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Abstract: Peripheral nerve injury (PNI) occurs frequently, and the prognosis is unsatisfactory. As
the gold standard of treatment, autologous nerve grafting has several disadvantages, such as lack
of donors and complications. The use of functional biomaterials to simulate the natural microenvi-
ronment of the nervous system and the combination of different biomaterials are considered to be
encouraging alternative methods for effective tissue regeneration and functional restoration of injured
nerves. Considering the inherent presence of an electric field in the nervous system, electrically
conductive biomaterials have been used to promote nerve regeneration. Due to their singular physical
properties, hydrogels can provide a three-dimensional hydrated network that can be integrated into
diverse sizes and shapes and stimulate the natural functions of nerve tissue. Therefore, conductive
hydrogels have become the most effective biological material to simulate human nervous tissue’s
biological and electrical characteristics. The principal merits of conductive hydrogels include their
physical properties and their electrical peculiarities sufficient to effectively transmit electrical sig-
nals to cells. This review summarizes the recent applications of conductive hydrogels to enhance
peripheral nerve regeneration.

Keywords: conductive hydrogel; tissue engineering; peripheral nerve regeneration; cell proliferation

1. Introduction

Peripheral nerve injury (PNI) is mainly caused by trauma and surgery [1,2]. Although
the peripheral nervous system (PNS) has the intrinsic capacity for spontaneous regenera-
tion and axon regrowth to a certain extent, its regenerative capacity is limited [3,4]. The
mechanism of nerve regeneration is complex, the speed of nerve growth is relatively slow,
and the target muscle loses innervation and then atrophies [5,6]. Persistent sensory and mo-
tor defects are common in the affected nerve control areas, which may develop neuropathic
pain and cause lifelong disability due to limb paralysis [7]. This causes a decline in the
quality of life and psychological obstacles to patients and brings a significant economic and
social burden. Therefore, it is necessary to use a variety of positive approaches to enhance
peripheral nerve regeneration and reestablish synaptic connections with target organs as
soon as possible to avoid dysfunction caused by denervation.

After PNI, distal injured nerve fibers experience Wallerian degeneration [8–10]. Dener-
vated Schwann cells (SCs) proliferate, lengthen, and rearrange to direct and facilitate axonal
regeneration. Axons arise from living nerve stumps attached to neuronal bodies [11–13].
The myelin-associated genes of SCs are down-regulated, while the growth-associated genes
of SCs and neurons are up-regulated [14–16]. Nevertheless, the change in gene expression is
momentary and gradually fails to support axonal regeneration in endoneurial tubes [17,18].
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Presently, end-to-end neurorrhaphy is the common treatment for peripheral nerve damage
smaller than 1 cm, while autologous nerve grafts are considered the clinical gold standard
for nerve defects larger than 1 cm [19]. However, there are still key issues limiting the
use of nerve grafts, such as the lack of donor nerve tissues, multiple operations, neuroma
formation, donor site morbidity, and possible immunological responses [20,21].

In view of the shortcomings of the current methods for the treatment of PNI, many
researchers have been devoting themselves to developing novel strategies as potential
therapeutic methods for peripheral nerve regeneration [19]. Neural tissue engineering
combines the principles and techniques of neurobiology, engineering, and material sci-
ence and imitates natural nerve tissue structure and physiological characteristics [22–24].
The fundamental purpose of designing and manufacturing nerve tissue substitutes that
simulate the three-dimensional microstructure and mechanical properties of the complex
extracellular matrix (ECM) microenvironment is to regenerate the functional properties
of damaged nerve tissue [25,26]. Therefore, multifunctional nerve tissue substitutes with
biological, chemical, and physical cues and simulating the cellular microenvironment play
an essential role in successfully controlling neuronal cell growth, proliferation, directional
migration, differentiation, and nerve tissue regeneration [27,28].

