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Using the weighted area under the net
benefit curve for decision curve analysis
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Abstract

Background: Risk prediction models have been proposed for various diseases and are being improved as new
predictors are identified. A major challenge is to determine whether the newly discovered predictors improve risk
prediction. Decision curve analysis has been proposed as an alternative to the area under the curve and net
reclassification index to evaluate the performance of prediction models in clinical scenarios. The decision curve
computed using the net benefit can evaluate the predictive performance of risk models at a given or range of
threshold probabilities. However, when the decision curves for 2 competing models cross in the range of interest, it
is difficult to identify the best model as there is no readily available summary measure for evaluating the predictive
performance. The key deterrent for using simple measures such as the area under the net benefit curve is the
assumption that the threshold probabilities are uniformly distributed among patients.

Methods: We propose a novel measure for performing decision curve analysis. The approach estimates the
distribution of threshold probabilities without the need of additional data. Using the estimated distribution of
threshold probabilities, the weighted area under the net benefit curve serves as the summary measure to compare
risk prediction models in a range of interest.

Results: We compared 3 different approaches, the standard method, the area under the net benefit curve, and the
weighted area under the net benefit curve. Type 1 error and power comparisons demonstrate that the weighted
area under the net benefit curve has higher power compared to the other methods. Several simulation studies are
presented to demonstrate the improvement in model comparison using the weighted area under the net benefit
curve compared to the standard method.

Conclusions: The proposed measure improves decision curve analysis by using the weighted area under the curve
and thereby improves the power of the decision curve analysis to compare risk prediction models in a clinical
scenario.

Keywords: Decision curve analysis, Clinical decision making, Area under the curve, Net benefit curves, Threshold
probabilities
Background
Risk prediction models are used to predict the probabil-
ity of occurrence of future events for individuals based
on several predictors. Predicting the risk of malignant
events is of major importance for public health as such
information can be used to improve outcomes and
personalize clinical care. Risk prediction models have
been developed for several cancers [1–3], a variety of
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conditions and general public health issues (e.g., hyper-
tension, diabetes, cardiovascular disease, smoking ex-
perimentation) [4–7]. These risk prediction models are
being constantly improved with the identification of new
predictors (e.g., genetic markers) associated with the dis-
ease or condition of interest. However, assessing the
contribution of these predictors in improving risk pre-
diction is challenging.
The area under the receiver operating characteristic

curve (AUC) is generally used to determine the predict-
ive accuracy of a model [8]. The AUC provides a natural
tool to select optimal models across all thresholds of
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sensitivity and specificity. However, in clinical settings,
there may be situations in which a model with higher
AUC may not be desirable. For example, if a treatment
involves high risk, the model with a low false positive
rate would be the best model to use despite its lower
AUC compared to those for other models. Also, in clin-
ical settings, the models need not be accurate at the ex-
treme ranges. For example, consider a scenario in which,
if the predicted probability for the disease were below
0.2, the individual would not be screened/treated, and if
the predicted probability was above 0.8, the individual
would be screened/treated. Small differences in the pre-
dicted probabilities from 2 competing models would not
make a significant clinical difference in the decision
made by individuals at these extremes. However, the
model that is accurate in predicting probabilities be-
tween the 0.2 - 0.8 range will be more useful in a clinical
setting compared to the model that predicts probabilities
well at the extremes. Hence, AUC may be a poor meas-
ure of performance for risk prediction models in certain
clinical scenarios (Additional file 1: Figure S1). Import-
antly, the increase in AUC value may not be significant
even when the new predictor is statistically associated
with the response [9]. To alleviate the problem of low
power, the net reclassification index [10] was proposed.
However, several concerns have been raised regarding its
appropriate use, interpretation, and associated high false
positive rates [11, 12], suggesting the need for alternate
measures for model comparison. One of the suggested
methods was decision curve analysis (DCA) [13, 14].
DCA is used to evaluate the performance of prediction

