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Mesenchymal stem cells (MSCs) from bone marrow play a critical role in osteochondral repair. A bone marrow clot forms within
the cartilage defect either as a result of marrow stimulation or during the course of the spontaneous repair of osteochondral defects.
Mobilized pluripotent MSCs from the subchondral bone migrate into the defect filled with the clot, differentiate into chondrocytes
and osteoblasts, and form a repair tissue over time. The additional application of a bonemarrow aspirate (BMA) to the procedure of
marrow stimulation is thought to enhance cartilage repair as it may provide both an additional cell population capable of
chondrogenesis and a source of growth factors stimulating cartilage repair. Moreover, the BMA clot provides a three-
dimensional environment, possibly further supporting chondrogenesis and protecting the subchondral bone from structural
alterations. The purpose of this review is to bridge the gap in our understanding between the basic science knowledge on MSCs
and BMA and the clinical and technical aspects of marrow stimulation-based cartilage repair by examining available data on the
role and mechanisms of MSCs and BMA in osteochondral repair. Implications of findings from both translational and clinical
studies using BMA concentrate-enhanced marrow stimulation are discussed.

1. Introduction

Mesenchymal stem cells (MSCs) play a key role in articular
cartilage repair. MSCs have multilineage differentiation
potential, allowing them to differentiate, for example, into
chondrocytes and osteoblasts, the key cells from the two tis-
sues that constitute the osteochondral unit. They were first
isolated from the bone marrow, and the potency of MSCs is
currently being employed in the techniques of marrow
stimulation for symptomatic small chondral defects. If bone
marrow fills a cartilage defect either as a result of marrow
stimulation for chondral defects or the course of the sponta-
neous repair of osteochondral defects, a bone marrow clot
forms within the cartilage defect. Pluripotent MSCs from
the subchondral bone marrow are subsequently mobilized,

migrate into the defect filled with the clot, and differentiate
into chondrocytes and osteoblasts. Over time, they form a
fibrocartilaginous repair tissue in the defect and close the
connection with the subchondral bone.

Bone marrow stem cells have been successfully trans-
formed into several cell types among which chondrocytes,
osteoblasts, adipocytes, angioblasts [1], and neural cells
[2], to potentially be used to treat a variety of illnesses
[3–6]. In the orthopaedic field, additional application of
a bone marrow aspirate (BMA) to the procedure of mar-
row stimulation has been recently studied, since the bone
marrow itself is both a source of MSCs, providing a cell
population capable of chondrogenesis and of various
growth factors stimulating cartilage repair [7–10]. More-
over, the bone marrow clot provides a three-dimensional
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(3D) environment which supports the chondrogenesis of
MSCs. Finally, it is possible that it protects the subchon-
dral bone plate and the subarticular spongiosa from
structural alterations of its microarchitecture.

In contrast to the cost- and labor-intensive cultivation
and propagation of cells such as MSCs or articular chondro-
cytes, the clinical use of “minimally processed” autologous
BMA that can be prepared in the operation room as a
single-step procedure appears straightforward. Native and
concentrated BMA have been intensively studied in the con-
text of articular cartilage repair. Such enhanced techniques of
marrow stimulation have been shown to improve articular
cartilage repair in both animal models and patients.

The purpose of this review is to bridge the gap in our
understanding between the basic science knowledge about
MSCs and BMA on one side and the clinical and technical
aspects of marrow stimulation-based cartilage repair on the
other side by examining available data on the role and mech-
anisms of MSCs and BMA in osteochondral repair. A focus is
on the steps of mobilization of cells from the subchondral
bone and repair tissue formation, including adherence of
the bone marrow clot to the subchondral bone. The implica-
tions of findings from both translational and clinical studies
using BMA concentrate-enhanced marrow stimulation are
also discussed.

2. Marrow Stimulation-Based Cartilage Repair

Marrow stimulation techniques are the most important first-
line treatment options for small symptomatic articular carti-
lage defects [11]. Their principle is to establish a communica-
tion of the cartilage defect with the subchondral bone
marrow compartment (Figure 1). First, the cartilage defect
is surgically prepared in a meticulous fashion, including
removal of cartilage fragments and generation of stable and
vertically oriented margins of the peripheral cartilage. The
next step is the preparation of the bony defect base. Here,
the entire calcified cartilage layer has to be removed, thereby
exposing the superficial part of the subchondral bone plate
without damaging it.

