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While ICB has resulted in durable clinical response in mul-
tiple tumor types1–7, only a subset of patients respond, 
and predictors of response are not fully characterized. 

Both tumor-intrinsic and tumor-extrinsic biomarkers of response 
and resistance to ICB in melanoma have been proposed, including 
tumor mutational burden (TMB) and neoantigen load8–11, immu-
nohistological detection of PD-L1 and CD812 and genetic altera-
tions affecting antigen presentation13,14, interferon (IFN)-γ signaling 
pathways15, alternative survival and proliferation pathways13,16,17 and 
aneuploidy18,19. Gene expression signatures expressed in tumors20 and 
the tumor immune microenvironment21 have also been implicated. 

However, these observations have often been made in preclinical 
models or in small clinical cohorts without validation in larger, inde-
pendent cohorts of patients with melanoma. Furthermore, whether 
these observations are exclusive to a specific ICB regimen (that is, 
anti-PD1, anti-CTLA4 or a combination of these) is incompletely 
characterized. Broadly, the expanding suite of pathways that has 
been invoked to mediate selective ICB response in melanoma indi-
cates that integrated systems biology models to predict response and 
survival are necessary, but these have yet to be well developed.

Clinically, the optimal role of anti-CTLA4 in conjunction3 or 
sequentially22 with anti-PD1 ICB is unclear. Understanding the 
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Fig. 1 | Cohort genomic and clinical characteristics and association of TMB with response. a, CoMut plot showing association between clinical and 
genomic characteristics. Each column represents a tumor. Tumors are ordered by best RECIST criteria response (CR, PR, PD, SD or MR), and within 
each response subgroup by decreasing nonsynonymous (Nonsyn) mutational load (top row). Nonsynonymous mutational burden is further subdivided 
into clonal (purple) and subclonal (light purple) mutational load. Mutational signatures (sig) refer to the inferred relative contribution of UV-induced 
mutations, alkylating DNA damage process and other mutational signatures (aging+). The primary type of melanoma (skin, occult, acral or mucosal) is 
indicated. Tumor purity is the inferred proportion of the tumor sample that is from cancer cells compared to other cell types (Methods). The dominant 
mutational signature (that is, the mutational signature associated with the highest proportion of mutations) is indicated. Mutations in BRAF, NRAS and 
NF1 are shown for each tumor. b, Mutational load (mut load) in progressors (n = 65 patients), responders (n = 55 patients) and patients with SD and MR 
(n = 24 patients). Nonsynonymous mutational load is higher in responders (CR and PR) than in progressors (two-sided MWW, P = 0.026), but is not 
significantly different between responders and patients having SD or MR as the best RECIST response (two-sided MWW, P = 0.14). c, Mutational load 
by melanoma type. Different melanoma types have different mutational loads (Kruskal–Wallis, P = 2.4 × 10−5): mutational load is higher in cutaneous and 
occult melanomas (n = 124 patients) than in acral and mucosal melanomas (n = 20 patients; median 297.5 versus 58; two-sided MWW, P = 1.1 × 10−6). 
d, Response to anti-PD1 ICB by melanoma type. Cutaneous and occult melanomas (n = 124 patients) have higher response rates (~40% CR and PR) 
versus acral and mucosal melanomas (n = 20 patients, 20%; two-sided Fisher’s exact test, P = 0.06). e, Mutational load in responders versus progressors 
stratified by melanoma type. There was no significant difference between responder and progressor mutational loads when melanomas were stratified by 
type (two-sided MWW; progressors versus responders (PD/R): skin (n = 42/43), P = 0.27; occult (n = 10/8), P = 0.35; acral (n = 7/2), P = 0.19; mucosal 
(n = 6/2), P = 0.40). Mutational load was also not a significant predictor of response in combined logistic regression after adjusting for melanoma type 
(P = 0.24). f, TMB in responders versus nonresponders, stratified by skin or occult melanomas versus mucosal or acral melanomas. Within each subgroup, 
responders trended toward having higher TMB than nonresponders (cutaneous/occult (n = 52 progressors and 51 responders): MWW, P = 0.14; mucosal/
acral (n = 13 progressors and 4 responders): MWW, P = 0.08). Notably, responders with mucosal or acral melanoma (n = 4) had a lower mutational  
load than progressors with cutaneous or occult melanoma (n = 52; MWW, P = 0.03). Boxplots: box limits indicate the IQR (25th to 75th percentiles),  
with a center line indicating the median. Whiskers show the value ranges up to 1.5 × IQR above the 75th or below the 25th percentiles, with outliers  
beyond those ranges shown as individual points. *P < 0.05, **P < 0.01, ***P < 0.001. NS, not significant.
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differential biology underlying the response to anti-PD1 ICB in 
tumors with and without previous anti-CTLA4 therapy may inform 
the rational design of combination therapies and optimize therapy 
selection for individual patients.

Thus, we performed an integrative study employing genomic, 
transcriptomic and clinical data from a comprehensively clinically 
annotated and sequenced cohort of 144 patients with advanced 
melanoma undergoing anti-PD1 ICB with and without previous 
anti-CTLA4 ICB to discover biomarkers of response and resistance, 
and develop clinically applicable parsimonious predictive models.

Results
Genomic and clinical cohort characteristics and melanoma sub-
types. We identified 206 patients diagnosed with advanced mela-
noma and treated with anti-PD1 ICB, and performed whole-exome 
sequencing (WES) on matched pretreatment tumor samples and 
normal tissue23, and whole-transcriptome sequencing (RNA-seq) on 
available pretreatment tumor tissue. After quality control (Methods), 
WES data from 144 patients and RNA-seq data from 121 patients 
were available for final evaluation (Extended Data Fig. 1). Best objec-
tive response (BOR) to anti-PD1 ICB using RECIST (v.1.1) criteria 
(Methods) included 45% with progressive disease (PD), 14% with 
stable disease (SD), 3% with mixed response (MR), 26% with partial 
response (PR) and 12% with complete response (CR; Fig. 1a), for an 
overall response rate of 38%. Overall, 73% were cutaneous melano-
mas, 13% were of occult origin, 7% were mucosal and 7% were acral 
in origin. A total of 44% (n = 64) of patients had previous treatment 
with ipilimumab, whereas 56% (n = 80) were naive to ipilimumab. 
The median follow-up for survival was 29.9 months. Other clinical 
characteristics are detailed in Table 1.

Overall the median nonsynonymous TMB was 6.5 mutations per 
Mb (250.5 mutations per exome), with an interquartile range (IQR) 
of 2.0–14.4 mutations per Mb (77.75–578.5 mutations per exome). 
Overall, 39% of tumors had BRAF mutations, 30% had NRAS muta-
tions and 17% had NF1 mutations (Fig. 1a). The median tumor 
purity (the proportion of sample DNA from tumor cells) was 0.67 
(IQR 0.46–0.83) and the median tumor heterogeneity (the propor-
tion of subclonal mutations) was 0.17 (IQR 0.12–0.25). The median 
purity-corrected tumor ploidy (Methods) was 2.15 (IQR 2.01–3.12), 
with 38% of tumors inferred to have genome doubling, consistent 
with previous reports24. The predominant mutational signature in 
most tumors was related to ultraviolet (UV) exposure25 (69% related 
to UV, 3% related to alkylating chemotherapy25 and 28% related to 
another predominant mutational signature, mostly associated with 
aging25; Fig. 1a). Individual tumor characteristics are detailed in 
Supplementary Table 1.

To discover differential features associated with response, we 
compared clinical responders (n = 55) to progressors (n = 65), 
excluding patients with SD (n = 20) and MR (n = 4) as the BOR. 
Overall survival (OS) and progression-free survival (PFS) were sig-
nificantly different between these groups (log-rank P < 0.00001 for 
both comparisons; Extended Data Fig. 2a,b).

TMB was higher in responders than in progressors (Mann–
Whitney–Wilcoxon (MWW), P = 0.026; Fig. 1b), but there was 
substantial overlap between responders and progressors. We 
hypothesized that the relationship between response and TMB 
might further be confounded by melanoma subtype. TMB was 
significantly different between different melanoma subtypes 
(Kruskal–Wallis, P = 2.4 × 10−5; Fig. 1c), with cutaneous and occult 
melanomas having similar and higher TMB than acral and muco-
sal melanomas26 (median of 297.5 versus 58, nonsynonymous 
mutations; MWW, P = 1.1 × 10−6), with a higher response rate  
(~40% versus ~20%; Fisher’s exact test, P = 0.06; Fig. 1d). When 
stratified by melanoma subtype, responders did not have signifi-
cantly higher TMB than nonresponders (Fig. 1e), and, in multivari-
ate logistic regression adjusting for melanoma subtype, TMB was 

not a significant predictor (P = 0.24). Strikingly, responders with 
mucosal or acral melanoma had a lower TMB than progressors with 
cutaneous or occult melanoma (MWW, P = 0.03; Fig. 1f), suggest-
ing that disease subtype confounds the association between TMB 
and response to anti-PD1 therapy.

Genomic and transcriptomic features associated with response. 
Higher tumor purity and heterogeneity were associated with pro-
gression (MWW, P = 0.04 and P = 0.02, respectively; Fig. 2a,c), 
whereas ploidy was lower in progressors (MWW, P = 0.04; Fig. 2b). 
The proportion of the tumor genome with copy number alterations 
(CNAs) trended toward being higher in patients with PD (MWW, 
P = 0.09; Extended Data Fig. 2c).