models in clinical decision making. The typical scenario
for the application of DCA is when patients have symp-
toms that suggest a disease but they have not yet been
diagnosed with the disease. The clinician has to make a
decision regarding whether a biopsy/screening should be
performed to diagnose the disease. The biopsy or other
screening procedure is associated with various risks or
side effects. The decision thus depends on the probabil-
ity of the disease for that patient, the patient’s prefer-
ences, the possible side effects and the clinician’s
experience. If the probability of the disease is too high
or too low, the decision is generally clear. DCA provides
a way to assess the performance of a model in a specific
range of interest. DCA has been extensively used to
compare competing methods in several diseases [15–17].
DCA is based on the computation of the net benefit for a

model. The decision curve computed using the net benefit
details the performance of the model at a given threshold
probability or in a range of threshold probabilities that is of
interest to the clinician making the decision. In several situ-
ations, when the net benefit curves for 2 competing models
cross in the range of interest, it is difficult to select the best
model. There is no available summary measure that can
determine the better model. The key deterrent for using
the area under the net benefit curve as the summary meas-
ure is the assumption that the threshold probabilities would
need to follow a uniform distribution. And, if they do not
follow a uniform distribution, additional data such as the
exact threshold probabilities and patient preferences need
to be collected to estimate the threshold probabilities,
which limits the application of DCA to data sets that lack
these additional data [18].
In this manuscript, we propose a novel way to estimate

the distribution of threshold probabilities without collect-
ing additional data by using only a binary clinical decision
made by the clinician (e.g., whether screening is per-
formed or not based on the disease probability) that is
readily available for most of the data sets. Using the esti-
mated distribution of threshold probabilities, we propose
the weighted area under the net benefit curve in the range
of interest as a summary statistic for model comparison.
We performed several simulation studies to demonstrate
the improvement in model comparison for the weighted
area under the net benefit curve statistic compared to the
standard method that uses confidence intervals to assess
whether one model is statistically better than another [13].

Methods
Clinical scenario for decision curve analysis
Our guiding example will be the same clinical scenario
used by Vickers and Elkin for DCA [14]. Individuals with
prostate cancer face the possibility that the cancer could
invade either one or both of their seminal vesicles, a con-
dition described as seminal vesicle invasion (SVI). How-
ever, SVI is not officially diagnosed until after surgery,
following an examination of the surgical sample by a path-
ologist. Hence, the surgeon has to make a decision regard-
ing the removal of seminal vesicles before prostate
surgery, based on the predicted probability of SVI. Several
models have been proposed for assessing the probability
of SVI prior to prostate surgery, based on predictors such
as prostate specific antigen (PSA) and Gleason score (GS)
[19, 20]. After estimating the probability of SVI using one
of the risk prediction models, the clinician or the patient
has a decision to make regarding whether or not the sem-
inal vesicles will be removed during surgery. If the prob-
ability of SVI is low, the tip of the seminal vesicles is
preserved in surgery to prevent long-term loss of urinary
continence [21]. If the probability of SVI is high, and the
seminal vesicles are not removed, there is a risk of recur-
rence of prostate cancer. The decision to remove the sem-
inal vesicles is made using a threshold probability pt,
which depends on many factors such as the preference of
the patient and the clinician and other covariates such as
the age of the patient. If the predicted probability of SVI is
greater than the threshold probability, pt, then the seminal
vesicles are removed.
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Data simulation
The data for the simulation were based on the clinical
scenario for predicting SVI in prostate cancer. We con-
sidered a cohort of n patients with prostate cancer. For
simulation purposes, we assumed the risk of SVI de-
pends on GS [22, 23], PSA [22, 23], and a generic covari-
ate labeled X1 (additional covariates such as age, body
mass index, and ethnicity can be added to this model).
We simulated PSA using an exponential distribution be-
cause, typically, PSA levels in prostate cancer patients
are heavily skewed towards larger values, which can be
simulated using a heavy tailed distribution. We chose a
rate parameter of 0.1 to correspond closely to prostate
cancer cohorts [24]. We simulated primary and second-
ary grades for tumors using binomial distributions. The
final GS values in the range of 2 to10 were obtained by
adding the primary and secondary grades (GS = 2+ bino-
mial (n = 4, p = 0.5) + binomial (n = 4, p = 0.5)). The
mean for the GS score was 6, which corresponds closely
to the average GS score for prostate cancer cohorts [25].
Finally, we simulated X1 using a normal distribution,
with a mean of 27 and a standard deviation of 6. We
modeled X1 based on the values for the mean and stand-
ard deviation of the BMI from the 2010 US census. Let
Y = 1 and Y = 0 correspond to the presence and absence
of SVI, respectively, in the cohort of n prostate cancer
patients, and let pd denote the probability of SVI (pd = P
[Y = 1]). The simulation model is as follows:

logit pdð Þ ¼ −10þ 0:1PSAþ 0:2X1 þ 0:5GS ð1Þ

We calculated the probability of SVI in individuals
with prostate cancer using this model. We needed to
simulate another decision indicator Z = [0,1], which indi-
cates whether the clinician or the patient decided to
have the seminal vesicles removed. This is dependent on
the threshold probability pt. The distribution of pt in the
population is generally unknown. However, pt is likely to
be on the lower side for diseases with serious conse-
quences and to be higher for diseases with minimal con-
sequences. For simulation purposes, we simulated pt
using a beta distribution, Beta (2,7). If the disease prob-
ability pd was greater than or equal to the threshold
probability pt, the decision would be made to remove
the seminal vesicles during surgery (Z = 1), otherwise the
seminal vesicles would not be removed (Z = 0). The
above simulation process was used for all the data simu-
lations we report here, with changes to the distribution
of pt and the addition of new predictors for SVI based
on the simulation scenario. The number of needed repli-
cates was determined by using a method proposed in
[26]. Using the desired precision (half width of the 95 %
confidence interval) to be 5, we needed 743 replicates.
Therefore, all simulation results are based on 1000 repli-
cates of a cohort of 10000 individuals.

Data analysis
The purpose of DCA in this study was to compare 2
competing models for the prediction of SVI. We assume
2 models M1 and M2 for predicting the probability of
SVI. We used the net benefit to compute decision curves
for the 2 competing models. The net benefit [27] was
defined as

Net Benefit ¼ TruePositives
n

−
FalsePositives

n
pt

1−pt

� �
;

where, pt is the threshold probability and n is the total
number of individuals.
The general approach for DCA involves computing

the net benefit for the 2 models and selecting the model
that has higher net benefit at a particular threshold pt or
in a range of thresholds [14]. The standard method uses
confidence intervals for the net benefit curve to assess
whether one model is statistically better than another
[13]. We implemented this approach as described below.
To evaluate the confidence intervals, we first resampled
the data set with replacement K times. We then used
these K data sets to estimate K corresponding net bene-
fit curves. The confidence interval for the net benefit
curves at each probability threshold pt was estimated
using α/2 and 1−α/2 percentiles for the bootstrap distri-
bution for a confidence interval coverage of 1−α.
When comparing 2 models using DCA, it is recom-

mended to use the same bootstrap samples for calculat-
ing the net benefit for the 2 competing models in order
to produce accurate and shorter confidence intervals
[13]. Hence, the difference in the net benefit curves for
the 2 models as a function of pt is the statistic used for
model comparison. Two models are said to be equiva-
lent if the confidence interval for the difference in the
net benefit curves includes zero, we refer to this stand-
ard approach as C-NBC. This decision can be made at a
particular threshold probability or in a range of thresh-
old probabilities of interest. However, in some situations
(i.e., if model 1 is better for some values of pt and model
2 is better for other values of pt in the range of interest),
it is difficult to identify the best model. Therefore, we
initially propose the area under the net benefit curve (A-
NBC) as a summary statistic for the performance of the
model in the range of threshold probabilities of interest.
When comparing 2 models using A-NBC, the statistic of
interest is the difference in the area under the net bene-
fit curves for the 2 competing models. The area under
the net benefit curve in a range of pt is computed using
trapezoidal numerical integration. Two models are said
to be equivalent if the difference in the A-NBC includes
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zero. The confidence intervals for the A-NBC statistic
were obtained from the bootstrap distribution of the
statistic.

