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Abstract 

Introduction: Digital voice analysis is gaining traction as a tool to differentiate cognitively 

normal from impaired individuals. However, voice data poses privacy risks due to the potential 

identification of speakers by automated systems. 

Methods: We developed a framework that uses weighted linear interpolation of privacy and 

utility metrics to balance speaker obfuscation and cognitive integrity in cognitive assessments. 

This framework applies pitch-shifting for speaker obfuscation while preserving cognitive speech 

features. We tested it on digital voice recordings from the Framingham Heart Study (N=128) and 

Dementia Bank Delaware corpus (N=85), both containing responses to neuropsychological tests. 

Results: The tool effectively obfuscated speaker identity while maintaining cognitive feature 

integrity, achieving an accuracy of 0.6465 in classifying individuals with normal cognition, mild 

cognitive impairment, and dementia in the FHS cohort. 

Discussion: Our approach enables the development of digital markers for dementia assessment 

while protecting sensitive personal information, offering a scalable solution for privacy-

preserving voice-based diagnostics. 
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Background 

Voice recordings contain valuable information that can indicate an individual’s cognitive health,1 

offering a non-invasive and efficient method for assessment. Research has shown that digital 

voice markers can detect early signs of cognitive decline by analyzing features such as speech 

rate, articulation, pitch variation, and pauses, which may signal cognitive impairments when 

deviating from normative patterns.2 These markers, combined with additional derived measures, 

have been effective in distinguishing between normal cognition (NC), mild cognitive impairment 

(MCI), and dementia (DE). Advancements in data-driven frameworks, particularly machine 

learning, have further enhanced the utility of voice markers by enabling the identification of 

complex patterns associated with cognitive states.3-11  Machine learning models can analyze 

large datasets of voice samples to detect subtle changes, providing an objective and scalable 

approach to cognitive assessment.12-14 This technology holds potential for early screening in 

clinical settings as well as remote monitoring, which could be especially valuable in resource-

limited environments. Consequently, voice-based diagnostics are emerging as a promising 

complement to traditional assessments like neuropsychological tests and neuroimaging. 

The use of voice data as an early diagnostic tool for neurodegenerative diseases like Alzheimer’s 

is increasingly relevant in today's aging population, where early detection of cognitive decline 

can improve patient outcomes through timely interventions.15 However, voice data introduces 

privacy challenges due to the personally identifiable information (PII) embedded in recordings, 

such as gender, accent, and emotional state, as well as subtler speech characteristics that can re-

identify individuals. These risks are amplified when voice data is processed by automated 

systems,16 raising concerns about re-identification and data misuse. This has led to a demand for 

privacy-preserving techniques that protect speaker identity while maintaining the critical speech 

features necessary for accurate cognitive health assessments. Traditional anonymization 

techniques, such as voice scrambling or noise addition, often degrade acoustic features vital for 

clinical analysis, making it challenging to balance privacy with diagnostic utility. Current 

privacy-preserving methods typically focus on either masking speaker identity or preserving 

speech intelligibility, but they often overlook the need to retain cognitive markers crucial for 

dementia diagnosis. For example, features like voice pitch, prosody, and articulation speed, 

while important for detecting cognitive decline, can also reveal speaker identity. Consequently, 
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many existing methods either sacrifice diagnostic accuracy for privacy or inadequately protect 

identity. The challenge lies in developing an approach that obfuscates speaker identity without 

compromising the cognitive features necessary for assessing cognitive health. 

In this study, we developed a framework that utilizes pitch-shifting techniques for voice 

obfuscation, aiming to reduce the risk of speaker identification while preserving the integrity of 

cognitive features relevant for dementia assessment (Fig. 1). This approach was applied to voice 

data from the Framingham Heart Study and the Dementia Bank Delaware corpus, both 

containing spoken responses to neuropsychological tests. We leveraged six classification 

algorithms to assess the preservation of cognitive speech features following obfuscation. Our 

approach emphasizes the need to balance privacy and cognitive utility in voice recordings, 

particularly for diagnostic applications. We employed weighted linear interpolation to calibrate 

the trade-off between speaker privacy and cognitive feature utility, ensuring that obfuscation did 

not significantly compromise the diagnostic value of speech features. This approach addresses 

the challenge of using voice data for dementia assessments while mitigating privacy risks. 
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Methods 