Marrow stimulation is performed by one of three dif-
ferent techniques. Microfracture induces multiple holes of
the subchondral bone plate [12]. These focal perforations
are the result of forcing the sharp tip of a microfracture
awl into the subchondral bone plate. The impaction of
the conical or polyhedral awl tip induces multiple small
injuries of the adjacent bone. Subchondral drilling, pro-
posed already in 1957 [13], is often termed Pridie drilling
[14]. Here, the tip of a small diameter bone cutting device
such as a drill bit or a Kirschner wire (K-wire) is placed
on the base of the prepared cartilage defect and, at high
speed, the rotating instrument cuts through the subchon-
dral bone plate into the subarticular spongiosa. A defined
number of standardized cylindrical holes are the result of
subchondral drilling. Abrasion arthroplasty, in contrast,
refers to a generalized abrasion of the subchondral bone
plate of limited depth [15]. The small bony canals within
the subchondral bone plate are opened following an abra-
sion with a round burr by removing about 1.0–1.5 mm of

its thickness without completely eliminating the subchon-
dral bone plate. This exposes the vascularity of the
subchondral bone plate, providing the connecting link to
the subchondral bone marrow. Although it has been sug-
gested that larger holes may allow for an amplified access
of reparative elements from the subchondral bone [5],
recent data from translational models support the use of
small diameter devices, most likely due to a lesser struc-
tural disturbance of the microarchitecture of the subchon-
dral bone plate and subarticular spongiosa [16, 17].

After the communication of the cartilage defect with the
subchondral bone marrow compartment has been estab-
lished, bone marrow from the subchondral bone fills the
defect, a clot forms, and more pluripotent progenitor cells
from the subchondral compartment subsequently migrate
into the defect, differentiate into chondrocytes, and, over
time, form a fibrocartilaginous repair tissue. This repair tis-
sue also serves to stabilize the adjacent cartilage and prevent
early osteoarthritic degeneration.

3. Mesenchymal Stem Cells and Their Role in
Osteochondral Repair

3.1. Definitions. MSCs represent a small fraction (0.001–
0.01%) of nonhematopoietic, multipotent cells of the bone
marrow. They are also present in other tissues including the
synovium, periosteum, trabecular bone, adipose tissue, skele-
tal muscle, circulatory system, placenta, umbilical cord
blood, and Wharton’s jelly [18].

MSCs exhibit a potent ability for self-renewal, stemness,
and commitment toward cells of the mesodermal lineage
(cartilage, bone, fat, muscle, meniscus, and tendons/liga-
ments) [19, 20]. MSCs have been defined by the Mesenchy-
mal and Tissue Stem Cell Committee of the International
Society for Cellular Therapy via a minimal set of standard
criteria as being plastic-adherent in standard culture condi-
tions, expressing CD105, CD73, and CD90 at their surface
while lacking CD45, CD34, CD14 (or CD11b), CD79α (or
CD19), and HLA-DR, and being able to differentiate in chon-
drocytes, osteoblasts, and adipocytes in vitro [21].

MSCs have homing, reparative, and trophic properties,
migrating in damaged tissues upon recruitment from the cir-
culation from the perivascular niche via activation of adhe-
sion molecules (integrins, chemokine receptors) upon the
release of factors from injured cells (chemokines) [22]. Once
mobilized, MSCs produce a number of factors that can
impact the healing responses locally by reduction of cell
apoptosis, fibrosis, and inflammation and by activation of
cell proliferation, mobilization, differentiation, and angio-
genesis via paracrine and autocrine pathways [23]. Key
agents involved in these processes include the vascular
endothelial growth factor (VEGF), hepatocyte growth factor
(HGF), insulin-like growth factor I (IGF-I), basic fibroblast
growth factor (FGF-2), transforming growth factor beta
(TGF-β), granulocyte-macrophage colony-stimulating factor
(GMCSF), monocyte chemotactic protein-1 (MCP-1), mac-
rophage inflammatory proteins-1 (MIP-1α, MIP-1β), regu-
lated upon activation, normal T-cell expressed and secreted
(RANTES), growth-related genes (GROα, GROβ), stromal-
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derived factor 1 (SDF-1), interleukin 6 (IL-6), angiopoietin-1,
and stem cell factor (SCF). Such factors most likely coexist
especially when MSCs are provided in a site of tissue injury
like in a BMA. In such a setup, these agents may thus have
the potential to cointeract in order to exert their specific
activities via molecular interplays and subsequently to pro-
mote optimal MSC-associated therapeutic tissue healing in
particular in a highly concentrated environment [24].
MSCs also have immunosuppressive activities, balancing
or even inhibiting the activation of NK cells, dendritic
cells, macrophages, and T and B lymphocytes [25]. In this
regard, there is evidence that MSCs display advantageous
anti-inflammatory and antifibrotic activities together with
a potency for migration within a site of inflammation
[26, 27], allowing to favorize their safe implantation and
therapeutic effects in tissue lesions.