Drawback to using the area under the net benefit curve
The drawback to using the A-NBC as a summary statis-
tic is that the integral used to calculate the area assumes
that the threshold probabilities are uniformly distributed
in the range of interest [18]. In most of the clinical deci-
sion making scenarios, this is not a reasonable assump-
tion. For example, most individuals would have lower
values of pt for highly malignant diseases (e.g., cancer)
and higher values of pt for comparatively harmless dis-
eases (e.g., appendicitis). Hence, the distribution of pt
will depend on the disease, cost and benefits of the treat-
ment and patient characteristics such as age, sex, etc.
Because the A-NBC statistic does not utilize this infor-
mation, a clinical decision using the A-NBC may not be
practically optimal. By attributing the same weight to
model performance at all threshold probabilities, the A-
NBC statistic over weights the performance of the model
when the clinical significance is comparatively lower and
underweights the performance of the model at threshold
probabilities where the clinical significance is higher. To
overcome this obstacle, we proposed a novel method to
estimate the distribution of pt without any additional
data, and calculated the weighted area under the net
benefit curve based on the distribution of pt to obtain
improved estimates of model performance.

Estimating the distribution of pt
The individual threshold probabilities are generally not
available in existing datasets. However, one can estimate
the distribution of pt using the clinical decision of Z (i.e.,
removing or not removing the seminal vesicles during
prostate surgery), and the predicted probability of SVI
(pd). The detailed derivation of the cumulative probabil-
ity distribution of pt is provided in the Appendix. Briefly,
the cumulative probability distribution of pt can be
expressed as

P pt≤kð Þ ¼ P Z ¼ 1; pt≤kð Þ þ P Z ¼ 0; pt≤kð Þ:

The cumulative probability distribution for individuals
who choose to have their seminal vesicles removed can
be expressed as

P Z ¼ 1; pt≤kð Þ ¼ P Z ¼ 1; pd≤kð Þ þ P pt≤kð Þ
P pt≤pdð ÞP Z ¼ 1; pd > kð Þ:

Similarly, the cumulative probability distribution for
individuals who choose not to have their seminal vesicles
removed can be expressed as
P Z ¼ 0; pt≤kð Þ ¼ P Z ¼ 0ð Þ−P Z ¼ 0; pd > kð Þ
−
1−P pt≤kð Þ
1−P pt≤pdð ÞP Z ¼ 0; pd≤kð Þ:

Using the above equations, the final cumulative distri-
bution of the threshold probability pt can be expressed
as

P pt≤kð Þ ¼ P Z ¼ 1; pd≤kð Þ
þ P pt≤kð Þ
P pt≤pdð Þ P Z ¼ 1; pd > kð Þ

þP Z ¼ 0ð Þ−P 0; pd > kð Þ
−
1−P pt≤kð Þ
1−P pt≤pdð Þ P Z ¼ 0; pd≤kð Þ

ð2Þ
It is complicated to compute the solution to this equa-

tion by using traditional methods. Hence, we propose to
use an iterative approach to infer the distribution. In our
implementation, we used a uniform distribution as the
initial estimate of the distribution of pt. After initializing
the starting distribution, the distribution of pt is updated
using equation (2). In the next iteration, the estimated
distribution of pt is used as the input value to equation
(2). The process is repeated until the distribution con-
verges (see Fig. 1).

Weighted area under the net benefit curves
After estimating the distribution of pt, we proposed the
weighted area under the net benefit curve (WA-NBC), as
an improved summary statistic for comparing risk predic-
tion models. The WA-NBC statistic is calculated as

WA−NBC ¼
Z
pt

NBC ptð Þdpt ;

where NBC (pt) is the net benefit curve for the corre-
sponding model, f (pt) is the density of pt and the inte-
gration is over the range of interest of threshold
probabilities. When 2 competing models are compared
using the WA-NBC method, the statistic of interest is
the difference in the WA-NBC statistics that correspond
to the 2 models. The confidence intervals for the statistic
were obtained using the standard bootstrap approach.

Results
We used 3 different approaches, C-NBC; A-NBC; and
WA-NBC to compare 2 competing risk prediction
models in the range of interest of threshold probabilities.