Studies have shown that neuronal cells can transmit electrical signals along axons,
and the electric field plays a positive role in cellular alignment, proliferation, migration,
differentiation, paracrine activity, and structural and functional recovery after PNI [29,30].
Therefore, the designed nerve tissue substitutes should have electrical conductivity to
simulate the characteristics of the ECM and then regulate the physiological activities of
cells and nerve regeneration by electric field stimulation [31,32].

In addition to electrical conductivity, nerve tissue substitutes should also have certain
characteristics, such as a three-dimensional porous structure, better mechanical properties,
and topographic/physical cues to provide a better simulation of the natural ECM [33,34].
Hydrogel is a very attractive biomaterial. Hydrogels have a three-dimensional crosslinking
network composed of hydrophilic organic polymers, which can absorb a large amount
of water, their morphology is soft and elastic, and irritation to biological tissue can be
minimized [35,36]. Hydrogels can maintain their inherent three-dimensional porous struc-
ture, making them suitable for cell processes in vivo applications, including adhesion,
proliferation, and migration, and favor the transportation and retention of nutrients and
growth factors [37,38]. In addition to the above advantages, hydrogels also have good
biocompatibility, biodegradability, and low immunogenicity [39,40]. Therefore, hydrogels
can provide a suitable microenvironment for peripheral nerve regeneration and make them
new biomaterials with wide application prospects in neural tissue engineering [41,42].

Over the past few decades, the growing demand for neural tissue engineering has
led to innovative synthetic strategies to produce safer and more efficient biomaterials for
PNI repair. In this context, conductive hydrogels (CHs) have attracted great attention from
researchers. CHs are composed of conductive materials and hydrogels, which not only
maintain their inherent conductivity but also have the excellent properties of hydrogels,
such as elevated water composition, porosity, softness, plasticity, mechanical behavior, and
large surface area, which promote the application of CHs in tissue engineering [43–45].
CHs have a suitable three-dimensional microstructure and mechanical properties and
can also replicate the biological and electrical properties of biological tissues that need to
conduct electricity and realize cell manipulation based on electrical signals to promote
the proliferation and differentiation of neurons. CHs are amongst the most effective
biomaterials to simulate human tissues’ biological and electrical behavior (Figure 1).

In this review, we summarized the applications of various types of CHs in peripheral
nerve regeneration, discussed the biological characteristics of CHs, and proposed challenges
and possible future development directions in the application of CH in nerve repair.
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Figure 1. Schematic of conductive hydrogels (CH) for peripheral nerve regeneration. CPs = conduc-
tive polymers; CBCM = carbon-based conductive materials; CH = conductive hydrogels. 
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PEDOT + chitin + CRGD RSC-96 Rat (10 mm sciatic nerve gap) [48] 
PANi + cellulose RSC-96 Rat (5 mm sciatic nerve gap) [49] 

PANi + PAM Toad Sciatic Nerve, NSC, N2a Rat (10 mm sciatic nerve gap) [50] 
PPy + alginate + chitosan BMMSC, RSC-96, PC-12 Rat (10 mm sciatic nerve gap) [51] 

PPy + GelMA + OCS Rat DRG, PC-12 Rat (diabetic skin wound) [52] 
PPy + TA Rat DRG, RSC-96, PC-12 Rat (diabetic sciatic nerve crush injury) [53] 

CNT + Matrigel Rat DRG - [54] 
CNT + SAP Rat DRG - [55] 

reduced (GO/GelMA) PC-12 Rat (10 mm sciatic nerve gap) [56] 
GO + PPy + alginate BMMSC Rat (skin nerves removed) [57] 

Graphene + GelMA + alginate RSC-96 Rat (10 mm sciatic nerve gap) [58] 
PEDOT = poly(3,4-ethylenedioxythiophene); CRGD = tetrapeptide Cys−Arg−Gly−Asp; PANi = 
polyaniline; PAM = polyacrylamide; NSC = neural stem cells; PPy = polypyrrole; GelMA = gelatin 
methacryloyl; OCS = oxidized chondroitin sulfate; DRG = dorsal root ganglion; TA = tannic acid; 

Figure 1. Schematic of conductive hydrogels (CH) for peripheral nerve regeneration. CPs = conductive
polymers; CBCM = carbon-based conductive materials; CH = conductive hydrogels.