Table 1 | Cohort clinical characteristics

n (%)

Total cohort 144 (100)

Drug received

 Nivolumab 59 (41.0)

 Pembrolizumab 85 (59.0)

Sex

 Female 60 (41.7)

 Male 84 (58.3)

Stage

 Unresectable stage III 10 (6.9)

 M1a 8 (5.6)

 M1b 18 (12.5)

 M1c 108 (75.0)

Active brain metastases

 Yes 16 (11.1)

 No 128 (88.9)

Elevated LDH

 Yes 71 (49.3)

 No 70 (48.6)

 Unknown 3 (2.1)

ECOG performance status

 0 99 (68.8)

 1 37 (25.7)

 2 2 (1.4)

 3 1 (0.7)

 Unknown 5 (3.5)

Primary melanoma

 Cutaneous 105 (72.9)

 Occult 19 (13.2)

 Acral 10 (6.9)

 Mucosal 10 (6.9)

Received anti-PD1 ICB

 First line 71 (49.3)

 Second line or later 73 (50.7)

Previous ipilimumab

 Yes 60 (41.7)

 No 84 (58.3)

The number of patients with the given characteristic is shown, with the number in parentheses 
indicating the percentage of patients represented. ECOG, Eastern Cooperative Oncology Group.
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Given these observations, we performed an unbiased analysis 
for single-gene predictors of response to anti-PD1 ICB across all 
mutated genes detected in this cohort. After multiple-hypoth-
esis test correction, no genes were significantly associated with 
response or resistance to therapy (Extended Data Fig. 3a and 
Supplementary Table 2), highlighting the large sample sizes needed 
for adequate power to detect these associations27. We observed 
only rare mutations in major histocompatibility complex class I 
(MHC-I) antigen-presentation genes (TAP1, TAP2, B2M, HLA-A, 
HLA-B and HLA-C)14,28. Mutations in SERPINB3 or SERPINB429 
were not associated with response (Fisher’s exact test, P = 0.51 and 
P = 1.0, respectively). Loss of heterozygosity (LOH) in B2M14 was 
found in 9 of 55 (16%) responders and 16 of 65 (25%) progressors 
(odds ratio (OR) = 0.6) but was not significantly associated with 
resistance (Fisher’s exact test, P = 0.37). LOH in HLA-A, HLA-B or 
HLA-C28 was not associated with response or resistance to therapy 
(Fisher’s exact test, P = 0.52, P = 0.57 and P = 0.84, respectively). 
Confirming previous findings, LOH of JAK113,30,31 was associated 
with resistance (OR = 0.33; Fisher’s exact test, P = 0.02). Biallelic 
CDKN2A alteration27 was found in 15 of 55 (27%) responders 
and 25 of 65 (38%) progressors (OR = 0.6), but was not significant 
(Fisher’s exact test, P = 0.24).

We also performed an unbiased analysis of the association 
between focal gene amplifications and response to therapy. While 
no gene amplification was significant after multiple-hypothesis test 
correction (Extended Data Fig. 3b and Supplementary Table 3),  
amplification of TAP2, an integral part of the MHC-I antigen-load-
ing pathway, was found exclusively in responders to therapy (n = 6; 
Fisher’s exact test, P = 0.008; Fig. 2d). TAP2 is located at 6p21 in a 
region encoding both MHC-I and MHC-II human leukocyte anti-
gen (HLA) loci, and four out of six TAP2 amplifications were asso-
ciated with larger amplifications across the region, while two out of 
six amplifications were more focal (Extended Data Fig. 4). Notably, 
tumors with amplifications in this region encompassing the MHC-
I-related HLA-A, HLA-B and HLA-C genes (a region of approxi-
mately 1.5 Mb; n = 6) were also associated with response to therapy 
(Fisher’s exact test, P = 0.008; Fig. 2e), with four out of six also hav-
ing amplifications in TAP2. Altogether, eight patients had amplifi-
cation of either TAP2 or HLA-A, HLA-B or HLA-C amplification 
(Fig. 2f and Extended Data Fig. 4), and were exclusively responders 
(Fisher’s exact test, P = 0.001).

We then examined the expression of antigen-presentation mol-
ecules and their association with response. Interestingly, expression 
of all 13 MHC-II-associated HLA genes was higher in responders 
(collective two-sided binomial test, P = 0.0002; Fig. 2g), with four 
genes (HLA-DMA, HLA-DMB, HLA-DOB and HLA-DOB) indi-
vidually passing a statistical significance threshold (MWW, P < 0.05; 
Supplementary Table 4). MHC-I antigen-presentation genes all 
trended toward having higher expression in responders (collective 
two-sided binomial test, P = 0.02; Fig. 2g and Supplementary Table 4), 
but none passed the statistical significance threshold.

To examine pathways differentially enriched in responders ver-
sus progressors, we next performed unbiased gene set enrichment 
analysis (GSEA32; Methods) using the Hallmark gene sets33. A total 
of 24 pathways were enriched (false discovery rate (FDR), q < 0.1) 
in responders, and 5 of the top 6 enriched pathways were immune 
related, including IFN-γ response, genes involved in allograft rejec-
tion, complement, the inflammatory response and interleukin 
(IL)-6–JAK–STAT3 signaling (Supplementary Table 5). No pathways 
were significantly enriched in progressors.

We further evaluated various transcriptomic signatures18,19,21,34–40 
that had been proposed and demonstrated in various settings 
to be associated with response to immunotherapy (Methods), 
but we found no significant differences (P < 0.05) in these sig-
natures between responders and progressors within our cohort 
(Supplementary Table 6).

Immune infiltrate has been associated with response to 
immunotherapy across multiple cancer types and immune ther-
apies12,34. We inferred the absolute level of immune infiltrate 
within each sample using an immune deconvolution algorithm 
(CIBERSORT41 using the LM22 signature matrix). We found no 
significant difference in the total immune infiltrate or abundance 
of individual immune cell subsets in responders versus progressors 
(Supplementary Table 7). We also generated profiles of expression 
of immune cell subset signatures derived from single-cell analyses42 
and found that the expression of multiple signatures was signifi-
cantly higher (unadjusted MWW, P < 0.05) in responders versus 
progressors, including for signatures of overall immune infiltrate, 
T  cells, B cells, macrophages, CD8+ cytotoxic exhausted T  cells  
and CD4+ exhausted T  cells (Supplementary Table 7). Although 
the strength of association differed by deconvolution method, 
both approaches generally agreed on the direction of association, 

Fig. 2 | Genomic and transcriptomic features associated with response. All P values are unadjusted, unless otherwise indicated. a, Tumor heterogeneity, 
defined as the proportion of subclonal mutations in each tumor (Methods), in responders (CR or PR) versus progressors (PD). Progressors (n = 65 
patients) had greater heterogeneity than responders (n = 55 patients; two-sided MWW, P = 0.02). b, Tumor ploidy, defined as the overall genomic copy 
number (a normal diploid cell has a copy number of 2; Methods), in responders versus progressors. Responders (n = 55 patients) had higher tumor ploidy 
than progressors (n = 65 patients; two-sided MWW, P = 0.04). c, Tumor purity, defined as the proportion of DNA from tumor versus other cells in the 
sample (Methods), in responders versus progressors. Progressors (n = 65 patients) had higher tumor purity than responders (n = 55 patients; two-sided 
MWW, P = 0.04). d, Response versus progression in TAP2-amplified tumors versus other tumors. TAP2 amplification (n = 6 patients) was associated with 
response (two-sided Fisher’s exact test, P = 0.008). e, Response versus progression in tumors with amplified MHC-I HLA genes (HLA-A, HLA-B or HLA-C) 
versus other tumors. MHC-I HLA amplification (n = 6 patients) was associated with response (two-sided Fisher’s exact test, P = 0.008). f, Venn diagram 
showing the overlap of TAP2-amplified tumors and tumors with amplification of MHC-I HLA genes. Four tumors had amplifications on chromosome 6, 
including the MHC-I genes HLA-A, HLA-B, HLA-C and TAP2 and two tumors each had amplifications in one but not the other region, for a total of eight 
tumors with amplifications in either. g, Difference in the median expression and two-sided MWW P value of association between 938 immune-related 
genes56 and features in responders versus progressors. Expression levels of MHC-II HLA genes (red), MHC-I HLA genes and antigen-presentation 
machinery (APM)-related genes (orange) are shown. h, Hierarchical clustering of the correlation matrix between genomic, clinical and transcriptomic 
features associated with response. Color indicates the Pearson correlation between features, from perfect negative correlation (Pearson, r = −1, blue) to 
perfect positive correlation (Pearson, r = 1, red). An immune-related cluster of MHC-I- and MHC-II-related gene expression is observed, with subclusters 
of MHC-I and MHC-II genes. Mutational and neoantigen load are highly correlated and form a cluster independently from the immune cluster (for 
example, Pearson correlation, r = 0.15, P = 0.11 between ssGSEA of MHC-II HLA genes and nonsynonymous mutational load). Purity is negatively correlated 
with the immune cluster and is independent of ploidy and heterogeneity. The sample size for each correlation depended on the number of available data 
points: correlations involving exclusively genomic or clinical data had n = 144 tumor samples, whereas correlations involving transcriptomic features 
had n = 121 tumor samples with data available. Tx, treatment. Boxplots: box limits indicate the IQR (25th to 75th percentile), with a center line indicating 
the median. Whiskers show the value ranges up to 1.5 × IQR above the 75th or below the 25th percentile, with outliers beyond those ranges shown as 
individual points. *P < 0.05, **P < 0.01, ***P < 0.001; NS, not significant.
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providing evidence for a moderate association of immune infil-
trate with the response to anti-PD1 ICB.