3.2. MSCs in Osteochondral Repair. Bone marrow MSCs
undergo both chondrogenic and osteogenic differentiation
processes [28, 29] that may promote the healing of the entire,
damaged osteochondral unit:

(1) Chondrogenic MSC differentiation and subsequent
cartilage formation are characterized by the expression of
cartilage-specific markers (sex-determining region Y SRY-
box transcription factors 5, 6, and 9; SOX5, SOX6, and
SOX9; aggrecan; biglycan; type II, type IX, and type XI

collagen; decorin; cartilage oligomeric matrix protein;
COMP; scleraxis).

(2) Osteogenic MSC differentiation and subsequent bone
formation are noted upon expression of bone-specific
markers (Runt-related transcription factor 2 (RUNX2); alka-
line phosphatase (ALP); type I collagen; bone sialoprotein
(BSP); osteopontin (OPN); osteocalcin (OCN); calcium-rich
mineralized matrix).

4. Mobilization of Cells from the Subchondral
Bone into Sites of Articular Cartilage Damage

Mobilization of cells from the subchondral bone into sites of
articular cartilage damage is possible once a communication
of the defect with the subchondral bone marrow has been
established. Liquid bone marrow fills the defect, and a clot
forms. Theoretically, a bone marrow clot completely filling
a full-thickness chondral defect of 2 cm in diameter in the
medial femoral condyle would have a volume of about
300μl (assuming a mean cartilage thickness at this topo-
graphical location of 2mm) [30].

The cascade of bone marrow clotting is initiated by
thrombocytes. They adhere to the exposed collagen of the
subchondral bone with the aid of von Willebrand factor
which creates a bridge between the platelets and the basis of
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Figure 1: Principle of bone marrow aspirate concentrate- (BMAC-) enhanced marrow stimulation. (a) Schematic view of a full-thickness
focal chondral defect. (b) Marrow stimulation can be performed with microfracture (b1), subchondral drilling (b2), or abrasion
arthroplasty (b3). The subchondral bone plate can be perforated with a microfracture awl (microfracture), a Kirschner wire or a drill bit
(subchondral drilling), or a motorized burr (abrasion arthroplasty) (c). After marrow stimulation, bone marrow containing mesenchymal
stem cells ascends from the marrow cavity of the underlying subchondral bone via the channels generated by the marrow stimulation
procedures. The defects are filled with a clot of autologous BMAC, containing mesenchymal stem cells and growth factors which possibly
favor new tissue formation. (d) Defects thus contain bone marrow both from the subchondral bone and the additional BMAC application,
and gradually a cartilaginous repair tissue forms within them. Red dashed lines (c1, d1, c2, and d2) show the outline of holes created by
microfracture and subchondral drilling. Red arrows (c1, c2, and c3) within the subchondral bone denote the migration direction of the
liquid bone marrow.
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the defect. Interestingly, platelets do not adhere to normal
(uninjured) articular cartilage, and cartilage does not induce
platelet aggregation in vivo, a discovery ascribed to the pro-
teoglycans which block lysine sites on the collagen molecule
[31]. If cartilage is treated with proteolytic enzymes such as
trypsin, the tissue is rendered active as a platelet aggregant
and adhesion and aggregation of platelets on the surface of
the lesions results [31]. This highlights the importance of
preparing the cartilage defect to be able to induce such
platelet-subchondral bone/cartilage interactions. The aggre-
gated platelets then degranulate, releasing several factors
among which ILs and growth factors such as platelet-
derived growth factor (PDGF), VEGF, and TGF-β which
further potentiate their activation. PDGF, TGF-β, and other
factors such as IGF-I also serve as chemoattractants. Next,
the complement, kinin, plasminogen, and clotting cascades are
activated. Fibrin is formed by polymerization through the
clotting cascade, generating a mesh of long strands of insolu-
ble protein that trap the cells, thus forming a clot in the car-
tilage defect that serves as a scaffold for adhesion. Little is
known on the specific mechanisms on how cells are recruited
to the site of the defect and how the cells move through the
subchondral space. In accordance with wound healing, neu-
trophils and monocytes concentrate at the site of injury and
direct the breakdown of the clot. The macrophages release
chemoattractant substances and growth factors that recruit
additional cells and stimulate collagen production. Over a
period of several weeks, more pluripotent progenitor cells
migrate through the openings of the subchondral bone into
the articular cartilage defect. In the defect, they proliferate
and undergo differentiation, together with matrix deposition
and osteochondral remodeling.