2. Conductive Hydrogels Applied in Peripheral Nerve Injury

CHs have excellent biocompatibility and adjustable conductivity and are easy to
synthesize and modify [46]. By promoting signal transduction between cells, CHs can
enhance the proliferation and differentiation of nerve cells, which is beneficial to the repair
and regeneration of nerve tissue—in addition, mimicking intricate tissue architecture and
essential cellular microenvironments are critical parameters when fabricating CHs (Table 1).

Table 1. Representative examples of electroconductive hydrogels for peripheral nerve regeneration.
Abbreviations used in the table are found in the table footer.

Conductive Matrix In Vitro Studies In Vivo Studies Reference

PEDOT + agarose - Rat (10 mm peroneal nerve gap) [47]
PEDOT + chitin + CRGD RSC-96 Rat (10 mm sciatic nerve gap) [48]

PANi + cellulose RSC-96 Rat (5 mm sciatic nerve gap) [49]
PANi + PAM Toad Sciatic Nerve, NSC, N2a Rat (10 mm sciatic nerve gap) [50]

PPy + alginate + chitosan BMMSC, RSC-96, PC-12 Rat (10 mm sciatic nerve gap) [51]
PPy + GelMA + OCS Rat DRG, PC-12 Rat (diabetic skin wound) [52]

PPy + TA Rat DRG, RSC-96, PC-12 Rat (diabetic sciatic nerve crush injury) [53]
CNT + Matrigel Rat DRG - [54]

CNT + SAP Rat DRG - [55]
reduced (GO/GelMA) PC-12 Rat (10 mm sciatic nerve gap) [56]
GO + PPy + alginate BMMSC Rat (skin nerves removed) [57]

Graphene + GelMA + alginate RSC-96 Rat (10 mm sciatic nerve gap) [58]

PEDOT = poly(3,4-ethylenedioxythiophene); CRGD = tetrapeptide Cys−Arg−Gly−Asp; PANi = polyaniline;
PAM = polyacrylamide; NSC = neural stem cells; PPy = polypyrrole; GelMA = gelatin methacryloyl;
OCS = oxidized chondroitin sulfate; DRG = dorsal root ganglion; TA = tannic acid; CNT = carbon nanotube;
SAP = self-assembling peptide; GO = graphene oxide; BMMSC = bone marrow mesenchymal stem cell.

2.1. Conductive Polymers (CPs)-Incorporated CH

A new generation of conductive polymers (CPs), such as polypyrrole (PPy), poly(3,4-ethy-
lenedioxythiophene) (PEDOT), and polyaniline (PANi) (Figure 2), have not only electrical
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conductivity similar to metal and inorganic semiconductors but also have good biocom-
patibility and are easy synthesize [46]. Studies have shown that CPs can enhance cell
activity, promote cell adhesion, differentiation, migration, and proliferation, and facilitate
cell secretion function at the material-tissue interface [59,60]. When CPs exist in animals
for a long time, they have no obvious adverse effect on animals or only produce weak
inflammatory reactions. Therefore, CPs are very suitable for electrical signal-sensitive tissue
repairs, such as skin, nerve, myocardium, skeletal muscle, and bone [46,61–63]. Based on
CPs, researchers further developed CHs, which are more compatible and adjustable to
nerve tissues and promote peripheral nerve regeneration.
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Figure 2. New generation of conductive polymers (CPs). (A) polyaniline (PANi); (B) poly(3,4-ethyle-
nedioxythiophene) (PEDOT); (C) polypyrrole (PPy).

