acting, in a similar manner that monkey neurophysiological studies investigated

choice uncertainty in perceptual decisions. A seminal study provides evidence that neurons in

the lateral intraparietal (LIP) area of NHPs encode both the formation of the decision and the

uncertainty about the selected action [47]. Importantly, choice, reaction and uncertainty about

the selected option are emerged through a common mechanism of bounded evidence accumu-

lation in the LIP area [2]. Similar to this mechanism, our study suggests that the desirability-

drive competition between parallel prepare actions unifies choice, reaction time and uncer-

tainty about the selected action in motor decisions that evolve while acting. Future neurophysi-

ological and/or brain-imaging studies will provide better insights on where in the brain and

how choice uncertainty is encoded for rapid reaches with multiple competing actions.
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3.5 Conclusions

In conclusion, when people are uncertain about the best current action, they initiate interme-

diate movements with longer reaction times. This behavior can be explained within the motor

encoding strategy, suggesting that choice uncertainty emerges in the “action-space” through a

mechanism of desirability driven-competition between parallel prepared actions, and affects

both action planning and action generation.

4 Materials and methods

4.1 Ethics statement

The University of Southern California review board approved the study protocol and a written

informed consent was obtained based on the Declaration of Helsinki.

4.2 Experimental setup

Seven right-handed (20–30 years old, 4 men and 3 women) individuals with normal or cor-

rected-to-normal vision participated in this experiment study. A rough sketch of the experi-

mental setup used in this study is shown Fig 2. Participants were seated facing a Phantom

Premium 1.5 Haptic Robot (Sensable Technologies, MA) and a computer display, aligned so

that the midline of their body was in line with the center of screen and robot. The workspace

of the phantom haptic robot forms a hemisphere approximately 30 cm in radius. The partici-

pants selected a comfortable position and inserted the right index finger into the endpoint of

the tip of the robotic manipulandum. The distance dsubject from the head of the participants to

the finger starting position measured along the y axis was about 0.30 m. This distance was

slightly varied between participants, since we did not use a chin rest or any other restraining

device. Hence, there was some movement of the head relative to the screen, but was minimal

since the participants were instructed to remain stationary throughout the experiment. The

distance from the finger starting position to the screen display ddisplay was about 0.35 m and

was calibrated at the beginning of each session.

The participants were trained to perform rapid reaching movements using the robotic

manipulandum. The reaching movements were performed in the horizontal plane (i.e., by

restricting the motion of the manipulandum) and translated into movements of a small cursor

circle (1.5 cm diameter) in the vertical plane of the computer screen—i.e., reaches towards the

screen moved the cursor to the top of the screen, while left and right mapping was preserved.

This experimental set up allowed for high temporal and spatial resolution of the hand and fin-

ger position as well as a mean to create haptic feedback or altered movement dynamics for

future experiments. Control of the phantom robot and the experiment were implemented

using the OpenHaptics drivers provided by Sensable technologies, and the Simulation Labora-

tory (SL) and Real-Time Control Software Package [99] as well as other custom psychophysics

software. Control and recording of the phantom state were performed at 500 Hz.

4.3 Experimental paradigm

At the start of each trial participants were required to move the cursor to the starting position,

located at the origin of our coordinate system, Fig 3A. A fixation cross was then presented at

the center of the screen and the participants were instructed to fixate for a short period of time

(�t ¼ 1500 ms, σt = 300 ms). During the final 300 ms of fixation, either a single cue was pre-

sented on the upper-left or upper-right of the screen or two cues were presented simulta-

neously in both sides of space. Cues were presented as unfilled circles with 3 cm in radius on a

white background. After the fixation offset (go-signal) the participants had to initiate a rapid
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reaching movement. Once the cursor exceeded a certain trigger threshold (i.e., a virtual wall in

the x − z plane; red discontinuous line in Fig 3A), the single cue or one of the two cues was

filled-in black indicating the actual location of the goal. If the participants brought the cursor

to the cued target within 1.0 s the trial was considered successful. Trials in which the partici-

pants responded before the go-signal or arrived to the cued target after the allowed movement

time were aborted and were not used for further analysis. The distance between the origin and

the midpoint of the two targets was dreach = 0.20 m. The target separation distance—i.e., dis-

tance between the two target locations—was dseparation = 0.30 m. The trigger threshold distance

—i.e., distance of the virtual wall from the origin—was dthreshold = 0.05 m, Fig 3C.

Individuals were familiarized with the task by running a set of training trials that included

reaches to single and two targets. Once they felt ready and comfortable with the experimental

setup, the actual experiment started. Each participant performed 3 reaching sessions (one

training and two tests). The training session involved 40 trials, which were excluded from the

analysis, followed by two test sessions; an equiprobable with 80 trials and an unequiprobable

with 160 trials. The equiprobable session involved reaches to one (40% of the trials) and two

(60% of the trials) targets. In the single-target trials, the cue was shaded blue and was presented

equiprobably to the left or right visual field (top row in Fig 3A). In the two-target trials, the

cues were also shaded blue and had equal probability of filling-in after the movement onset

(bottom row in Fig 3A). The unequiprobable session was similar to the first one with the only

difference that one of the cues was always assigned with higher probability in the two-target

trials. The “likely” cue was shaded green and had 80% probability of being the correct target,

while the alternative cue was shaded red and had 20% probability. The set of target configura-

tions is illustrated in Fig 3B. Individuals were not informed what the coloration indicates and

learned the association during the experiment.