Correlations between molecular features. To understand the rela-
tionship between predictors of response, we performed hierarchical 
clustering of the correlation coefficients between associated pre-
dictors (Fig. 2h). Clustered features are correlated and may reflect 
the same underlying biology, whereas separate clusters may reflect 
independent feature categories. A large immune-related cluster 
with MHC-II- and MHC-I-related subclusters was observed, with 
a separate independent cluster of mutation- and neoantigen-load-

related features, suggesting independent feature categories. Tumor 
purity was negatively correlated with the immune cluster, suggest-
ing that low tumor purity may be a proxy for higher immune infil-
trates within the tumor sample. Other features, including tumor 
heterogeneity and ploidy, were independent from these two clusters. 
Extending this analysis to previously hypothesized signatures and 
Hallmark gene set signatures (Extended Data Fig. 5), immune activ-
ity signatures, including signatures of cytolytic21 and cytotoxic19 
activity, IFN-γ and T effector cells18,35, immune chemokines38 and 
single-cell-derived immune cell signatures42, clustered together. A 
tumor-intrinsic resistance program signature42, signatures of T cell 
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dysfunction and exclusion37 and comparative immune-checkpoint 
gene expression34 were distinct from the immune cluster. Overall, 
these findings suggested that multiple previously hypothesized pre-
dictors of ICB response reflect the same underlying biological state 
and additional independent classes of predictors exist that may pro-
vide additional predictive power.

Previous exposure to anti-CTLA4 ICB. Our cohort contained 
patients with previous exposure to ipilimumab in anti-CTLA4 
ICB (n = 60) and patients who were naive to ipilimumab (n = 84;  
Fig. 3a). Despite the groups having similar response rates (Fig. 3b), 
we hypothesized that these two groups might have differential pre-
dictors of response and resistance to anti-PD1 ICB. We performed 
a focused analysis of patients who were treated with ipilimumab 
and biopsied after treatment (n = 44 with WES and n = 34 with 
RNA-seq) versus patients who were naive to ipilimumab (n = 84 
with WES and n = 71 with RNA-seq). A composite, rank-based 
score of MHC-II HLA expression (single-sample GSEA (ssGSEA)43; 
Methods) was higher in responders than in progressors in the over-
all cohort and the subgroup treated with ipilimumab, but was not 
significantly different in the subgroup that was naive to ipilimumab 
(Fig. 3c–e; MWW, P = 0.03, P = 0.03 and P = 0.31, respectively). 
We found very similar results in the largest available independent 
validation cohort44 with information on previous ipilimumab treat-
ment (Fig. 3f–h), although the difference was not significant in  
this smaller cohort (n = 32 patients, 15 of whom were treated with 
ipilimumab and 17 of whom were naive for ipilimumab).

We next examined the association of TMB, purity, ploidy and 
heterogeneity with response stratified by previous ipilimumab ther-
apy (Extended Data Fig. 6a). Unlike previous studies44,45, we found 
no specific association of a higher TMB with response in the ipilim-
umab-naive versus ipilimumab-treated subgroup (MWW, P = 0.15, 
both). However, higher heterogeneity and lower ploidy were  
associated with progressors only in the ipilimumab-naive subgroup 
(MWW, P = 0.06 and P = 0.004, respectively).

We analyzed the differential expression of specific immune-
related genes in responders versus progressors in ipilimumab-treated 
and ipilimumab-naive subgroups and found that higher expression 
of various immune-related pathways distinguished responders 

from progressors in ipilimumab-treated but not ipilimumab-naive 
subgroups (all P values are unadjusted). Examples included the 
leukocyte chemoattractants CXCL9 and CXCL10 and their recep-
tor CXCR3 (MWW, P = 0.05, P = 0.08 and P = 0.02, respectively, 
in the ipilimumab-treated subgroup), CD3D (MWW, P = 0.02),  
B cell markers CD19 (MWW, P = 0.04) and CD20 (MS4A1; MWW, 
P = 0.002) and macrophage marker CD163 (MWW, P = 0.03). 
Interestingly, CD4, FOXP3 and CTLA4 also followed this pattern 
of higher expression in responders in the ipilimumab-treated sub-
group (MWW, P = 0.06, P = 0.06 and P = 0.008, respectively), but 
CD8A and CD8B had less evidence of association with response in 
either ipilimumab-treated (MWW, P = 0.17 and P = 0.27, respec-
tively) or ipilimumab-naive (MWW, P = 0.93 and P = 0.49, respec-
tively) subgroups. Expression of TAP2 was higher (MWW, P = 0.02) 
in responders than in progressors in the ipilimumab-treated sub-
group but not in the ipilimumab-naive subgroup (MWW, P = 0.98). 
In contrast, TGFB2 expression was higher in progressors in the 
ipilimumab-naive subgroup (MWW, P = 0.002) but not in the ipi-
limumab-treated subgroup (MWW, P = 0.43). The complete set of 
gene expression comparisons in the overall, ipilimumab-treated and 
ipilimumab-naive cohorts is in Supplementary Table 4.

We then repeated GSEA to examine the pathways differentially 
enriched in responders versus progressors between ipilimumab-
treated and ipilimumab-naive subgroups. The most differentially 
enriched pathways were related to immune response: the IFN-γ 
and IFN-α responses were significantly enriched in responders in 
the ipilimumab-treated subgroup (FDR, q < 0.0001, both), but not 
in the ipilimumab-naive subgroup (FDR, q = 0.13 and q = 0.996, 
respectively; Fig. 3i). Using permutation testing (Methods),  
we found a nonsignificant empiric P value of 0.183 and 0.18, 
respectively, for this difference in enriched pathways in these  
subgroups in our discovery cohort. However, we repeated  
the analysis in an independent validation cohort46 and found 
similar results (Fig. 3j). Complete GSEA results are provided in 
Supplementary Table 5.

To further dissect the impact of MHC-II expression on patient 
response, we stratified the cohort into patients with high and low 
MHC-II expression (ssGSEA, median split). In the overall cohort, 
low MHC-II expression was associated with primary resistance 

Fig. 3 | Differential predictors of response and progression in ipilimumab-treated tumors versus ipilimumab-naive tumors. a, Timeline showing when 
sequenced biopsies were obtained from tumors that were treated with ipilimumab or naive to ipilimumab in the course of therapy. Subsequent analyses 
focused on comparing tumor biopsies obtained after ipilimumab treatment (n = 45 WES, n = 34 RNA-seq) to ipilimumab-naive tumor biopsies (n = 84 
WES, n = 74 RNA-seq). b, Best RECIST response by ipilimumab pretreatment status. There was no difference between the distribution of responses in 
naive (n = 84) and pretreated (n = 60) patients (two-sided chi-squared test, P = 0.44; degrees of freedom (d.f.) = 3). c, ssGSEA of MHC-II HLA genes 
(Methods) in responders (n = 47 patients) versus progressors (n = 56 patients) in the overall cohort. MHC-II scores were higher in responders than in 
progressors (two-sided MWW, P = 0.03). d, ssGSEA of MHC-II HLA genes in responders versus progressors in the post-ipilimumab-treatment subgroup. 
MHC-II scores were higher in responders (n = 11 patients) than in progressors (n = 16 patients; two-sided MWW, P = 0.03). e, ssGSEA of MHC-II HLA 
genes in responders (n = 31 patients) versus progressors (n = 34 patients) in the ipilimumab-naive subgroup. There was no significant difference in MHC-II 
scores between responders and progressors (two-sided MWW, P = 0.31). f, MHC-II HLA gene set scores (ssGSEA) in responders (n = 10 patients) versus 
progressors (n = 22 patients) in a validation cohort (Methods; two-sided MWW, P = 0.34). g, MHC-II HLA gene set scores (ssGSEA) in responders (n = 4 
patients) versus progressors (n = 11 patients) in the ipilimumab-treated subgroup of a validation cohort (two-sided MWW, P = 0.10). h, MHC-II HLA gene 
set scores (ssGSEA) in responders (n = 6 patients) versus progressors (n = 11 patients) in the ipilimumab-naive subgroup of a validation cohort (two-
sided MWW, P = 0.80). i, Selected Cancer Hallmark gene sets (GSEA) enriched in responders versus progressors in the overall (n = 47 responders and 56 
progressors), post-ipilimumab-treatment (n = 11 responders and 16 progressors), and ipilimumab-naive (n = 31 responders and 34 progressors) subgroups 
of our discovery cohort. IFN-γ and IFN-α response pathways were enriched in responders in the overall (FDR, q < 0.001 and q = 0.02, respectively) and 
ipilimumab-treated (q < 0.001, both) subgroups but not in the ipilimumab-naive subgroups (q = 0.13 and q = 0.997, respectively) in the discovery cohort 
(empiric, P = 0.183 and P = 0.18, respectively for the difference in q values between the subgroups; Methods). j, Selected Cancer Hallmark gene sets 
(GSEA) enriched in responders versus progressors in the overall, post-ipilimumab-treatment and ipilimumab-naive subgroups in an independent validation 
cohort. IFN-γ and IFN-α response pathways were enriched in responders in the overall (FDR, q < 0.0001 and q = 0.0034, respectively) and ipilimumab-
treated (q < 0.0001, both) subgroups but not in the ipilimumab-naive subgroup (q = 0.87 and q = 0.03 (enriched in progressors), respectively) in the 
discovery cohort. Pathways favoring enrichment in progressors (as opposed to responders) are visualized here with an FDR q value of 1. All Hallmark 
pathways and their GSEA enrichment scores are shown in Supplementary Table 5. Boxplots: box limits indicate the IQR (25th to 75th percentile), with a 
center line indicating the median. Whiskers show the value ranges up to 1.5 × IQR above the 75th or below the 25th percentile, with outliers beyond those 
ranges shown as individual points. *P < 0.05, **P < 0.01, ***P < 0.001. NS, not significant.
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(Fig. 4a; Fisher’s exact test, P = 0.01; OR = 2.9, 95% confidence 
interval (CI) 1.3–6.5), but this association was largely driven by the 
ipilimumab-treated subgroup (Fig. 4b; Fisher’s exact test, P = 0.02; 
OR = 9.9, 95% CI 1.5–63.7), with a nonsignificant association in the 