2.1.1. PEDOT-Incorporated CH

Yamamoto et al. prepared thermostable and electric-conducting poly(2,5-thienylene)
(PTH) [64]. Although PTH has good electrical conductivity, its processability is poor,
limiting its application. Based on PTH, PEDOT with excellent electrical activity and
chemical stability was further prepared [64]. Studies have shown that PEDOT has good
biocompatibility with both cells and tissues [65].

Abidian et al. provided a novel hybrid conduit made up of electrically polymerized
PEDOT and agarose hydrogel. By electrodepositing two layers of PEDOT, the PEDOT-
modified agarose conduits were mechanically reinforced and further conductive. Then,
the conduits were implanted to repair 10 mm peroneal nerve gaps of rats. At 12 weeks
after the operation, the extensor digitorum longus (EDL) muscle mass, EDL maximal
specific muscle force and peroneal nerve histomorphometry were measured to evaluate
the effects of the nerve gap conduits. Their results indicated that PEDOT-modified agarose
conduits provided significantly higher EDL muscle mass, EDL maximal specific muscle
force, myelinated axon number, nerve fiber diameter, axon diameter, and myelin thickness
than plain agarose conduits [47].

Huang et al. used polysaccharide chitin to construct a hydrogel film to direct the
regeneration of injured sciatic nerves by integrating PEDOT nanoparticles (NPs) and the
cell adhesive peptide Cys-Arg-Gly-Asp (CRGD). In the process of chitin partial deacety-
lation, the electrostatic interaction between the negatively charged PEDOT NPs and the
chitin (amino groups) was enhanced, leading to the improved mechanical performance
of the chitin/PEDOT hydrogel (Figure 3). Because of the optimized properties, such as
the porous structure and biocompatibility, the hydrogel significantly enhanced RSC-96 cell
proliferation and adhesion. The expression of Schwann cell activity-related genes, including
S100, myelin basic protein (MBP), and NF-200, was also promoted. In the repair evaluation
of 10 mm rat sciatic nerve defects, the chitin/PEDOT hydrogel efficiently promoted nerve
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regeneration. Compared to the autograft group, the thickness of the regenerated myelin,
compound muscle action potential (CMAP), the average diameter of muscle fibers, and wet
weight ratios of gastrocnemius in the chitin/PEDOT hydrogel group exhibited similarity.
The evaluation of the regenerated nerve through immunohistochemistry, immunoblotting,
and immunofluorescence showed that angiogenesis and Schwann cell adhesion and prolif-
eration were promoted. The molecular mechanism of angiogenesis was further identified
using western blotting. The amounts of cell proliferation- and apoptosis-related AKT,
activity of monocyte- and macrophage-related VEGFR1, and mammalian cell metabolism-
related AMPKα in the chitin/PEDOT hydrogel group were significantly higher than those
in the chitin group [48].
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Figure 3. AFM images of the diluted partial deacetylation chitin solution, PEDOT nanoparticles,
and chitin blended with PEDOT nanoparticles solution ((A), 1–3) and the corresponding height
graphs ((B), 1–3). Schematic model of chitin/PEDOT solution (C), and ζ–potential of PEDOT NPs
and chitin (D). Illustration for the preparation of conductive chitin hydrogel used in peripheral nerve
regeneration (E): (i) preparation for partial deacetylation of chitin blended with PEDOT NP hydrogel
film (ChT–PEDOT); (ii) modification of the cell adhesive peptide CGRD onto the chitin hydrogel
film surface (ChT–PEDOT–p); and (iii) implantation of ChT–PEDOT–p in sciatic nerve defect rat to
evaluate the recovery ability. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.) This figure was published in [48]—copyright,
American Chemical Society (2021). Permission to share the material has been granted.

2.1.2. PANi-Incorporated CHs

PANi is synthesized from aniline monomers by electrochemical or chemical oxidation
polymerization and has excellent conductivity and good biocompatibility [66]. Studies have
shown that composite conductive materials based on PANi can promote the proliferation
and differentiation of neurons [67,68].