From the classical paper of Shapiro et al. in a rabbit
model [32], the time course of chondro- and osteogenesis
in an osteochondral defect is well known. Fibrinous arcades
are established in the first days across the defect, spanning
both edges of the adjacent uninjured cartilage. Undifferenti-
ated MSC ingrowth from the subchondral bone marrow
can be seen after 7 days. The MSCs proliferate and differen-
tiate into fibroblasts, articular chondroblasts, and osteoblasts.
The first evidence of synthesis of a cartilaginous extracellular
matrix, as defined by safranin-O staining, appears at about 10
days. The new repair tissue first contains flattened fibrocarti-
laginous cells and then round cells similar to chondrocytes.
The defect is completely repopulated after about 6 weeks,
with synthesis of repair cartilage and bone matrices in their
appropriate locations. At 24 weeks, both the tidemark and
the subchondral bone plate are re-established. The initially
formed cancellous woven bone is replaced by the lamellar
cancellous bone. Over time, the penetrations of the subchon-
dral bone plate are closed with newly deposited bone. The
cellular contribution to cartilage repair from the adjacent car-
tilage is very low [32].

During the repair of the osteochondral unit, osteogenesis
is supported by the mobilization of perivascular cells and
blood vessels within the subchondral bone compartment
[33]. Under physiologic conditions, numerous arterial termi-
nal branches and venous plexus are located in the subchon-
dral bone plate [34, 35] and the blood flow rate is up to 10

times higher than in the cancellous bone, ensuring nutri-
ent and water supply to the articular cartilage [35]. The
physiological avascularity of the articular cartilage [36] is
retained by the presence of antiangiogenic factors such as
thrombospondin-1 [37, 38], thrombospondin-2 [39],
troponin-I [40], tenascin [41], tissue inhibitors of metallo-
proteinases (TIMP) 1 and 2 [42], and chondromodulin-1
[37, 43–45]. While original hyaline articular cartilage is
rich in these proteins, fibrocartilaginous repair tissue has
been shown to lack such factors [37, 43], consequently
permitting blood vessel invasion and stimulation of both
endochondral and intramembranous bone formation [32].
Furthermore, in certain pathologies such as osteochondral
defects [46], osteoarthritis [42, 47–49], and inflammatory
joint diseases [50–53], chondrocytes have been demon-
strated to express various proangiogenic factors, including
VEGF [46, 54–56], connective tissue growth factor (CTGF)
[57], FGF-2 [42], tumor necrosis factor-α (TNF-α) [58],
and matrix metalloproteinases (MMP) 9 and 13 [59, 60].
Interestingly, blocking VEGF with its soluble antagonist
(sFlt1) [61] or the antibody bevacizumab [62] improved
the chondrogenic potential of stem cells [61] and articular
cartilage repair in vivo [62]. Thus, although vascularization
is beneficial for osteogenesis and subchondral bone recon-
stitution, it may critically disturb the repair of the overly-
ing articular cartilage.

5. Bone Marrow Aspirate and Its Concentrate

5.1. Bone Marrow Aspirate. Bone marrow produces the red
blood cells during hematopoiesis and is a major component
of the immune system by producing lymphocytes. It mainly
consists of hematopoietic tissue and fat cells. In the stroma
of the bone marrow, supporting cells such as fibroblasts,
macrophages, adipocytes, osteoblasts, osteoclasts, and endo-
thelial cells are present. Myelopoietic and erythropoietic cells
together with the lymphocytes are the major cell types. The
bone marrow also contains hematopoietic cells and MSCs
(also termed marrow stromal cells). Bone marrow aspiration
can be performed with local anesthetic under guidance of
ultrasound or fluoroscopic imaging to improve accuracy
and efficiency.