ipilimumab-naive subgroup (Fig. 4c; Fisher’s exact test, P = 0.32; 
OR = 1.9, 95% CI 0.7–5.1). A formal interaction test of previous 
ipilimumab treatment status with MHC-II expression for predict-
ing response was consistent with a subgroup-specific effect of low 
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MHC-II expression on the ipilimumab-experienced subgroup 
(OR = 0.20, 95% CI 0.02–1.64), although this was nonsignificant 
(P = 0.13) in this small cohort.

A similar analysis of estimated total immune infiltrate levels41  
(with tumors split by the median into high and low groups) 
showed that low immune infiltrate was significantly associated 
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P = 1.0; OR = 0.99, 95% CI 0.4–2.6). g, Schematic of the hypothesized effect of ipilimumab treatment on immune response as a predictor of subsequent 
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Fig. 5 | Integrative predictive modeling of intrinsic resistance to anti-PD1 ICB. a, CoMut plot showing the relationship between response and predictive 
features in the ipilimumab-treated subgroup. Each column represents a patient, and the top row indicates whether the patient had PD (intrinsic resistance) 
or non-PD (CR, PR, SD or MR) as the best response. Patients are sorted by MHC-II HLA score, which was the most predictive feature and was correlated 
with MHC-I and IFN response pathway scores. MHC-II HLA, LDH at treatment initiation and the presence of lymph node metastases (LN met) were 
features used for our logistic regression model, chosen using forward selection (Methods). b, A receiver–operator characteristic (ROC) curve for our 
predictive model for ipilimumab-treated tumors (n = 34 patients) using MHC-II HLA, LDH and lymph node metastases as features. The AUC was 0.9, and 
the log-likelihood ratio was P = 0.0003. The fivefold cross-validation mean AUC was 0.83. c, CoMut plot showing the relationship between response and 
predictive features in the ipilimumab-naive subgroup. Each column represents a patient, and the top row indicates whether the patient had PD (intrinsic 
resistance) or non-PD as the best response. Patients are sorted by tumor heterogeneity (top), tumor ploidy (middle) and tumor purity (bottom), which 
were the three features chosen in our predictive model (Methods). Purity, ploidy and heterogeneity were independent predictors in the multivariate model 
(Supplementary Table 9). d, The ROC curve for our predictive model for ipilimumab-naive tumors (n = 84 tumors) using heterogeneity, purity and ploidy 
as features. The AUC was 0.77, and the log-likelihood ratio was P = 0.0003. The average tenfold cross-validation mean AUC was 0.73. e, Survival (PFS 
and OS as indicated) stratified by high versus low predictive model score (split by the median) in ipilimumab-treated tumors in our discovery cohort. 
Tumors with high scores had worse PFS and OS (two-sided KM log-rank test, P = 0.0001 and P = 0.001, respectively). f, Survival (PFS and OS as indicated) 
stratified by high versus low predictive model score (split by the median) in ipilimumab-naive tumors in our discovery cohort. Tumors with high scores had 
worse PFS and OS (two-sided KM log-rank test, P = 0.003 and P = 6.3 × 10−5, respectively).
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with intrinsic resistance in the ipilimumab-treated subgroup  
(Fig. 4e; Fisher’s exact test, P = 0.02; OR = 12.9, 95% CI 1.3–125.8), 
but not in the ipilimumab-naive subgroup (Fig. 4f; Fisher’s 
exact test, P = 1.00; OR = 0.99, 95% CI 0.4–2.6) or overall cohort  
(Fig. 4d; Fisher’s exact test, P = 0.17; OR = 1.8, 95% CI 0.8–3.9), 
indicating a subgroup-specific association in the ipilimumab-
experienced subgroup of low immune infiltrate with resistance to 
therapy (OR = 0.08, 95% CI 0.007–0.97; P = 0.047).

Taken together, these findings suggest that evidence of immune 
response in the tumor microenvironment at the time of progression 
following anti-CTLA4 ICB is a necessary but not sufficient marker for 
response to anti-PD1 ICB therapy; patients without immune response 
to anti-CTLA4 ICB are very likely to also be intrinsically resistant to 
anti-PD1 ICB, highlighting a high-risk and poor-prognosis subgroup 
of patients (Fig. 4g).

Integrative predictive modeling of primary resistance. Patients 
with primary resistance to anti-PD1 ICB have poor survival 
(Extended Data Fig. 7), and the ability to predict these patients 
would enable individualized management regimens (for example 
combination ICB) to improve outcomes. Thus, we set out to develop 
parsimonious predictive models integrating clinical, genomic and 
transcriptomic features to predict PD (primary resistance) versus 
non-PD (CR, PR, SD and MR) and developed separate predictive 
models in ipilimumab-treated and ipilimumab-naive subgroups.

In the ipilimumab-treated group (n = 34 with WES and RNA-
seq), there were 16 patients who had PD and 18 who had non-
PD. Using a forward-selection approach to choose the features of 
a parsimonious predictive model (Methods), low MHC-II HLA 
expression was most strongly predictive of PD (Fig. 5a) and was 
correlated with MHC-I HLA, IFN-α and IFN-γ response pathway 
scores. In the final multivariate model, high MHC-II expression, 
low lactate dehydrogenase (LDH; below the median of 247 U l−1) 
and the presence of lymph node metastases were independent 
predictors of non-PD (P = 0.03, P = 0.02 and P = 0.04, respec-
tively, Supplementary Table 8 and Extended Data Fig. 8a,c), and 
the model had an area under the curve (AUC) of 0.90 in our dis-
covery cohort (fivefold cross-validation mean AUC = 0.83; empiric 
P < 0.001; Fig. 5b, Extended Data Fig. 8f and Methods). Notably, 
TMB did not significantly improve model fit (log-likelihood ratio, 
P = 0.10), was not an independently predictive feature (P = 0.18) 
and did not meet Bayesian information criteria (BIC; Extended 
Data Fig. 8c) when added to the model.

In the ipilimumab-naive group, there were 34 patients with PD 
and 41 with non-PD. In the multivariate predictive model, higher 
heterogeneity, lower ploidy and higher purity were independently 
predictive of PD (P = 0.025, P = 0.014 and P = 0.046, respectively; 
Fig. 5c, Supplementary Table 9 and Extended Data Fig. 8b,d), 
with an AUC of 0.77 (tenfold cross-validation mean AUC of 0.73; 
empiric P = 0.036; Fig. 5d, Extended Data Fig. 8e and Methods). 
TMB did not significantly improve the model fit (log-likelihood 
ratio test, P = 0.63), was not an independently predictive feature 
(P = 0.63) and did not meet BIC criteria (Extended Data Fig. 8d) 
when added to this multivariate model. Further, each model’s per-
formance was specific to its subgroup (P = 0.004 and P = 0.018 for 
the interaction between ipilimumab-experienced and ipilimumab-
naive model scores, respectively, and previous ipilimumab therapy). 
Each model had poor performance when applied to the opposing 
subgroup (AUC = 0.49 and AUC = 0.54, respectively; Extended 
Data Fig. 9a,b), suggesting that previous ipilimumab treatment  
status may stratify the appropriate predictors and predictive models 
to be applied in these subgroups.

We attempted to validate our models in independent cohorts 
but were limited by a lack of publicly available cohorts with all 
the molecular features and relevant clinical data on previous ipi-
limumab therapy and biopsy timing used in our integrated model. 

In a limited validation, we tested predictive models incorporating 
individual features where data were available in an independent 
validation cohort44 (Methods), and found concordant predictions 
of primary resistance with low MHC-II HLA expression in ipili-
mumab-treated tumors and higher heterogeneity in ipilimumab-
naive tumors (Extended Data Fig. 10), although neither of these 
predictors was significant in this small cohort (empiric P = 0.21 and 
P = 0.066, respectively; Methods).

In an exploratory analysis, we predicted PD in response to anti-
PD1 ICB in tumors where the tumor biopsy was taken before ipi-
limumab treatment (n = 15; Fig. 3a) using our ipilimumab-naive 
predictive model. Of the eight tumors with PD in response to anti-
PD1 ICB, five had the highest model scores (Extended Data Fig. 9c),  
with an overall AUC of 0.71. Interestingly, of the three poorly dis-
criminated tumors with low model scores but PD responses, one 
(patient 82) was from a brain metastasis and one (patient 80) was 
an acral melanoma.