Xu et al. constructed PANi/cellulose composite hydrogels with hierarchical micro-
nanostructures. Cellulose hydrogel was used as a template to synthesize PANi in situ. The
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polymer has one conductive side through the limited interfacial polymerizing method.
In the presence of water, hierarchical micronanostructure formation was induced by the
interactions between hydrophobic PANi, hydrophilic cellulose, and the phytic acid bridge.
The cellulose hydrogel’s three-dimensional network structure can provide full cavities for
PANi polymerization and a backbone protecting and immobilizing the micronanostruc-
ture. The submicrometer particles of PANi made up of PANi nanoparticles and nanofibers
were evenly integrated into the cellulose matrix. The PANi/cellulose hydrogels had soft
physical properties, excellent biocompatibility, and exceptional conductivity, which facili-
tated sciatic nerve regeneration in rats. Their results showed that pure cellulose was an
inert substance in nerve repair, while the PANi of PANi/cellulose hydrogels played an
essential role in regenerating peripheral nerves. The electrical conductivity and hierarchical
micronanostructure of the conduits promoted the attachment and extension of neurons [49].

Dong et al. developed a tough CH by copolymerizing polyacrylamide (PAM) and
PANi. This CH had good biocompatibility, excellent mechanical properties, and electrical
conductivity which were similar to those of natural nerve tissues. By means of near-infrared
light, PANi enhanced the bioelectrical signals, which helped repair damaged peripheral
nerves. This CH still had high electrical conductivity durability after being mechanically
elongated. Therefore, it could adapt to unexpected nerve tissue tension during motion.
This CH successfully replaced the damaged sciatic nerve of the toad in vitro. Moreover,
in vivo results demonstrated that this CH could replace the loss of sciatic nerves in rats as
a highly conductive bridge [49].

2.1.3. PPy-Incorporated CHs

PPy is synthesized by electrochemical or chemical oxidation polymerization of pyrrole
monomers [69]. PPy has good electrical conductivity and excellent chemical stability,
so it is widely used in the field of biomedicine [49]. Studies have shown that PPy has
good biocompatibility with cells and tissues, and the body will not produce obvious
inflammatory reactions after being implanted in the body for a long time [70,71].

Bu et al. developed a straightforward method to fabricate conductive sodium alginate
(SA) and carboxymethyl chitosan (CMCS) hydrogels (SA/CMCS/PPy) with good mechani-
cal and biocompatibility properties. With the presence of calcium ions from the sustained
release system made up of D-glucono-d-lactone (GDL) and superfine calcium carbonate
(CaCO3), SA/CMCS was crosslinked and PPy provided the electrical conductivity of this
hydrogel. Meanwhile, PPy adjusted the porosity, swelling ratio, Young’s modulus, and
gelation time of these conductive SA/CMCS/PPy hydrogels. The conductivity was from
2.41 × 10−5 to 8.03 × 10−3 S cm−1. The mechanical performance was excellent when the
feed ratio of PPy was 0.20 while the mass ratio of SA:CMCS was 2:1. This SA/CMCS/PPy
CH showed high biocompatibility for RSC96, PC12, and bone marrow mesenchymal stem
cells (BMMSCs), and its ECM-simulated structure supplied suitable conditions for adhesion
and proliferation of cells. The biocompatibility of this CH was confirmed using a subcuta-
neous inflammatory reaction assay. As the filling material in nerve guide conduits, this CH
played a crucial role in providing great assistance for peripheral nerve regeneration [51].