Study population 

We applied obtained voice recordings from the Framingham Heart Study (FHS) and the 

Dementia Bank Delaware corpus.8, 9, 17-19 The FHS dataset included 128 speech samples from 

participants with either NC, MCI, or DE. The Dementia Bank dataset included 85 speech 

samples, with either NC or MCI participants. FHS is a community-based longitudinal 

observational study initiated in 1948, which has provided significant insights into the 

epidemiology of cardiovascular disease and its risk factors across multiple generations.19 The 

FHS dataset encompasses a variety of neuropsychological tests that assess multiple cognitive 

domains, including memory, attention, executive function, language, reasoning, visuoperceptual 

skills, and premorbid intelligence. The cognitive status of participants, classified as NC, MCI, or 

DE, was determined over time by the FHS dementia diagnosis review panel. For each 

participant, cognitive status was assigned based on the diagnosis date closest to the recording 

date, either on or before the recording date, or within 180 days thereafter. 

The FHS speech files, originally in WAV format (74.36 ± 26.62 minutes, sampling rate 22,050 

Hz), and the Dementia Bank data, originally in MP3 format (10.81 ± 4.82 minutes), were 

converted to WAV format with sampling rate of 22,050 Hz to ensure consistency in processing. 

Both datasets included recordings of interactions between clinicians and participants, 

encompassing both questions and responses (Table 1). Speech diarization was applied to isolate 

participant speech by removing clinician interactions, ensuring the analysis focused on vocal 

features relevant to cognitive impairment. 

Derivation of acoustic features from speech recordings 

We extracted acoustic features from speech recordings using the Python librosa package at a 

22,050 Hz sampling rate for high-fidelity capture.20 A total of 12 distinct sets of vocal features 

were derived, including statistical measures such as minimum, maximum, mean, standard 

deviation, and median, resulting in 481 features. The extracted features included parameters like 

amplitude, root mean square, spectral coefficients, bandwidth, centroid, flatness, roll-off 
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frequency, zero-crossing rate, tempo, Chroma Energy Normalized (CENS), and Mel-Frequency 

Cepstral Coefficients (MFCC) with delta features. The MFCC delta features were calculated 

using Savitzky-Golay filtering to capture temporal derivatives.21 

Balancing privacy and cognitive integrity in speech de-identification 

Our framework sought to balance speaker privacy and cognitive data preservation by dividing 

the feature set into two subsets: cognitive features crucial for dementia diagnosis and obfuscation 

features related to speaker identity. We enhanced privacy by modifying the obfuscation features 

while maintaining the integrity of cognitive features. To achieve this balance, we used two 

performance metrics: privacy degradation, measured by the Equal Error Rate (EER) of an 

Automatic Speaker Verification (ASV) system,22 and cognitive utility, measured by the accuracy 

(ACC) of a machine learning model that differentiated cognitive states. We applied weighted 

linear interpolation to combine EER and ACC, allowing us to explore different obfuscation 

levels and find the optimal trade-off between privacy and cognitive utility. Specifically, we 

quantified the overall performance of obfuscation (ρ) by incorporating the privacy level (α), 

within the range 0 ≤ α ≤ 1, using the formula:  

ρ = α (EER) + (1 – α) (ACC).  (1) 

The value of ρ ranges from 0 to 1 and setting α to 0.5 gave equal importance to privacy and 

cognitive utility.  

Using a pitch-shifting method, we altered speech data at varying levels from 0 to 5 semitones. 