Finally, splitting the cohort into subsets with high and low model 
scores (split by the median), we found large differences in OS and 
PFS in both the ipilimumab-treated subgroup (Fig. 5e; median 
PFS: 38.1 months versus 2.8 months, log-rank P = 0.0001; median 
OS: unreached versus 9.0 months, log-rank P = 0.001) and ipili-
mumab-naive subgroup (Fig. 5f; median PFS: 24.7 months versus 
3.1 months, log-rank P = 0.005; median OS: unreached versus 15.0 
months, log-rank P < 0.0001).

Discussion
In this study, we analyzed a uniformly clinically annotated cohort 
of patients with advanced melanoma treated with anti-PD1 ICB 
monotherapy for whom WES and RNA-seq data were available. 
While we observed an association between response and TMB, 
this observation was confounded by disease subtype, strongly sug-
gesting that TMB cannot be applied generically across melanoma  
subtypes as a predictive biomarker for anti-PD1 ICB.

Beyond TMB, we found that MHC-II expression, tumor hetero-
geneity, purity and ploidy were associated with ICB response. In two 
previous studies47,48, MHC-II expression on tumor cells by immuno-
histochemistry was found to be predictive for response to anti-PD1 
ICB and was hypothesized to represent a subset of tumors that could 
stimulate CD4+ helper T cell or cytotoxic activity. Consistent with 
this hypothesis, we found that MHC-II transcriptomic expression 
was correlated with expression of CD4 and the cytolytic molecules 
PRF1 and GZMA in our cohort. However, whether MHC-II expres-
sion represents expression on tumor cells or antigen-presenting 
cells within the tumor microenvironment cannot be determined 
from our bulk transcriptome data, and whether the association of 
PD1 ICB response with MHC-II expression is limited to tumor-cell-
specific MHC-II expression is unclear. Notably, CD8+ T cell mark-
ers were not higher in responders versus progressors in our cohort, 
and although MHC-II, MHC-I, IFN-γ and IFN-α response pathway 
expression was correlated, MHC-II expression was the best predic-
tor of response in our cohort. Further, we found evidence for the 
involvement of other immune compartments (for example, B cell 
markers enriched in ipilimumab-experienced responders) in ICB 
response, consistent with data from a recent trial demonstrating 
higher B cell infiltrate in responders to neoadjuvant immunother-
apy46, although the specific cell types, functional states and tumor 
immune interactions are not yet well characterized.

Tumor heterogeneity (the proportion of subclonal mutations) has 
previously been associated with poor prognosis across multiple tumor 
types and therapies49–51. High heterogeneity suggests a highly muta-
genic disease and a high degree of subclonality, with a higher likeli-
hood of preexisting or rapidly evolving resistant clones. Interestingly, 
in our cohort, four patients had a very high TMB with an alkylating 
chemotherapy mutational signature (and known previous alkylating  
chemotherapy); low tumor heterogeneity distinguished the two 
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responders from the two nonresponders (with SD and PD as the 
best response), who had high tumor heterogeneity with a majority 
of subclonal mutations. This association has also been observed in 
dacarbazine-experienced patients with melanoma treated with anti-
CTLA4 ICB49, suggesting that tumor heterogeneity may be signifi-
cantly correlated with ICB resistance.

In our cohort, higher ploidy and lower purity were associ-
ated with ICB response, but the biological basis of these relation-
ships is unclear. Genome doubling events are common in cancer 
and may accelerate genome evolution by increasing the tolerance 
of genome instability52, and higher aneuploidy has been associated 
with a worse response to ICB18,19. However, whether genome dou-
bling (and higher ploidy) is also associated with increased immu-
nogenicity is unclear. Purity is negatively correlated with expression 
of markers of immune response and may be a proxy for the level 
of immune response in the tumor microenvironment in this set-
ting rather than an artifact of tumor sample processing. However, 
tumor purity may also reflect differences in tumor biology leading 
to intrinsic resistance.

Notably, we found that previous exposure to anti-CTLA4 ICB 
affected the predictors of response to anti-PD1 ICB, although 
patients with and without exposure had similar response rates to 
anti-PD1 ICB. Immune-related markers are strongly enriched in 
responders compared to progressors with previous ipilimumab 
exposure, but this relationship is less clear in ipilimumab-naive 
patients. Specifically, post-ipilimumab tumors with poor immune 
response at progression were resistant to further anti-PD1 ICB, 
whereas ipilimumab-naive immune-poor and immune-infiltrated 
tumors were similarly likely to respond to anti-PD1 ICB. Whether 
anti-CTLA4 ICB induces or, alternatively, reveals an immune-resis-
tant state in a subset of melanomas is an important question that 
deserves further evaluation. Further, cross-resistance to sequential 
ICB may also predict resistance to simultaneous combination ICB; 
this hypothesis should be evaluated in an appropriate cohort.

Building on these findings, we constructed predictive models 
integrating clinical, genomic and transcriptomic characteristics to 
identify patients with melanoma with intrinsic resistance to anti-
PD1 ICB. Integrating multiple clinical and molecular features 
resulted in superior discrimination compared to models with any 
single feature or modality. In patients treated with ipilimumab, low 
MHC-II expression and high LDH predicted intrinsic resistance, 
whereas lymph node metastasis predicted improved response to 
therapy. MHC-II47,48 and LDH53 have previously been implicated in 
predicting anti-PD1 responsiveness. Lymph node metastases might 
provide a reservoir of tumor-specific immune cells, facilitating their 
activation by physiologic lymph node function; recent experimen-
tal data in a murine model suggests that lymph node metastases 
are necessary for PD1 response54, and recent clinical data showing 
greater tumor-resident T cell clone response to neoadjuvant com-
pared to adjuvant immunotherapy further supports this hypoth-
esis55. Similarly, integrating tumor heterogeneity, ploidy and purity 
for ipilimumab-naive disease resulted in a higher AUC than was 
obtained with any single-feature model alone. Beyond predicting 
response, these parsimonious models strongly stratified patients by 
PFS and OS, suggesting potential clinical applicability in identifying 
patients at high and low risk.

These findings will require validation in independent and larger 
cohorts; at the time of our study, limited data were publicly avail-
able where molecularly sequenced tumors with previous treatment 
data and all relevant clinical parameters were available for valida-
tion. Further, heterogeneity in sequencing approaches and data 
normalization between cohorts hindered our ability to develop 
standardized features to create and validate models. However, our 
results highlight the value of integrating rich clinical data with 
molecular tumor characterization and the need to generate such 
multimodal data.
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Methods
Patient cohort and clinical end points. Patients were identified in databases 
of participating sites. For enrollment, patients were required to have advanced 
melanoma and to have received PD1 blockade as a palliative treatment. Tissue 
obtained before PD1 blockade was required for enrollment and was collected 
during routine medical care. Clinicopathological and demographic data were 
collected from patient records locally and are shown in Table 1. Age, stage and 
ECOG performance status were documented before the first application of anti-
PD1 ICB. LDH was measured within 28 d of the first application of nivolumab or 
pembrolizumab. OS was defined as the time between the first application of anti-
PD1 ICB and the date of death (any cause). For subjects without documentation of 
death, OS was censored on the last date the patient was known to be alive. BOR to 
anti-PD1 ICB was assessed according to RECIST criteria v.1.1 by the participating 
sites. Patients achieving CR or PR as BOR were grouped as responders, whereas 
patients showing PD as the best response were referred to as progressors. Patients 
were classified as MR when achieving unequivocal responses in individual existing 
lesions but also progression in others or new lesions. PFS was defined as the time 
between the first application of anti-PD1 ICB and the date of documented disease 
progression. For patients without documentation of progression, PFS was censored 
on the last date the patient was known to be without progression.

This retrospective study and associated informed consent procedures were 
approved by the central Ethics Committee (EC) of the University Hospital Essen 
(12-5152-BO and 11-4715). Approval by the local EC was obtained by investigators 
if required by local regulations.

Samples. Samples were collected retrospectively and obtained by excision or biopsy 
of melanoma tissue, collected locally at the participating sites and provided formalin-
fixed and paraffin-embedded (FFPE). Samples were collected between January 2013 
and June 2016. The median time from biopsy to initiation of anti-PD1 blockade was 
2.1 months with 90% of samples being collected 6 months before the first application 
of nivolumab or pembrolizumab. All biopsies were from metastatic sites, with the 
exception of eight biopsies; seven were from a primary lesion and one was from a 
recurrence at a primary site, representing less than 6% of the overall cohort.

Whole-exome and whole-transcriptome sequencing. DNA extraction, whole 
exome library preparation and sequencing were performed for samples as 
previously described10,23. Slides were cut from FFPE blocks and macrodissected for 
tumor-enriched tissue. Paraffin was removed from FFPE sections and cores using 
CitriSolv (Fisher Scientific), followed by ethanol washes and tissue lysis overnight 
at 56 °C. Samples were then incubated at 90 °C to remove DNA cross links. 
Extraction of DNA, and, when possible, RNA was performed using the QIAGEN 
AllPrep DNA/RNA mini kit (51306). Germline DNA was obtained from peripheral 
blood mononuclear cells and adjacent normal tissue.

Whole-exome capture libraries were constructed from 100 ng of DNA from 
tumor and normal tissue after sample shearing, end repair and phosphorylation 
and ligation to barcoded sequencing adaptors. Ligated DNA was size selected 
for lengths of 200–350 bp and subjected to exonic hybrid capture using Illumina 
library preps. The sample was multiplexed and sequenced using Illumina HiSeq 
technology. The Illumina exome sequencing approach uses Illumina’s in-solution 
DNA-probe-based hybrid selection method that applies principles similar to those 
of Broad Institute–Agilent Technologies’ in-solution RNA-probe-based hybrid 
selection method57,58 to generate Illumina exome sequencing libraries.