Fan et al. fabricated an ECM-mimicked conductive dressing made up of an interpene-
trating polymer network hydrogel consisting of gelatin methacryloyl (GelMA), oxidized
chondroitin sulfate (OCS), and OCS-PPy electrically conductive nanoparticles. This CH
had soft mechanical properties, good electrochemical performance, a three-dimensional
porous structure, and excellent adhesiveness, providing the tissue-matching conductivity
and mechanical conditions required for the regeneration of neurovascular tissues. In vitro
and in vivo studies indicated that this CH had good biocompatibility and promoted nerve
cell migration, axon elongation, and angiogenesis by increasing the intracellular Ca2+ con-
centration. The increased Ca2+ concentration enhanced protein phosphorylation in the
phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and mitogen-activated protein
kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways (Figure 4) [52].
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Figure 4. The mechanism of conductive hydrogel promoting neurovascular regeneration in vivo.
(a) Images of immunofluorescence co-staining for CD31 and αSMA at day 14. (b) Quantitative
analysis of the blood vessel number (n = 3). (c) Protein expressions of CD31 and αSMA at the diabetic
wound site were measured by western blot assays. (d) Quantitative analysis of protein expression
(n = 3). (e) Images of immunofluorescence for NF staining at day 14. (f) Quantitative analysis of
the area of neurofilaments (n = 3). (g) Protein expressions of NF at the diabetic wound site were
measured by western blot assays. (h) Quantitative analysis of protein expression (n = 3). (i) Schematic
illustration of the mechanism conductive hydrogel uses to promote neurovascular regeneration.
(j) Protein expressions of MEK, p-MEK, ERK, p-ERK, PI3K, p- PI3K, AKT, and p-AKT were evaluated
by western blot. (k) Quantitative analysis of protein expression (n = 3). Statistical analysis was
implemented by using One-way ANOVA with Bonferroni’s test (* p < 0.05, ** p < 0.01, *** p < 0.001).
(For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.) This figure was published in [52]—copyright, John Wiley and Sons (2021).
Permission to share the material has been granted.
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Liu et al. developed biocompatible CH with soft, porous, and adhesive properties.
With the effect of an oxidative initiator (FeCl3), the hydrogel was constructed by gelation
because of the crosslinking of PPy and tannic acid (TA). Due to good self-healing and
adhesive properties, these thin film-like hydrogels could be attached easily to the damaged
nerves. Afterward, it automatically warped a tubular structure without unnecessary
invasive operation. This hydrogel provided a stable and appropriate bridge connection for
the nerve tissues. In vitro results showed that the hydrogels facilitated SC adhesion and
migration and promoted axonal extension. In vivo studies showed that this CH stimulated
regeneration and remyelination of axons in diabetes mellitus rats. Besides, this hydrogel
promoted nerve impulse conduction as well as muscle receptivity. As a result, it could
prevent denervation atrophy of muscles and promote functional recovery [53].

2.2. Carbon-Based Conductive Materials (CBCM)-Incorporated CHs

Carbon-based conductive materials (CBCM), including graphene and carbon nan-
otubes (CNT) can also be integrated into nonconductive biomaterials to supply structural
reinforcement and provide new advantages, including exceptional electrical and thermal
conductivity, chemical stability, and biocompatibility [72,73]. These materials can mediate
cell adhesion, proliferation, and differentiation, making them well suited for nerve tissue
repair.

2.2.1. CNT-Incorporated CH

CNT can be prepared by chemical vapor deposition, laser cutting, or arc discharge [74].
The nanoscale dimensions, low density, high aspect ratio, and electrical properties of CNT
facilitate its application in biomedicine [74]. When utilized in the form of suspension, CNT
can cause toxic responses by inducing oxidative stress in cells. Nevertheless, the toxic effect
can be eliminated through surface functionalization or immobilizing CNT to a platform.

Koppes et al. selected single-walled CNT as a model nanofiller manipulating the elec-
trical characteristics of collagen type I-10% Matrigel to fabricate an electrically conductive
three-dimensional composite hydrogel. The single-walled CNT-loaded composite hydro-
gels resulted in greater conductivity without significant changes in the elastic modulus.
The total neurite outgrowth and neurite persistence length of primary DRG encapsulated
within the single-walled CNT loaded composite hydrogels were significantly enhanced
compared to the nanofiller-free control. Furthermore, DRG outgrowth was stronger after
combining exogenous electrical stimulation with this CH [54].