The pitch shifts were normalized on a scale from 0.05 to 1, creating 20 different configurations 

to assess the impact of these shifts on both privacy (speaker obfuscation) and utility (cognitive 

classification). At each pitch-shifting level, we calculated the classification accuracy across six 

different machine learning algorithms (Random Forest, Support Vector Machine (SVM), k-

Nearest Neighbors (kNN), Multi-Layer Perceptron (MLP), AdaBoost, and Gaussian Naive 

Bayes) to assess how changes in acoustic features affected cognitive differentiation. To quantify 

privacy, we used the EER from an ASV system to compare original and obfuscated files. We 

also calculated the Area Under the Curve (AUC) for binary classification in speaker recognition, 

with lower AUC and higher EER values indicating more effective obfuscation. 
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Results 

Acoustic features for cognitive assessment 

The FHS dataset had a longer average speech duration (74.36 ± 26.62 minutes) compared to the 

Dementia Bank dataset (10.81 ± 4.82 minutes). Longer samples provide a broader range of 

acoustic features and more detailed vocal characteristics. After extracting acoustic features, we 

aimed to identify the most significant vocal features relevant for dementia diagnosis. Using 

supervised learning, we labeled each participant’s speech data based on their cognitive status. 

We applied random forest regression with an ensemble of 100 decision trees, to evaluate the 

contribution of each feature to predictive performance. The resulting importance scores were 

normalized between 0 and 1, and then ranked. 

We selected the top 20 acoustic features with the highest importance scores from both datasets 

for further analysis (Supplementary Data 1 and 2). In the FHS dataset, the key features 

included statistical measures of MFCC, MFCC delta, zero-crossing rate, CENS, and spectral 

bandwidth (Fig. 2a). Similarly, in the Dementia Bank dataset, the most important features were 

statistical measures of MFCC, MFCC delta, and CENS (Fig. 2.b). We evaluated how the number 

of selected acoustic features influenced classification accuracy. We iteratively selected the top-k 

features, ranging from k=1 to k=481, and applied six classification methods: Random Forest, 

Support Vector Machine (SVM), k-Nearest Neighbors (kNN), Multi-Layer Perceptron (MLP), 

AdaBoost, and Gaussian Naive Bayes, using 10-fold cross-validation (Supplementary Data 3 

and 4). The tasks included differentiating between NC, MCI, and DE in the FHS dataset, and NC 

and MCI in the Dementia Bank dataset. 

In the FHS dataset, Random Forest and SVM reached an accuracy of approximately 0.7 after 

employing 20 features, with kNN showing a slight decrease in accuracy with further feature 

inclusion. MLP exhibited the most fluctuation across all feature sets (Fig. 2c). In the Dementia 

Bank dataset, all algorithms showed a decrease in accuracy as more features were included, with 

Random Forest and Gaussian Naive Bayes displaying minimal variation (Fig. 2d). We also 

performed classification on both the original and top-20 acoustic features. Across the six 

algorithms, using the top-20 features improved average classification accuracy by 0.0149 and 
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0.1523 in the FHS and Dementia Bank datasets, respectively (Supplementary Table 1). 

Additionally, an analysis with Random Forest yielded improved AUC scores for cognitive 

category differentiation, with increases of up to 0.2 for NC/MCI binary classification in the 

Dementia Bank dataset (Fig. 3). These results suggest that a reduced set of top-ranked features 

can enhance classification accuracy while maintaining computational efficiency. 

Evaluation of privacy-utility balancing in acoustic feature manipulation 

Our results demonstrate how varying pitch-shifting levels affected both classification accuracy 

and privacy metrics (Fig. 4). Classification accuracy, EER scores, and AUC values provided 

insights into how varying pitch-shifting levels impacted the trade-off. Figures 4a and 4b show 

the model's performance across privacy levels α, ranging from 0.05 to 1. Optimal performance 

was achieved at privacy levels of 0.35 for the Framingham Heart Study (FHS) dataset (pitch-

shifting level 0.4) and 0.3 for the Dementia Bank dataset (pitch-shifting level 0.85), as indicated 

by vertical orange dashed lines (Supplementary Tables 2 and 3). Figures 4c and 4d illustrate 

the variation in model performance with increasing pitch-shifting levels, including metrics such 

as EER, classification accuracy, and AUC. The FHS dataset achieved a total performance score 

(ρ) of 0.5372 at a pitch-shifting level of 0.4 and privacy level α of 0.35 (Supplementary Data 

5). In the Dementia Bank dataset, a pitch-shifting level of 0.85 resulted in a total performance 

score of 0.5218 with privacy level α of 0.3 (Supplementary Data 6). Figures 4e and 4f provide 

heatmaps showing total performance ρ at different pitch-shifting levels, along with 

corresponding EER scores. The optimal pitch-shifting levels for both datasets were 0.4 (ρ = 

0.5372, EER = 0.3342, ACC = 0.6465) for FHS and 0.85 (ρ = 0.5218, EER = 0.2908, ACC = 

0.6208) for Dementia Bank. Supplementary Figure 1 further illustrates the correlations 

between pitch-shifting levels and various privacy and utility metrics for the FHS and Dementia 

Bank datasets.  