Total RNA was assessed for quality using the Caliper LabChip GX2. The 
percentage of fragments with a size greater than 200 nucleotides (DV200) was 
calculated using software. An aliquot of 200 ng of RNA was used as the input for 
first-strand cDNA synthesis using Illumina’s TruSeq RNA Access Library Prep kit. 
Synthesis of the second strand of cDNA was followed by indexed adaptor ligation. 
Subsequent PCR amplification enriched for adaptor-ligated fragments. The 
amplified libraries were quantified using an automated PicoGreen assay.

A total of 200 ng of each cDNA library, not including controls, was combined 
into four-plex pools. Capture probes that target the exome were added and 
hybridized for the recommended time. Following hybridization, streptavidin 
magnetic beads were used to capture the library-bound probes from the previous 
step. Two wash steps effectively removed any nonspecifically bound products. 
These same hybridization, capture and wash steps were repeated to assure high 
specificity. A second round of amplification enriched the captured libraries. After 
enrichment the libraries were quantified with qPCR using the KAPA Library 
Quantification kit for Illumina sequencing platforms and were then pooled at an 
equimolar ratio. The entire process was in a 96-well format and all pipetting was 
performed using Agilent Bravo or Hamilton Starlet.

Pooled libraries were normalized to 2 nM and denatured using 0.2 N NaOH 
before sequencing. Flowcell cluster amplification and sequencing were performed 
according to the manufacturer’s protocols using either the HiSeq 2000 v.3 or HiSeq 
2500. Each run generated 76-bp paired-end reads with a dual eight-base index 
barcode. Data were analyzed using the Broad Picard Pipeline, which includes 
demultiplexing and data aggregation.

Quality control and variant calling. Initial exome sequence data processing and 
analysis were performed using pipelines at the Broad Institute. After alignment 

from the Broad Picard Pipeline, BAM files were uploaded into the Firehose 
infrastructure (https://software.broadinstitute.org/cancer/cga/Firehose), which 
managed intermediate analysis files executed by analysis pipelines. Sequencing data 
were incorporated into quality-control modules in Firehose to compare the tumor 
and normal genotypes and ensure concordance between samples. Quality-control 
cutoffs were as follows: mean target coverage >50× (tumor) and >20× (matched 
normal), cross-contamination of samples estimation (ContEst59) <5% and tumor 
purity ≥10% (Extended Data Fig. 1).

Power calculation quality control. To limit our analysis to samples where we had 
adequate power to call somatic variants, we performed a downstream per-sample 
power calculation. For each sample, we performed a Monte Carlo simulation of 
1,000 true clonal mutations using the following procedures:
•	 Sample the number of reads from the sample-specific coverage distribution
•	 Draw the number of tumor reads from a binomial distribution using the 

estimated tumor purity
•	 Draw the number of mutation reads from a binomial distribution given the 

assumption of a heterozygous mutation and no copy number variation
•	 Characterize the mutation as detected or not on the basis of a log odds thresh-

old of 6.3 (consistent with the MuTect60 implementation).
The estimated power to detect clonal mutations is the proportion of simulated 

mutations detected (for example, 800 detected out of 1,000 simulated clonal 
mutations is 80% power), which is a function of both sample-specific sequencing 
depth of coverage and tumor purity. Three tumors were excluded using this 
threshold (Extended Data Fig. 1).

Variant calling. The MuTect algorithm60 was applied to identify somatic single-
nucleotide variants in targeted exons, with computational filtering of artifacts 
introduced by DNA oxidation during sequencing61 or FFPE-based DNA extraction 
using a filter-based method. Strelka62 was applied to identify small insertions or 
deletions. Identified alterations were annotated using Oncotator63.

TMB and neoantigen load. For purposes of analysis, the TMB was calculated as the 
log of the number of nonsynonymous mutations detected from WES. Mutations 
per Mb was calculated by dividing the total number of nonsynonymous mutations 
by the number of bases with sufficient coverage in the tumor and normal samples 
(≥14× and ≥8×, respectively) to call mutations (https://software.broadinstitute.
org/cancer/cga/mutect). Neoantigen prediction was performed as previously 
described10. Briefly, HLA type was inferred using POLYSOLVER64, which uses a 
Bayesian classifier to determine the genotype of each patient. Neoantigens were 
predicted for each patient by defining all novel nine and ten amino-acid sequences 
resulting from mutations and determining whether the predicted binding affinity 
to the patient’s germline HLA alleles was <500 nM using NetMHCpan (v.2.4)65.

Copy number variants. The total number of copy number alterations for individual 
tumors was inferred using adaptations of a binary segmentation algorithm66 
(CapSeg) comparing fractional exon coverage for tumor segments to a panel of 
normal samples, generating exomic segments and segment copy number. Copy 
number data were inspected visually and manually for focal amplifications and 
deletions and genes were annotated with Oncotator63. For allelic copy number 
alterations, heterozygous single-nucleotide polymorphisms were identified and 
integrated into the binary segmentation algorithm (Allelic CapSeg) and allelic 
segments were further adjusted for tumor purity and ploidy using estimates 
derived from ABSOLUTE67. We then called allelic amplifications and deletions, 
following previously described methodology and criteria68 integrating segment 
focality and the purity- and ploidy-corrected allelic copy number.

Purity and ploidy. Purity and ploidy were estimated using the ABSOLUTE 
algorithm67, which integrates variant allele frequency distributions and copy 
number variants to estimate absolute tumor purity and ploidy and infer the 
cancer cell fraction, the proportion of cancer cells in the sample that contain each 
mutation. Allelic segments following purity and ploidy correction were used to 
estimate allelic copy number.

Heterogeneity and aneuploidy. Heterogeneity was estimated as the proportion of 
mutations in each sample that were inferred to be subclonal. Clonal mutations  
were defined as having a cancer cell fraction ≥0.8, while other mutations were 
defined as subclonal; we chose this definition as a simple conservative approach 
with high specificity.

To estimate aneuploidy, we used the proportion of the genome inferred to have 
an allelic amplification or deletion, using the allelic segmentation described above.

Mutational signatures. De novo mutational signatures were generated in this 
cohort using an adaptation of non-negative matrix factorization69 via the 
Brunet update method70, as previously described in detail51, with the R package 
SomaticSignatures71 and non-negative matrix factorization72. Cosine similarity 
was used to compare the discovered signatures to the 30 existing discovered and 
validated signatures in COSMIC25,73, with a threshold of 0.85, and we also manually 

NATURE MEDICINE | www.nature.com/naturemedicine

https://software.broadinstitute.org/cancer/cga/Firehose
https://software.broadinstitute.org/cancer/cga/mutect
https://software.broadinstitute.org/cancer/cga/mutect
http://www.nature.com/naturemedicine


ArticlesNature MediciNe

visualized and inspected similarities in mutational motifs between our signatures 
and COSMIC signatures.

Transcriptomic analysis. Whole-transcriptome sequencing data from FFPE 
tissues were aligned using STAR74 and quantified with RSEM75 to yield gene-
level expression in transcripts per million (TPM). For RNA-seq quality control, 
sequencing- and alignment-specific metrics were considered for each sample. 
The following alignment metrics (output by the STAR alignment method) were 
considered: percentage of uniquely mapped reads, average mapped read length, 
number of splices, mismatch rate per base, percentage of multimapped reads, 
percentage of reads mapped to too many locations, percentage of unmapped reads 
due to too many mismatches, percentage of unmapped reads due to reads being 
too short and percentage of unmapped reads due to other reasons. Additionally, we 
considered the raw number of reads, the average read length, the read duplication 
rate and DV200 for each sample. Samples were clustered across quality-control 
metrics using principal-component analysis, and outlier samples were manually 
evaluated and discarded. Three samples were removed owing to poor quality: 
patient 143 was excluded owing to an abnormally low absolute number of reads 
(number of reads <1 million); patient 107 was excluded owing to an abnormally 
high percentage of reads mapped to too many locations (>10% of reads), likely 
indicating high numbers of short or degraded reads; and patient 61 was excluded 
owing to multiple aberrant quality-control metrics resulting in overall poor quality 
when considering all metrics in aggregate as well as an aberrant expression profile 
compared to all other samples. Only transcriptomes from tumors whose WES also 
passed quality control were included; the final patient cohort for RNA-seq analysis 
included n = 121 transcriptomes.

We excluded certain classes of noncoding genes that constituted a large 
(>10%) proportion of TPM in the majority of samples. Specifically we excluded 
genes characterized as snoRNA, using biomaRt76 to download Ensembl biotype 
annotations (using the dataset ‘hsapiens_gene_ensembl’ and version ‘GRCh38.p10’)  
and excluding genes whose biotype was ‘snoRNA’ (n = 380 genes). We then  
regenerated a new TPM metric for each sample to normalize the total 
transcriptome sum to 1 million.

For analysis, only genes with TPM > 0 in 25% or more of the samples were 
included. This excluded 6,158 genes, with 20,848 genes passing this threshold.

GSEA and ssGSEA. GSEA32 was performed using the Cancer Hallmarks gene 
sets33 from MSigDB at https://cloud.genepattern.org/. We used default settings 
with 10,000 gene set permutations to generate P and q values, and we compared 
progressors and responders in the overall cohort, the ipilimumab-treated subgroup 
and the ipilimumab-naive subgroup separately.