5.2. Bone Marrow Aspirate Concentrate. Unprocessed BMA
is been rarely used. As only about 0.001% of nucleated cells
from BMA are MSCs [63], attempts are made to increase
their number, usually by concentrating the autologous
BMA by density-gradient centrifugation. This concept of
concentrating BMA to produce BMA concentrate (BMAC)
allows increasing not only the numbers of MSCs but also
platelets containing growth factors and hematopoietic stem
cells (HSCs) per sample volume. MSCs present strong self-
renewal abilities with a differentiation capacity to form
chondrocytes, osteocytes, and adipocytes. The platelet com-
ponent of BMAC releases growth factors to initiate stem cell
migration to the injury site and provides adhesion sites for
the migrating stem cells [10]. Moreover, HSCs provide
support to the vasculature system by differentiating into
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blood cells and maintain cell-to-cell contact with MSCs,
stimulating osteogenesis.

6. Bone Marrow Aspirate-Enhanced Marrow
Stimulation

BMA-enhanced marrow stimulation is based on a prior
treatment of the subchondral bone plate in the defects with
marrow stimulation, although BMA has been also applied
in few cases to cartilage defects that were only debrided down
to the subchondral bone. Microfracture is the main marrow
stimulation technique performed, providing a more rough-
ened base of the defect caused by the several microfracture
holes and possible minute fractures. By definition, the con-
tinuous bleeding from the microfracture holes may always
contribute to the final composition of the bone marrow clot.
As the stability of the clot has been highlighted since a long
time, alternative methods seek to enhance the security of
the bone marrow clot. These include the application of biore-
sorbable membranes, thought to provide an additional 3D
environment for the cells undergoing chondrogenesis in the
cartilage defect.

7. Effects of Bone Marrow Aspirate-Enhanced
Marrow Stimulation on Articular Cartilage
Repair

7.1. Translational Evidence of BMAC-Enhanced Marrow
Stimulation. The effect of unconcentrated BMA to enhance
osteochondral repair has, to the best of our knowledge,
currently not been reported to date in either translational
or clinical settings. Only two preclinical studies applied mar-
row stimulation enhanced with BMAC (termed BMAC-
enhanced marrow stimulation) to analyze the repair of
chondral lesions (Table 1). Both studies were performed in
the knee joint of large animal models (goat [64] and horse
[65], respectively). Despite the availability of data regarding
BMAC-enhanced repair of osteochondral lesions by the use
of gene vectors [7, 66] or scaffolds [67–70], the particular
effect of BMAC-enhanced marrow stimulation for chondral
lesions has not yet been evaluated in other joints or experi-
mental animals. Such scaffolds may aid to provide a stable
environment for the clot and subsequent repair tissue
development. However, little is known about the mecha-
nisms of their interaction with the BMAC-enhanced marrow
stimulation process.

Fortier et al. treated 12 young adult horses with full-
thickness chondral defects (15mm in diameter, 3mm in
depth) in the trochlear ridge with microfracture alone (6
microfracture holes per defect) or BMAC-enhanced
microfracture [65]. BMA was harvested from two sternal
marrow spaces (35ml each) into syringes containing
preservative-free heparin (final concentration: 15U hepa-
rin/ml BMA). The marrow aspirate was processed with a
centrifuge to yield 6ml of BMAC. Arthroscopically,
BMAC and thrombin (10 : 1 volume ratio) were injected
into the microfracture-treated defects using a syringe.
The animals were confined to rest for two weeks, followed

by increasing weight bearing and a second-look arthros-
copy at 12 weeks. At sacrifice after 8 months, an MRI-
based radiological evaluation revealed a significantly
increased defect filling and improved integration with the
surrounding cartilage in the BMAC-enhanced microfrac-
ture group compared with microfracture alone. BMAC
treatment also yielded a significantly increased type II
collagen and glycosaminoglycan contents with improved
collagen fiber orientation of the repair tissue.