4.4 Behavioral data analysis

Cubic interpolating splines were used to smooth the reach trajectories and compute the veloc-

ity of the movements. The initial approach direction was measured from the direction of the

main axis of the covariance ellipse that describes the spatial variation of the cursor from the

movement initiation to the goal onset. Reaction time was defined as the time at which the

reach velocity exceeded 5% of the maximum velocity. Also, data were pooled across all partici-

pants to perform the analyses, unless otherwise specified.

4.5 Neurodynamical framework

In the current section, we briefly describe the architecture of the computational framework

used to model the reaching experiment. Readers can refer to [17, 18] for more details. The

framework combines dynamic neural field (DNF) theory with stochastic optimal control

(SOC) theory and includes circuitry for perception, expected outcome, selection bias, effort

cost and decision making. Each DNF simulates the dynamic evolution of firing rate activity of

a network of 181 neurons over a continuous space with local excitation and surround inhibi-

tion. The functional properties of each DNF are determined by the lateral inhibitions within

the field and the connections with other fields in the architecture. The projections between the

fields are topologically organized—i.e., each neuron i in a field drives the activation at the cor-

responding neuron i in the other field. The activity of a DNF evolves over time under the influ-

ence of external inputs, local excitation and lateral inhibition interactions as described by Eq

(8)

t _uðw; tÞ ¼ � uðw; tÞ þ hþ Sðw; tÞ þ
R
wðw � w0Þf ½uðw0; tÞ�dw0 ð8Þ
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where u(χ, t) is the local activity of the DNF at the position χ and time t, and _uðw; tÞ is the rate

of change of the activity over time scaled by a time constant τ. If there is no external input S(χ,

t), the field converges over time to the resting stateH from the current level of activation. The

interactions between the simulated neurons in the DNF are given via the kernel function w(χ
− χ0), which consists of both local excitatory and inhibitory components, Eq (9).

wðw � w0Þ ¼ cexce
�
ðw� w0 Þ2

2s2
exc � cinhe

�
ðw� w0Þ2

2s2
inh

ð9Þ

where cexc, cinh, σexc, σinh describe the amplitude and the width of the excitatory and the inhibi-

tory components, respectively.

We convolved the kernel function with a sigmoidal transformation of the field so that neu-

rons with activity above a threshold participate in the intrafield interactions, Eq (10).

f ðuðwÞÞ ¼
1

1þ e� bðuðw� ÞÞ
ð10Þ

The architectural organization of the framework is shown in Fig 6. The “spatial sensory

input” field encodes the angular representation of the competing goals in an egocentric refer-

ence framework. The expected outcome for reaching to a particular direction centered on the

hand position is encoded by the “expected outcome” field (see [17] for more details). In trials

with equiprobable targets, the neuronal activity of the populations selective for these targets is

about the same (blue Guassian distributions). However, in trials in which one of the targets is

more likely than the alternative, the activity of the neuronal population selective for the

“green” cue is higher than the activity of the populations which is tuned to the “red” cue. The

outputs of these two fields send excitatory projections (green arrows) to the “reach planning”

field in a topological manner. The “reach cost” field encodes the effort cost required to imple-

ment a sequence of actions towards a particular direction at any time and state. The output of

this field sends inhibitory projections (red arrow) to the reach planning field to penalize high-

effort actions. The activity of the reach planning field at a given state xt is sum of the outputs of

the fields encoding the location of the target νloc, the expected outcome νoutcome and the esti-

mated reach cost νcost, corrupted by additive noise ξ which follows a Normal distribution.

SactionðxtÞ ¼ ZlocnlocðxtÞ þ ZoutcomenoutcomeðxtÞ � ZcostncostðxtÞ þ x ð11Þ

where ηloc, ηoutcome and ηcost are scalar values that weigh the influence of the spatial sensory

input field, the expected outcome field and the reach cost field, respectively, to the activity of

action planning field. The values of the model parameters are given in S1 Table. While some

studies attempt to find values for these parameters that capture the trade-off that participants

make between cost and reward [100, 101], we set the parameter values empirically in order to

allow the model to successfully perform the reaching task. The normalized activity of the

action planning field describes the “relative desirability” of each policy πi (i = 0, � � �180)—i.e., it

reflects how “desirable” it is to move towards a particular direction ϕi with respect to the alter-

native options.