To generate nonparametric gene set scores in individual samples, we generated 
ssGSEA projections43 for gene sets using rank normalization, including the 
MHC-II HLA genes (HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-DPA1, 
HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB2, HLA-DRA, HLA-
DRB1 and HLA-DRB5) and MHC-I HLA genes (HLA-A, HLA-B, HLA-C, HLA-E, 
HLA-F, TAP1, TAP2 and B2M). ssGSEA scores were also generated for Cancer 
Hallmarks gene sets.

Absolute immune infiltrate and immune subsets. Estimation of the total 
immune infiltrate in each sample and immune cell subsets was performed 
using CIBERSORT with the LM22 gene set41 on the CIBERSORT website 
(http://cibersort.stanford.edu). The absolute mode was enabled and quantile 
normalization was disabled using the RNA-seq TPM matrix for the cohort.

A separate immune infiltrate and immune cell subsets score analysis was 
performed using single-cell-derived signatures, and the methodology used  
for generating normalized signature scores was as described by Jerby-Arnon  
and colleagues42.

As there is no gold standard for inferring immune infiltrate from bulk RNA-seq 
data, we chose to use CIBERSORT-inferred values throughout the analysis  
to allow comparisons with other studies, as CIBERSORT has been widely used  
(for example, in a pan-TCGA immune landscape analysis77).

Gene expression signatures. Published gene expression signatures related to 
immune-checkpoint response were collected from the literature and validated in 
our cohort18,19,21,34–40. Sample-wise scores for these gene signatures were calculated 
from RNA-seq data using TPM values and following the methodology described 
in corresponding studies. Genes with unavailable expression data were excluded 
from calculations of gene signature scores. In two gene signatures39,40, genes 
were incorporated independently (that is, weighted) into the published model, 
but neither the direction nor the coefficient was available, so these signatures 
were excluded from evaluation. Differences in immune signature scores between 
responders (CR and PR) and progressors (PD) across all samples, in the 
ipilimumab-naive subset and in the ipilimumab-treated subset were tested using 
the Mann–Whitney U-test. The predictive utility of these immune signatures was 
evaluated with AUC values derived from ROC curves of gene signature scores in 
the complete cohort, ipilimumab-naive subset and the ipilimumab-treated subset. 
Results and detailed descriptions of evaluated gene signatures are provided in 
Supplementary Table 6.

Analysis. Two primary response comparisons were made: (1) responders (defined 
as having CR or PR as the best RECIST response) versus progressors (defined as 
having PD as the best RECIST response) and (2) progressors (defined as having 
non-PD as the best RECIST response) versus non-progressors.

Statistical tests were performed utilizing the Python scipy.stats package. To 
compare numeric features between response categories, including transcriptome 
expression, a nonparametric MWW rank-sum test (mannwhitneyu() function) was 
used to minimize the effects of outliers. For comparison of the proportion between 
response categories, a chi-squared test (chi2_contingency() function) was utilized. 
For association of binary variables (for example, association of gene alteration 
with responders versus progressors), a Fisher’s exact test (fisher_exact() function) 
was utilized to generate a P value. A conservative adjusted OR was generated by 
repeating the Fisher’s exact test, adding one to both the number of gene-mutant 
responders and progressors. All tests were two sided unless otherwise indicated.

Survival analyses were performed utilizing the Python lifelines package78. For 
Kaplan–Meier curve survival analysis, a log-rank test (logrank_test() function) was 
used to compare survival curves.

Hierarchical clustering was performed using the clustermap() function from 
the Python seaborn package79, with default settings including a Euclidean distance 
metric and the ‘single’ method of calculating cluster distance (minimization of the 
nearest point between clusters).

Validation. For validation, we reviewed the literature and found three studies18,20,44 
of advanced melanoma treated with anti-PD1 ICB with response, WES and 
RNA-seq data. However, one did not have information on previous ipilimumab 
treatment20, and another18 had only two patients who were naive to ipilimumab and 
nine who were treated with ipilimumab with post-ipilimumab tumor biopsies and 
available WES and NanoString data; thus, we used the remaining cohort44 as our 
primary validation cohort.

To allow appropriate validation, only cutaneous, occult, acral and  
mucosal samples were included from validation cohorts; specifically,  
uveal and ocular melanomas were excluded (Riaz cohort, n = 5 excluded).  
Only patients with evaluable response criteria were included (Riaz cohort,  
n = 2 excluded). WES, transcriptomic and heterogeneity data were obtained 
from https://github.com/riazn/bms038_analysis. Fragments per kilobase of 
transcript per million mapped reads values were converted to TPM to be 
consistent with our cohort normalization.

Predictive model generation and cross-validation. We used logistic regression 
for our model to predict PD as the best RECIST response versus non-PD rather 
than responder versus progressor to better reflect the real-world setting where 
all outcomes (PD, SD, MR, PR and CR) are possible. We evaluated genomic, 
transcriptomic and clinical features. Categorical features were converted to 
binary features for each categorical value. To be conservative, no gene-level 
mutations or expression values were individually considered. Global genomic 
tumor characteristics such as TMB, purity, ploidy, heterogeneity and aneuploidy 
were considered. Features were generated from the transcriptome, including 
ssGSEA values for gene sets representing Cancer Hallmarks pathways, and MHC-
II and MHC-I antigen-presentation genes, as well as gene expression signatures 
following the methodology in the respective publications, as described above and 
in Supplementary Table 6. Clinical characteristics including LDH and ECOG at the 
start of anti-PD1 ICB, the number of metastatic organs, sex, M stage, the number 
of different metastatic sites, metastatic sites and melanoma subtype were evaluated 
(Supplementary Table 1). Features were chosen in a forward-selection-based 
process, where features that were significantly predictive (P < 0.05) when added to 
the base model were ranked on the basis of the ability of the combined model to 
discriminate outcomes (using ROC curve AUC as the metric), and the best feature 
was chosen to be added to the base model. Potential features were evaluated on 
the basis of a manual review considering biological interpretability and clinical 
applicability. This process was iterated with the new base model and stopped when 
no features under consideration were significantly predictive.

The set of tumors with both WES and RNA-seq data was smaller than the set 
of tumors with only WES data; when the features chosen in model development 
for ipilimumab-naive tumors resulted in only WES features being chosen, model 
development was repeated in the superset of tumors requiring only clinical and 
WES data, and this model in the larger set is reported in the main text.

To estimate the ‘out-of-bag’ AUC, we used k-fold cross-validation (splitting 
the dataset into k-subsets, training on k − 1 subsets and calculating AUC on the 
holdout subset) and calculated the mean cross-validation AUC. Given the partially 
manual review of features, feature selection was not included in cross-validation. 
For the ipilimumab-treated subset (n = 34), we chose k = 5 folds, and for the larger 
ipilimumab-naive subset (n = 85), we chose k = 10 folds, to maintain a cross-
validation holdout set of >5 tumors. Cross-validation scores were calculated using 
the cross_val_score function from the Python sklearn package.

To further evaluate the statistical support for our models, we calculated the 
Akaike information criteria and BIC of each subsequent model after adding 
an additional feature in forward selection in the ipilimumab-experienced and 
ipilimumab-naive subgroups (Extended Data Fig. 8c,d), and we also evaluated the 
addition of TMB as an additional feature to the selected models.
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Permutation testing. To test the statistical significance of differences in FDR 
q values of enriched pathways between ipilimumab-naive versus ipilimumab-
experienced subgroups, we performed a permutation analysis. Briefly, we shuffled 
the ipilimumab-experienced and ipilimumab-naive labels for each tumor, keeping 
each subgroup size the same and keeping the same number of responders and 
progressors in each subgroup, and we reran GSEA on each new simulated 
subgroup. We repeated this 1,000 times to generate a distribution of enriched 
pathways in each subgroup under the null hypothesis of no relationship between 
subgroup and pathway enrichment. We then compared our observed outcome 
within this null distribution to generate an empiric P value. For example, for 
each pathway enriched in ipilimumab-experienced patients, the proportion of 
simulations with a difference in log q value between ipilimumab-experienced and 
ipilimumab-naive subgroups (equivalent to the ratio of q values) greater than or 
equal to our observed difference, and with an FDR q value in the ipilimumab-
experienced subgroup equal to or more extreme than our observed ipilimumab-
experienced q value would represent the empiric P value.

We performed a similar permutation test to generate an empiric P value for the 
predictive models for ipilimumab-experienced and ipilimumab-naive subgroups. 
Briefly, we permuted the outcome labels (progressors and non-progressors) within 
each subgroup, and generated an AUC and cross-validation AUC for the predictive 
model with the specified features (that is, MHC-II, LDH and lymph node 
metastasis for ipilimumab-experienced tumors; purity, ploidy and heterogeneity 
for ipilimumab-naive tumors) to generate a null distribution of AUCs and cross-
validation AUCs under the null hypothesis that these predictors are not associated 
with outcomes. By permuting the phenotype rather than the predictors,  
we preserved the inter-predictor structure. Then, the proportion of simulations 
with AUC and cross-validation AUC greater than our observed AUC represented 
an empiric P value.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All reasonable requests for raw and analyzed data and materials will be promptly 
reviewed by the senior authors to determine whether the request is subject to 
any intellectual property or confidentiality obligations. Patient-related data not 
included in the paper may be subject to patient confidentiality. Any data and 
materials that can be shared will be released via a material transfer agreement.  
All analyzed sequencing data are in supplementary tables or data available online. 
Raw sequencing data are available in dbGaP (accession number phs000452.v3.p1).