Simulation 1: Type 1 error and power
The type 1 error rates were based on the comparison of
models M1 and M2. M1 included predictor variables
PSA, GS, and X1 as in equation (1) and 3 non-causal



Fig. 1 Iterative steps involved in estimating the distribution of threshold probability pt simulated using a beta distribution. The starting
distribution is uniform; the intermediate distributions are shown for iterations 1, 2, 3 and 10; and the final estimated distribution computed after
100 iterations is equivalent to the true distribution
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predictors (i.e., coefficient zero). M2 included PSA, GS,
and X1 as in equation (1) and 3 different non-causal pre-
dictors. The purpose of including different non-causal
predictors in M1 and M2 was to evaluate the type 1 error
rate when 2 models were equivalent but not identical.
Therefore, we considered 2 models, M1 and M2, which
had identical causal variables but different non-causal var-
iables. In this simulation scenario, the models are equiva-
lent, M1 ≡M2, because the non-causal predictors have an
effect size of zero. All the non-causal predictors were sim-
ulated using the standard normal distribution. The type 1
errors and powers were calculated using the bootstrap
confidence interval approach. The type 1 errors for the 3
different approaches, C-NBC, A-NBC, and WA-NBC,
were well controlled.
To assess power, the probability of SVI was simulated

using the model

logit P Y ¼ 1ð Þð Þ ¼ −10þ 0:1PSAþ 0:2X1 þ 0:5GS þ γn1 þ ∈ :

The power for the methods was based on comparing
the 2 models, M1 and M2, where M1 included all risk
factors, PSA, X1, GS, and n1 and 2 non-causal predic-
tors, n2,n3. M2 included PSA, X1, and GS, but not n1,
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and 3 additional independent, non-causal predictors.
The predictors n1,n2…,n6 were simulated using a stand-
ard normal distribution. M1 was superior to M2 because
it included all the causal predictors. To compare the
competing models, we simulated data using 3 values of γ
(0.3,0.35 and 0.4) to illustrate the change in power while
varying the effect of the causal predictor. For this simu-
lation scenario, the range of interest for pt was consid-
ered to be between 30 % to 50 % (i.e., we compared the
performance of the methods in this range of pt). The
power for the C-NBC method was computed for thresh-
old probabilities within the range of interest and aver-
aged over the range (Table 1).
At γ=0.3, the statistical power achieved when using

the C-NBC method was 0.31, which was lower than that
achieved by the proposed WA-NBC method (0.53) at
the 0.05 level of significance. For γ = (0.35,0.4) the power
achieved by using the C-NBC method (0.46, 0.61) was
lower than the power for the WA-NBC method (0.68,
0.79).

Simulation 2: Convergence of the iterative process of
estimating the distribution of pt
The patient threshold probabilities were modeled using
a beta distribution Beta (2,7). The simulated data were
used to estimate the distribution of the threshold prob-
abilities using the recursive method (detailed in
Methods). At each iteration, the estimated distribution
of the threshold probabilities pt approaches the true dis-
tribution of pt. The final estimated distribution of pt
computed after 100 iterations converged to the original
simulated distribution of threshold probabilities, as
shown in Fig. 1. The convergence to the original simu-
lated distribution of threshold probabilities when the pa-
tient threshold probabilities were modeled using a
truncated exponential distribution (rate parameter 10
and truncated to the right at 1) is shown in Additional
file 1: Figure S2.

Simulation 3: Impact of weighting the net benefit using
the distribution of pt
The following simulation shows the importance of using
the estimated distribution of pt that we proposed to use
Table 1 Power comparison results using the net benefit curves
(C-NBC) method and weighted area under the net benefit curves
(WA-NBC) method to compare two models. The table shows the
variation in power as the simulated coefficient of the causal predictor
included in the superior model varied from 0.3 to 0.4

Method Coefficient

0.3 0.35 0.4

C-NBC 0.31 0.46 0.61

WA-NBC 0.53 0.68 0.79
in calculating the WA-NBC statistic compared to simply
using a uniform distribution for pt that is used to calcu-
late the A-NBC. The statistic of interest is the total net
benefit for all the patients in the cohort, which summa-
rizes the performance of a model for the cohort. We
compared the total net benefit in 2 scenarios: 1) when
the true threshold probabilities (pt) were uniformly dis-
tributed; and 2) when the true threshold probabilities
(pt) were distributed as a beta distribution (Beta (2,7)).
The model