The results from this study provide insights into how pitch-shifting can balance privacy and 

cognitive utility in dementia diagnosis using voice data. Optimal pitch-shifting levels (0.4 for 

FHS and 0.85 for Dementia Bank) effectively preserved cognitive feature utility while achieving 

sufficient speaker obfuscation. As demonstrated by the total performance scores (ρ) and EER 
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values, the trade-off between speaker privacy and diagnostic accuracy was managed 

successfully, allowing us to maintain diagnostic utility without compromising privacy. 
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Discussion 

Our findings demonstrate that varying levels of pitch-shifting can affect speaker privacy and the 

utility of acoustic features for assessment of cognitive status. The differences in optimal pitch-

shifting levels between the FHS and Dementia Bank datasets are attributable to factors such as 

data size and feature sensitivity. The longer speech samples in the FHS dataset provided more 

robust performance in balancing privacy and utility, while the Dementia Bank dataset required 

more substantial pitch-shifting due to shorter duration and greater feature sensitivity. Overall, 

these findings underscore the importance of tailoring obfuscation techniques to the 

characteristics of the dataset being analyzed.  

Despite these promising results, our study has a few limitations. First, pitch-shifting may alter 

acoustic features crucial for diagnosis, potentially compromising classification accuracy. Future 

research should explore more advanced obfuscation techniques that preserve diagnostic utility 

while ensuring robust privacy protection. Additionally, reliance on ASV systems for de-

identification effectiveness may lead to overestimation of privacy protection, as these systems do 

not fully capture the nuances of altered speech. Incorporating human perception studies or 

adversarial models could provide further insights into the robustness of de-identification. Our 

study also focused on a limited set of acoustic features and classification algorithms. Future work 

should explore a broader range of features, including temporal and prosodic elements, and 

additional machine learning methods to enhance classification accuracy across diverse 

populations. Expanding the research to more diverse cohorts would strengthen the 

generalizability and clinical applicability of pitch-shifting techniques. Another limitation is the 

potential for re-identification in white-box scenarios, where an attacker familiar with the pitch-

shifting method could reverse-engineer the obfuscation. Exploring adaptive models to counteract 

such attacks could improve security. 

In conclusion, our study highlights pitch-shifting as a useful method for mitigating privacy risks 

in acoustic feature analysis for cognitive assessment. By identifying optimal balancing points 

between privacy preservation and diagnostic utility, we have provided a foundation for future 

research into more sophisticated obfuscation methods for digital health applications. Our 

approach contributes to the ongoing discussion on privacy in medical data analysis and promotes 

ethical practices in the use of voice data for cognitive health assessment.  
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Figures and tables captions 

 

Figure 1. Privacy-utility balancing framework applied to digital voice recordings for cognitive assessments. 

This figure presents an overview of the proposed speaker obfuscation strategy using a pitch-shifting method aimed 

at obscuring speaker identity while preserving cognitive features critical for dementia diagnosis. The framework was 

tested on neuropsychological voice recordings from the Framingham Heart Study and the Dementia Bank Delaware 

corpus. Six classification algorithms were employed to assess cognitive integrity across three cognitive groups: 

normal cognition (NC), mild cognitive impairment (MCI), and dementia (DE). 

 

Figure 2. Selection and impact of key acoustic features. (a) Importance ranking of the top 20 acoustic features 

from the FHS dataset, determined using random forest regression. (b) Importance ranking of the top 20 acoustic 

features from the Dementia Bank dataset, determined using random forest regression. (c) Effect of the number of 

selected acoustic features on classification accuracy for NC, MCI, and DE across six classification algorithms in the 

FHS dataset. (d) Effect of the number of selected acoustic features on classification accuracy for NC and MCI across 

six classification algorithms in the Dementia Bank dataset. 