He et al. prepared a hybrid nanofibrous hydrogel with good injectability and conduc-
tivity by homogeneously integrating CNT into a functional self-assembling peptide (SAP).
2D (on the surface of hybrid hydrogel) and 3D (within the hydrogel) culture experiments
showed that electrical stimulation could enhance axonal outgrowth and SC migration away
from DRG [55].

2.2.2. Graphene-Incorporated CH

Graphene can be prepared through mechanical exfoliation, liquid-phase exfoliation,
and chemical vapor deposition [74]. Graphene oxide (GO) is obtained through the hy-
bridization of carbon atoms, can be dispersed easily in water, and can interact with diverse
inorganic or organic materials [75]. Nevertheless, the conductivity of GO-based materials
is limited because of the existence of oxides. This faultiness can be optimized by reducing
GO via laser or thermal processing. Reduced GO (rGO) has augmented electrical and
physical properties [76]. Graphene-based materials facilitate physicochemical interactions
to promote cellular attachment and proliferation and can be used to fabricate conductive
and biocompatible materials [74].

Park et al. fabricated a conductive reduced (GO/GelMA) (r(GO/GelMA)) hydrogel
through the polymerization and subsequent chemical reduction of GO and GelMA. This
multifunctional material had excellent flexibility, electrical conductivity, permeability, and
mechanical stability, suitable for utilization as nerve conduits. In vitro results showed that,
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compared to GO-free GelMA, r(GO/GelMA) significantly improved PC12 proliferation
and differentiation, likely because of the electroactivity and molecular interactions of rGO
in the hydrogels. In vivo studies with a 10 mm sciatic nerve gap rat model demonstrated
that nerve regrowth, remyelination, and functional recovery of muscles were significantly
facilitated by r(GO/GelMA) conduits without toxicity (Figure 5) [56].
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Figure 5. In vivo implantation of NGCs and functional recovery. (A) NGCs were implanted
in a 10 mm gap of the sciatic nerve. (B) SFI of different groups at predetermined time points.
(C) Comparison of electrophysiological recordings of compound muscle action potentials (CMAPs)
for various implanted NGCs and autografts. (D) Onset–to–peak amplitude and (E) NCV of each
group. (F) Images of muscles and (G) muscle wet weight ratio in each group. Scale bar: 25 mm.
*, p < 0.05 compared to GelMA at the same week. $, p < 0.01 compared to GelMA at the same week.
@, p < 0.05 compared to GO/GelMA at the same week. #, p < 0.01 compared to GO/GelMA at the
same week. &, p < 0.05 compared to r(GO/GelMA) at the same week. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.) This
figure was published in [56]—copyright, John Wiley and Sons (2020). Permission to share the material
has been granted.
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Peng et al. constructed a new self-adaptive all-in-one transmitting chip (GO:PPy:alginate-
Chip) that combined therapeutic gene delivery, protein release, and electrical conduction
into one microfluidic chip through three-dimensional coaxial printing. GO:PPy:alginate-
Chip consisted of an inner microchannel full of enzyme-initiated plasmid DNA microcom-
plexes and an outer electrically conductive hydrogel shell decorated with chemokines. The
chip delivered functional plasmid DNAs and chemokines and enhanced electrical conduc-
tivity via a self-adaptive procedure that markedly promoted endogenous mesenchymal
stem cell recruitment and enhanced nerve regeneration [58].

Huang et al. engineered a conductive double-network (DN) hydrogel scaffold dec-
orated with netrin-1 and supported by graphene mesh. Through the fast exchange of
ions and ultraviolet irradiation, natural GelMA and alginate were entangled to form the
hydrogel. This hydrogel could provide good biocompatibility and suitable mechanical
strength and serve as a reservoir of netrin-1. Furthermore, the graphene mesh could en-
hance SC proliferation and guide their alignment. The scaffold had an acceptable Young’s
modulus matching peripheral nerves and satisfactory electrical conductivity. Moreover,
netrin-1 had double roles in inducing axon pathfinding and the migration of neurons.
This netrin-1-laded graphene/DN hydrogel scaffold could markedly enhance peripheral
nerve regeneration and the recovery of denervated muscles, which was even better than
autologous grafts [58].