Each neuron in the reach planning field is linked with a stochastic optimal controller. Once

the activity of a neuron i exceeds a threshold γ, the controller i is triggered and generates an

optimal policy πi—i.e., sequence of actions towards the preferred direction of the neuron i—
which is given by minimizing the following cost function:

Jiðxt; piÞ ¼ ðxTi � SqiÞ
TQTiðxTi � SqiÞ þ

XTi � 1

t¼1

piðxtÞ
TRpiðxtÞ ð12Þ
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where the policy πi (xt) is a sequence of actions from t = 1 to t = Ti to move towards the direc-

tion ϕi; Ti is the time required to arrive at the position qi; qi is the goal-position at the end of

the movement and is given as qi = [r cos(ϕi), r sin(ϕi)], where r is the distance between the cur-

rent location of the hand and the location of the cue which is tuned by the neuron i. Addition-

ally, xTi is the state vector at the end of the movement, whereas the matrix S picks out the

actual position of the hand and the goal-position qi at the end of the movement from the state

vector. Finally, QTi and R define the precision- and the control- dependent cost, respectively.

For more details about the optimal control model used in the framework see [17, 18].

The first term of Eq (12) describes the current goal of the controller—i.e., move the hand at

a distance r from the current location, towards the preferred direction ϕi of the neuron i. The

second term describes the cost (i.e., effort) required for executing the policy πi (xt). Let’s now

assume thatM neurons are active at a given time t (i.e., the activity ofM neurons is above the

threshold γ). The framework computes and executes a weighted average of theM individual

policies πi to move the hand from the current state xt to a new one, Eq (13).

pminðxtÞ ¼
XMþi

i

niðxtÞpiðxtÞ ð13Þ

where νi(xt) is the normalized activity of the neuron i (i.e., the relative desirability value) at the

state xt. Because the desirability is time- and state- dependent, the weighted mixture of the

individual policies produces a range of behavior, from winner-take-all (i.e, direct reaching to a

target) to spatial averaging.

To handle contingencies, such as perturbations and incoming new information (e.g., changes

on the number of targets, target probabilities, expected rewards, etc) and effects of noise, the

framework implements a widely used technique in stochastic optimal control known as “reced-

ing horizon” [27, 28]. It has been utilized in motor neuroscience studies for modeling human

postures and joint movements [102], learning mechanisms in path tracking tasks [103], trajec-

tory planning in voluntary human arm movements [104], grasping objects with position uncer-

tainty [105] and others. According to the receding horizon control, the framework executes

only the initial portion from the sequence of actions for a short period of time k (k = 10 in our

study) and then recomputes the individual optimal policies πi(xt+k) from time t + k to t + k + Ti
and remixes them. This approach continues until the hand arrives to one of the targets.

Supporting information

S1 Fig. Averaging individual motor policies. A: Instantaneous velocities generated by the

two individual policies πi(xt) (gray trace) and πj(xt) (black trace) for reaching to the left and

the right target, respectively. Policies are computed for t = 100 time-steps, but velocity vectors

are illustrated every 10 time-steps for visualization purposes. By averaging the individual poli-

cies in an equiprobable trial, using their desirability values as weighted factor, we get a spatial

averaging policy πavg(xt) (blue trace) that generates a reaching movement towards an interme-

diate location between the targets. Note that for the simulated experiments presented in the

main manuscript, the derived averaging policy uses only the first k = 10 time-steps of the indi-

vidual policies. Then, new control policies are recomputed from the current state until the tra-

jectory arrives to one of the targets (receding horizon strategy). B: Velocity profile of the

trajectories generated by the individual policies (black and gray traces) and the weighted aver-

age policy (blue trace) for 100 time-steps. Note that movement velocity decreases when averag-

ing the two individual policies.

(TIF)
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S2 Fig. Reaching velocity profile in simulated tasks. A: Maximum velocity before the target

onset for different target probabilities in simulated experiments. B: Maximum velocity as a

function of the initial approach direction from the simulated equiprobable (blue) and unequi-

probale (green) trials. The motor-averaging hypothesis predicts that target uncertainty influ-

ences the movement velocity by slowing down the reaches. It also predicts a direct association

between the initial approach direction and movement velocity, such as reaches that are aimed

towards an intermediate location are slower than reaches that are launched directly to one of

the targets, regardless of the target probabilities. Error bars correspond to standard error (SE)

and solid lines show the polynomial regression fitting (quadratic in panel A and 4th order poly-

nomial in panel B).

(TIF)

S3 Fig. Reaching velocity profile in human tasks. Similar to S2 Fig, but for the human

reaching movements A: Maximum velocity before the target onset for different target prob-

abilities. B:Maximum velocity as a function of the initial approach direction in the equi-

probable (blue) and unequiprobale (green) trials. Error bars correspond to standard error

(SE) and solid lines show the polynomial regression fitting (quadratic in panel A and 4th

order polynomial in panel B). The human findings are in favor of the motor-averaging

hypothesis.

(TIF)

S4 Fig. Reaction time for different single target locations. Reaction time as a function of the

distance of each target from the midline computed in single-target trials across 3 participants.

Error bars correspond to standard error (SE). We found no significant association between

reaction time and target location (p-value > 0.197 of the regression coefficients for linear and

curvilinear regression analysis).

(TIF)

S1 Text. Action competition influences movement velocity. The motor averaging hypothesis

predicts the velocity profile of the reaching movements.

(PDF)

S1 Table. Model parameters. The parameters of the neurodynamical framework.

(PDF)
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