Saw et al. reported on the treatment of 15 young goats
with full-thickness chondral defects (4mm in diameter) in
the intercondylar area of the knee treated with either sub-
chondral drilling (9 drill holes per defect, 5mm in depth,
0.6mm in diameter), subchondral drilling with additional
intra-articular injection of sodium hyaluronate (HA) (HA
group), or subchondral drilling with intra-articular injection
of both HA and BMAC (HA-BMAC group) [64]. The injec-
tions were administered on a weekly basis for 3 weeks, start-
ing one week after surgery with defect creation and
subchondral drilling. The BMA was harvested from the iliac
crest and centrifuged to remove red blood cells and plasma
and yielded a mean final volume of 4.4ml BMAC. In the
HA-BMAC group, each defect was injected with 400μl
BMAC. Animals were mobilized without restrictions. At 6
months postoperatively, similar macroscopic findings were
reported between drilling alone and the HA group. However,
defects of the HA-BMAC group were almost completely
filled and exhibited a smooth surface well in level with the
adjacent normal cartilage. Histological evaluation revealed
that BMAC/HA-enhanced marrow stimulation induced a
significantly better histological grading of the articular carti-
lage repair with increased proteoglycan content and an
improved lateral integration.

7.2. Clinical Evidence of BMAC-Enhanced Marrow
Stimulation for Articular Cartilage Repair. Only four studies
have been performed to investigate the specific clinical
outcome of BMAC-enhanced marrow stimulation for chon-
dral lesions. These were conducted in either the knee [71,
72] or the ankle joint [73, 74] (Table 2). Microfracture was
the main marrow stimulation technique, applied in three
studies [71–73], subchondral drilling only once [74]. In all
the investigations, BMA was harvested from the iliac crest
and processed with various commercially available centrifuge
systems to generate BMAC.

De Girolamo et al. examined cellular characteristics and
pain or adverse events in 11 patients with chondral lesions
(Outerbridge types III or IV [75]) undergoing microfracture
in combination with implantation of a type I/III porcine col-
lagen matrix and application of BMAC [71]. Bone marrow
from the iliac crest was harvested and centrifuged to obtain
a concentrated phase containing mononuclear cells. Cellular
characteristics were compared with samples obtained from
the microfractured defect site. The authors reported that
more cells with an MSC phenotype (CD34−/CD45low/
CD271high) were found in the bone marrow from the iliac
crest (0.04%) than from the subchondral location of the
defect (0.02%). Clinically, no pain or adverse events were
seen. The clinical outcome was not compared to a negative
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control group. Gobbi et al. treated 50 patients with chondral
lesions of the knee (ICRS grade IV) with microfracture
(microfracture group; median lesion size of 4.5 cm2) or a hya-
luronan- (HA-) based scaffold plus BMAC (HA-BMAC
group; median lesion size of 6.5 cm2) [72]. BMA was
centrifuged to obtain a concentration of bone marrow cells
approximately 6 times the baseline value. The hemotoxin
batroxobin, also known as reptilase, was added to activate
BMAC (from the iliac crest) to produce an adhesive clot.
The clot was implanted into the cartilage defect that was pre-
pared in a similar manner as for the microfracture group. It
was covered with a HA-based scaffold and secured to the sur-
rounding cartilage by sutures and/or fibrin glue. Weight
bearing was restricted for the initial 4 weeks postoperatively.
After 2 years, the HA-BMAC group obtained a normal or
nearly normal International Knee Documentation Com-
mittee (IKDC) objective score in 100%, the microfracture
group only in 64%. HA-BMAC-treated patients main-
tained a significantly improved knee function at 5 years
according to Tegner and IKDC objective scores compared
with microfracture-treated patients.

Theconceptof applyingBMACto improve cartilage repair
has been also studied for defects of the talus [9]. Hannon et al.
compared microfracture alone with BMAC-enhanced micro-
fracture of talar defects in 34 patients [73]. Approximately
60ml of BMA was extracted from the iliac crest and centri-
fuged to generate 3ml of BMAC for each defect site. In the
BMAC-enhanced microfracture group, BMAC was injected
into the defect site under arthroscopic control after the sub-
chondral plate had been penetrated with multiple microfrac-
tures. The Foot and Ankle Outcome Score (FAOS) pain score
and the short form 12 (SF-12) general health questionnaire
physical component summary (SF-12 PCS) score improved
significantly from before to after surgery in both groups. Yet,
the Magnetic Resonance Observation of Cartilage Repair
Tissue (MOCART) score in the BMAC-enhanced microfrac-
ture group was significantly higher than that in microfracture
alone group, indicating a significantly better morphological
outcome compared with the microfracture alone group.
MRI also revealed that BMAC-enhanced microfracture
induced significantly less fissuring and fibrillation of the
articular cartilage surface than microfracture treatment with-
out adjunct. Lanham et al. evaluated 12 patients with full-
thickness chondral defects of the talus (6-7mm in depth)
treated either with BMAC-enhanced subchondral drilling
covered by a collagen scaffold or with particulated juvenile
articular cartilage [74]. The collagen scaffold consisted of a
hydrated matrix of bovine collagen and glycosaminoglycans.
Approximately 60ml of BMA was harvested from the iliac
crest and centrifuged to obtain 6ml of BMAC. After a mean
follow-up of 2 years (range 12–42 months), the American
Orthopaedic Foot and Ankle Surgeons (AOFAS) score as
well as the Foot and Ankle Ability Measure (FAAM; activities
of daily living subscale) showed a statistically significant
improvement in favor of particulated juvenile articular
cartilage compared with BMAC-enhanced marrow stimu-
lation in these 12 patients. The SF-12 health status ques-
tionnaire [76] revealed no significant differences between
both treatment groups.