3. Challenges and Futures

Because of the high incidence and poor prognosis, PNI brings great pain to patients
and brings a huge burden to the country and society, so it is a thorny problem perplexing
global public health. Traditional treatment cannot meet the high requirements of PNI repair.
As the gold standard, the application of nerve transplantation therapy is limited because of
the shortage of donor nerves and the functional damage of donor nerve target organs. In
this context, the strategy of using tissue engineering to repair PNI has gradually attracted
the attention of researchers [77–79]. Several studies have proven that CHs have great
advantages in repairing PNI. CHs are a promising application of neural tissue engineering
and solving difficult clinical problems. However, there are still some unsolved challenges
from the current research status, and plenty of work will need to be done.

First, CHs should be matched with complex human microenvironments to ensure
safety. However, CH may be distributed and deposited in cells and organs, resulting in
toxic reactions. Therefore, to improve safety and eliminate the influencing factors, we
should consider and analyze the toxicity, modify the material properties that may harm
human health, establish adaptive structures to avoid harmful substances entering blood
circulation, and carry out strict in-vitro and in-vivo tests, which is particularly essential for
ensuring its wide application [58].

Second, CHs are often composed of many kinds of biomaterials. The composition and
proportion of these biomaterials are closely related to safety and effectiveness. Therefore,
rigorous research is needed. On the other hand, due to the diversity of conductive materials
and hydrogel materials, selecting suitable material combinations becomes perplexing to
optimize the biological properties of CHs [80]. Therefore, some conditions (such as biocom-
patibility, degradability, microstructure, mechanical properties, and conductivity) need to
be determined in advance to select suitable materials, further improve and perfect their
characteristics, and better simulate ECM to provide accurate control of cellular mechanism.

Third, there are still many unsolved problems regarding the relationship between
electrical properties and cell function, so research on the mechanism by which CHs promote
peripheral nerve regeneration cannot be ignored. In addition, the study of peripheral nerve
development and injury mechanisms may provide useful progress for the treatment of
PNI related diseases and peripheral nerve regeneration [81]. Therefore, according to the
bioelectric characteristics of PNS, optimizing the biological performance of CHs to increase
its adaptability and clarifying the genes and signal pathways regulated by CHs will pave
the way for novel CHs development.
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Last, most of the ongoing studies are at the preclinical level, so sufficient clinical tests
are needed before CHs are put into use to prove that CHs are completely safe for humans
and effective for PNIs repair. Accurate operation guidelines should also be developed
through repeated trials to guide doctors’ treatment [82]. In addition, unlike animal experi-
ments, we cannot ignore therapeutic evaluation methods that are suitable for humans [83].
At the same time, CHs also have technical problems, such as the structure and effect of
CHs may change under the influence of several factors in the human body and then affect
the repair effect of CHs.

The above are urgent problems to be solved in the application of CHs. If these
problems can be completely solved, CHs are expected to be widely used in clinical practice.

4. Conclusions

In this review, we summarized the latest progress of CHs in treating PNIs. CHs
have good biocompatibility, mechanical strength, electrical conductivity, and biological
activity. CHs are suitable for nerve cells’ survival and are conducive to cell adhesion,
infiltration, proliferation, migration, differentiation, and synapse formation. CHs can
promote the remyelination of injured axons in PNIs and have great potential to promote
nerve regeneration. They show significant advantages and gratifying effects in the symptom
control of PNIs and peripheral nerve repair. In future clinical practice, the use of novel
CHs to enhance the repair effect of PNIs will have promising prospects in the field of nerve
regeneration and tissue engineering. Nevertheless, there is still a certain gap, which needs
immediate attention to accelerate clinical transformation. This review provides a useful
strategy for neural tissue engineering for PNIs treatment and provides a new idea for
clinical treatment.
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