 

Figure 3. Classification performance using original and top-20 acoustic features. (a) ROC curves and AUC 

scores for NC, MCI, and DE classification in the FHS dataset using the original feature set and Random Forest 

classifier. (b) ROC curves and AUC scores for NC and MCI classification in the Dementia Bank dataset using the 

original feature set and Random Forest classifier. (c) ROC curves and AUC scores for NC, MCI, and DE 

classification in the FHS dataset using the top-20 features and Random Forest classifier. (d) ROC curves and AUC 

scores for NC and MCI classification in the Dementia Bank dataset using the top-20 features and Random Forest 

classifier. 

 

Figure 4. Privacy-utility analysis. (a) Model performance assessment across different privacy levels in the FHS 

dataset, showing that the optimal balance occurs at a privacy level of α = 0.35, corresponding to a pitch-shifting 

level of 0.4. (b) Model performance evaluation across varying privacy levels in the Dementia Bank dataset, with the 

optimal balance achieved at a privacy level of α = 0.3, corresponding to a pitch-shifting level of 0.85. (c) Impact of 

increasing pitch-shifting levels on model performance across different metrics in the FHS dataset. (d) Effect of 

increasing pitch-shifting levels on model performance across various metrics in the Dementia Bank dataset. (e) 

Contour heat map showing total performance ρ at different pitch-shifting levels in the FHS dataset. (f) Contour heat 

map illustrating total performance ρ at different pitch-shifting levels in the Dementia Bank dataset. 
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Supplementary Figure 1. Heatmap analysis of the privacy-cognitive tradeoff model applied to  the FHS and 

Dementia Bank datasets. (a) Correlation between pitch-shifted level, equal error  rate, average classification 

accuracy, AUC speaker recognition, and total performance ρ(α=0.5)  for the FHS dataset. (b) Correlation between 

pitch-shifted level, equal error rate, average  classification accuracy, AUC speaker recognition, and total performance 

ρ(α=0.5) for the  Dementia Bank dataset.   

 

Table 1. Study population. Demographic and cognitive status characteristics of the Framingham Heart Study 

(FHS) and Dementia Bank datasets. The table provides information on the number of participants (N), cognitive 

status classification (Normal Cognition [NC], Mild Cognitive Impairment [MCI], Dementia [DE]), percentage of 

male participants, average age with standard deviation (mean ± std), and average speech duration in minutes (mean 

± std) for both datasets. 
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Tables 

 

Table 1. Study population. Demographic and cognitive status characteristics of the Framingham Heart Study (FHS) 

and Dementia Bank datasets. The table provides information on the number of participants (N), cognitive status 

classification (Normal Cognition [NC], Mild Cognitive Impairment [MCI], Dementia [DE]), percentage of male 

participants, average age with standard deviation (mean ± std), and average speech duration in minutes (mean ± std) 

for both datasets. 

 

Dataset Cognitive status Male percentage (%) Age (mean±std) Speech duration 
(mean±std minutes) 

FHS  
(N = 128) 
 

NC (N=40) 
MCI (N=10) 
DE (N=78) 

Male = 60 (47%) 
NC = 25 (19%) 
MCI = 6 (5%) 
DE = 29 (23%) 

82.84 ± 8.22 
NC = 80.37 ± 10.46 
MCI = 80.3 ± 7.63 
DE = 84.43 ± 6.39 

74.36 ± 26.62 
NC = 75.05 ± 25.3 
MCI = 57.83 ± 24.08 
DE = 76.13 ± 26.87 

Dementia 
bank 
(N = 85) 
 

NC (N=34) 
MCI (N=51) 

Male = 27 (32%) 
NC = 5 (6%) 
MCI = 22 (26%) 

71.36 ± 7.38 
NC = 68.23 ± 5.82 
MCI = 73.45 ± 7.57 
 

10.81 ± 4.82 
NC = 12.1 ± 5.7 
MCI = 9.94 ± 3.91 
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