Code availability
Python code is available in packages as described in the manuscript. Code to 
regenerate figures using supplementary data and tables is available at GitHub at 
https://github.com/vanallenlab/schadendorf-pd1. Additional reasonable requests 
for code will be promptly reviewed by the senior authors to verify whether the 
request is subject to any intellectual property or confidentiality obligations, and 
shared to the extent permissible by these obligations.
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Extended Data Fig. 1 | Consort Diagram showing inclusion, exclusion, and quality control criteria for patients/tumors included in analysis.

NATURE MEDICINE | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


ArticlesNature MediciNe

Extended Data Fig. 2 | Survival and genomic copy number characteristics of responders (n = 55 patients) (defined as CR or PR as best response)  
vs. progressors (n = 65 patients) (defined as PD as best response). (a) PFS Kaplan Meier survival curves; two-sided log-rank p = 2.1e-28 (b) OS Kaplan 
Meier survival curves; two-sided log-rank p = 5.1e-18 (c) Proportion of tumor genome with copy number alterations (two-sided MWW p = 0.09). Boxplots: 
Box limits indicate the interquartile range (25th-75th percentile), with a center line indicating the median. Whiskers show the value ranges up to 1.5xIQR 
above the 75th or below the 25th percentile, with outliers beyond those ranges shown as individual points. PD = progressive disease. CR = complete 
response. PR = partial response.
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Extended Data Fig. 3 | Association of Genomic Alterations in Genes with Response vs. Progression. For each gene, the association of a genomic alteration 
with response was tested using a two-sided Fisher’s Exact test, and the odds ratio (OR) and p-value calculated. The adjusted OR is a conservative estimate 
generated by adding 1 to both mutant gene responders and progressors, thus moving the OR estimate closer to 1. The x- and y-axis are on log scales,  
but labeled in the original units. (a) Association of gene mutations with response (n = 55 patients) vs. progression (n = 65 patients). (b) Association of 
gene amplifications with response (n = 55 patients) vs. progression (n = 65 patients).
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Extended Data Fig. 4 | Amplification of Chromosome 6 Regions in TAP2, HLA-A/B/C amplified tumors. Patients with amplifications in TAP2 or HLA-A/B/C 
are shown, with inferred amplifications in the relevant section of Chromosome 6 shown. 6 patients had amplifications in TAP2, 6 patients had amplifications 
in HLA-A/B/C, and 4 patients had amplifications of a chromosomal region including all four genes.

NATURE MEDICINE | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


Articles Nature MediciNe

Extended Data Fig. 5 | Hierarchical clustering of the correlation matrix between transcriptional signatures previously associated with immunotherapy 
response and hallmark gene-sets, genomic, clinical, and transcriptomic features associated with response in our cohort. The color indicates the Pearson 
correlation between features, from perfect negative correlation (Pearson r = -1, blue) to perfect positive correlation (Pearson r = 1, red). Most previously 
hypothesized signatures cluster within an immune-activity related group with immune-related gene-sets. Sample size for each correlation depends on 
the number of available data points: correlations involving exclusively genomic or clinical data had n = 144 tumor samples, while correlations involving 
transcriptomic features had n = 121 tumor samples with data available.
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Extended Data Fig. 6 | Expression of Genomic Features in Responders vs. Progressors in ipilimumab-treated and -naive subsets.  
Two-sided Mann-Whitney-Wilcoxon tests were used to compare responders to progressors (ipilimumab-treated: n = 16 responders/20 progressors; 
ipilimumab-naïve: n = 34 responders/37 progressors). All p-values are unadjusted. Log Nonsyn Mutload: Ipi-treated p = 0.15; Ipi-naïve p = 0.15. Log Clonal 
Mutload: Ipi-treated p = 0.17; Ipi-naïve p = 0.08. Heterogeneity: Ipi-treated p = 0.51; Ipi-naïve p = 0.057. Ploidy: Ipi-treated p = 0.45; Ipi-naïve p = 0.002. 
Boxplots: Box limits indicate the interquartile range (25th-75th percentile), with a center line indicating the median. Whiskers show the value ranges up to 
1.5xIQR above the 75th or below the 25th percentile, with outliers beyond those ranges shown as individual points.
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Extended Data Fig. 7 | Survival of patients stratified by progressive disease (PD) or non-PD (SD, MR, PR, or CR) best response (RECIST 1.1) to PD-1 ICB. 
(a) PFS (two-sided logrank p = 4.0e-38 (b) OS (two-sided logrank p = 1.2e-19).
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Extended Data Fig. 8 | Model selection criteria with increasing number of features by forward selection; cross-validation AUC distribution of final 
models. (a) Model AUC for the ipi-treated subgroup. Each point is labeled with the additional feature, and the final model includes MHC-II, Lymph node 
metastasis, and LDH below the median as features. (b) Model AUC for the ipi-naive subgroup. Each point is labeled with the additional feature, and the 
final model includes ploidy, heterogeneity, and purity as features. (c) Model AIC/BIC for the ipi-experienced subgroup. (d) Model AIC/BIC for the ipi-naïve  
subgroup. (e) Using 10-fold crossvalidation in the ipilimumab-naïve subset, mean crossvalidation AUC is 0.73, with a SD of 0.25. Each fold split the cohort 
into a training (n = 74 patients) and test set (n = 10 patients) ((f) In the ipi-experienced subset, mean crossvalidation AUC is 0.85, with a SD of 0.18.  
Each fold split the cohort into a training (n = 27 patients) and test set (n = 7 patients).
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Extended Data Fig. 9 | Subgroup Model ROC curves applied to other subgroups. (a) Ipilimumab-treated subgroup model applied to ipilimumab-naive 
(n = 74 patients) subgroup; (b) Ipilimumab-naive model applied to ipilimumab-treated (n = 45 patients) subgroup; (c) Ipi-naïve model predicting PD as 
best response to PD-1 ICB applied to pre-ipilimumab-treated (n = 15 patients) tumors. (top) Comut plot overlaying best response and the ipi-naïve model 
score. Each column is one of 15 ipilimumab-treated tumors biopsied prior to ipilimumab therapy, ordered by the predictive model score. The 5 highest 
scoring tumors were all PD. (bottom) Receiver-operator curve for our ipilimumab-naive predictive model applied to pre-ipilimumab tumors (n = 15),  
with an AUC of 0.71.
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Extended Data Fig. 10 | Limited validation testing single feature models in validation cohort. (a) Relationship between response and MHC-II HLA score in 
the ipilimumab-treated subgroup of a validation cohort. Each column is a patient, and patients are sorted by MHC-II HLA score. (b) Validation of Predictive 
Model for ipilimumab-treated tumors. In a validation cohort (n = 23), a model using the only common available feature (MHC-II HLA score) had an AUC of 
0.65 (log likelihood ratio p = 0.09, empiric p = 0.21, Methods). (c) Relationship between response and MHC-II HLA score in the ipilimumab-treated subgroup 
of a validation cohort. Each column is a patient, and patients are sorted by MHC-II HLA score. (d) Validation of Predictive Model for ipilimumab-naive Tumors. 
In a validation cohort (n = 20), a model using the only common available feature (heterogeneity) had an AUC of 0.73 (log likelihood ratio p = 0.17, empiric 
p = 0.066, Methods).
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Blinding Our study is a retrospective cohort study without blinding.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Patients enrolled suffer from advanced melanoma and received a PD-1 blocking agent as palliative therapy. Briefly, 42% were 
female and 58% were male; 41% received nivolumab and 59% received pembrolizumab. 7% had unresectable Stage III disease 
and 93% had Stage IV disease. 11% had brain metastases. 95% had ECOG status 0 or 1.

Recruitment Participating sites identified patients in local databases fulfilling inclusion criteria (Advanced melanoma, treated with PD-1 
blockade, tumor tissue available); patient populations and participation at participating sites may vary which may affect the 
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representativeness of this cohort and generalizability of these results, but genomic characteristics and response rates are similar 
to other large published studies.

Ethics oversight The study was approved by the Ethics committee of the University Hospital Essen, Germany (12-5152-BO and 11-4715).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Due to the retrospective nature, no registration has been done.

Study protocol For this retrospective study, inclusion criteria were defined as stated in the manuscript and in this form. Briefly, patients were 
required to suffer from advanced melanoma and to have received PD1 blockade as palliative treatment, and have tissue 
obtained prior to PD1 blockade.

Data collection Samples were collected from participating sites between January 2013 and June 2016. Clinical and demographic data were 
obtained by participating sites from medical records. A CONSORT diagram is included in the manuscript.

Outcomes Overall survival (OS) was defined as the time between first application of PD-1 blockade and date of death (any cause). For 
subjects without documentation of death, OS was censored on the last date the subject was known to be alive. Best overall 
response (BOR) to PD-1 blockade was assessed according to RECIST 1.1 by the participating sites. Patients achieving complete 
(CR) or partial responses (PR) as BOR were grouped as "responder", patients achieving disease control (CR, PR or stable disease 
(SD)) were summarized as "nonPD" while patients showing progressive disease (PD) as best response are referred to as 
"progressors". Patients were classified as mixed responders (MR) when achieving unequivocal responses in individual existing 
lesions but also progression in others or new lesions. Progression-free survival (PFS) was defined as the time between first 
application of PD-1 blockade and date of documented disease progression. For subjects without documentation of progression, 
PFS was censored on the last date the subject was known to be without progression.
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