8. Effects of Bone Marrow Aspirate-Enhanced
Marrow Stimulation on Subchondral Bone
Repair

Marrow stimulation affects not only articular cartilage but
also subchondral bone repair. Relevant changes of the
subchondral bone that have been observed include, for exam-
ple, the upward migration of the subchondral bone plate, the
formation of intralesional osteophytes and of subchondral
bone cysts, and a generalized impairment of the osseous
microarchitecture below the treated defects [77]. Of note,
no study has been performed to date to the best of our knowl-
edge to assess the effect of BMAC-enhanced marrow stimula-
tion on the subchondral bone compartment compared with
marrow stimulation alone. Given the abovementioned speci-
fications and biological features of BMA and BMAC, such a
biological adjunct may possibly have a beneficial impact not
only on the articular cartilage but also on its supporting
osseous bed.

9. Conclusions and Future Directions

In summary, there is good evidence from translational stud-
ies that BMAC-enhanced microfracture results in a signifi-
cantly increased defect filling, better structural parameters
of the repair tissue, and improved integration compared with
microfracture alone. The study of Gobbi et al. shows after 2
years significant improvements in clinical scores of patients
with relatively large chondral defects (median lesion size:
6.5 cm2) treated with BMAC that was additionally covered
with a Hyaluronan scaffold compared to microfracture-
treated patients [72].

Interestingly, no study investigated the effect of
unconcentrated BMA for osteochondral repair in either
translational or clinical settings so far. Such a treatment
might constitute an interesting negative control and also shed
more light on the possible effect of concentration on repair.
Also, no standard technique or protocol for BMA harvesting
exists. The commercially available systems including centri-
fuges do not provide equivalent cell numbers and concentra-
tions. The ideal volume of required BMA or BMAC for the
treatment of a specific defect volume remains to be deter-
mined. Standardizations of all of these factors are needed,
as they may provide a more scientific way of evaluating
possible effects, especially as there is a large interindividual
variety in the number of produced and secreted growth fac-
tors by the many cells within the BMA. As marrow stimula-
tion affects the entire osteochondral unit, further research is
also mandatory to investigate possible effects of BMA on
the important aspect of subchondral bone changes following
cartilage repair procedures.

Although the structural [78] and functional [79] clinical
results of marrow stimulation are usually good, the fibrocar-
tilaginous repair tissue is inferior to the original hyaline car-
tilage. Possibly, application of novel insights to the problem
of fibrosis with its excess deposition of an inferior fibrous tis-
sue may show new avenues towards the goal of achieving true
hyaline articular cartilage regeneration. For skeletal muscle,
numerous approaches have been developed to inhibit the
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fibrotic cascade [80] that may also be studied in articular car-
tilage repair [81]. As discussed earlier, a combination of
simultaneously blocking angiogenesis and fibrosis could also
be investigated for its effects on cartilage repair [82].

Another future opportunity of enhancing the possible
therapeutic potential of BMA is to increase the rate of MSC
survival, leading to improved therapeutic functions. Little is
known on the viability of migrated MSCs at the site of the
cartilage defect, when exposed to biomechanical stresses
and the synovial fluid. Possibly, strategies to regulate apopto-
tic signaling and enhance cell adhesion, such as hypoxic pre-
conditioning [83] or application of growth or antiapoptotic
factors by in situ genetic modifications [84, 85], may improve
the in situ survival of the MSCs [86, 87].

Forthcoming translational and clinical studies will help to
address the effect of BMAC-enhanced marrow stimulation of
chondral defects more in detail.
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