logit P Y ¼ 1ð Þð Þ ¼ βþ β1PSAþ β2X1 þ β3GS

was fitted to the training data set and the coefficients
were estimated. The test data were used to calculate the
net benefit curve for the model. The total net benefit for
the cohort was assessed for the test data set using 3
methods: 1) Using the true values of pt used in the simu-
lation; 2) using the estimated distribution of pt; and 3)
using a uniform distribution. We simulated 1000 repli-
cates to evaluate the confidence intervals for the total
net benefit using the 3 methods (Table 2).
When the threshold probabilities were simulated

using a uniform distribution, the net benefit obtained
by using the estimated distribution compared to the
uniform distribution was 1685.7 (1682.0–1689.3) com-
pared to 1689.5 (1686.4–1692.5), respectively, which,
as expected, was equivalent to the true net benefit of
1689.4 (1686.5–1692.3) obtained using the true values
of pt in the simulation. However, when the threshold
probabilities were simulated using a beta distribution,
the net benefit obtained by using the estimated distri-
bution compared to the uniform distribution was
3013.9 (3010.5–3017.2) compared to 1692.1 (1689.2–
1695.0), respectively. In this scenario, the true net
benefit for the cohort, obtained using the true values
of pt used in the simulation, was 3013.7 (3010.3–
3017.2), which is closer to the net benefit computed
using the estimated distribution of pt. The net benefit
computed using the uniform distribution underesti-
mated the total net benefit of the method and there-
fore underestimated model performance.
Table 2 Total net benefit comparison results using the
estimated distribution of pt and the uniform distribution. The
two columns indicate the model for simulating pt

Simulated pt

Method Uniform (0,1) Beta (2,10)

True net benefit 1689.4 (1686.5–1692.3) 3013.7 (3010.3–3017.2),

Estimated net benefit 1685.7 (1682.0–1689.3) 3013.9 (3010.5–3017.2)

Uniform net benefit 1689.5 (1686.4–1692.5) 1692.1 (1689.2–1695.0)



Fig. 2 Net benefit curves for models M1 and M2, along with their confidence intervals. The range of interest is from 0.15–0.45 as indicated by the
vertical lines. This example showcases that model 1 is better than model 2 for study participants even though model 2 is better than model 1 for
most of the risk thresholds (0.27–0.45) in the range of interest
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Simulation 4: Example showcasing the utility of WA-NBC
The threshold probabilities were simulated from a beta
distribution (Beta (2,7)). In this analysis, the perform-
ance of the 2 models M1 and M2 was compared in the
pt range of 15 % to 45 %. The models are

Model M1 : logit P Y ¼ 1ð Þð Þ ¼ β0 þ β1PSA
Model M2 : logit P Y ¼ 1ð Þð Þ ¼ I GS≥6andX1 > 25ð Þ:

Net benefit curves were constructed for each of the
models, along with confidence intervals (Fig. 2). As the 2
models cross in the region of interest, we cannot deter-
mine whether M1 >M2, M2 >M1, or M1 ≡M2. We
used the WA-NBC method and A-NBC method to
evaluate the model performances in the range of inter-
est. Using the A-NBC method, the confidence interval
for the test statistic was (−0.0012, 0.0041), which
includes zero, thus implying that M1 and M2 are equiva-
lent in the range of interest. However, using the WA-
NBC method, the confidence interval for the test
statistic was (0.0064, 0.0157) which is above zero, thus
implying that M1 is superior to M2 in the range of inter-
est. As the threshold probabilities were simulated form a
beta distribution that is right-skewed, most of the indi-
viduals would have lower threshold probabilities. And
because model M1 is superior to model M2 at lower
threshold probabilities (Fig. 2), most individuals would
benefit from using model M1 compared to model M2,
which is reflected in our analysis using WA-NBC. Thus,
our simulation demonstrates the utility of the weighted
area under the curve statistic in a particular situation
when one cannot determine the best model using trad-
itional DCA.

Discussion
In this paper, we present a novel method for estimating
the distribution of threshold probabilities for individuals
in clinical scenarios. This work was motivated by the ab-
sence of a straightforward way to compare 2 risk predic-
tion models when the decision curves cross in the range
of threshold probabilities of interest. The key deterrent for
the use of a simple summary measure such as the area
under the net benefit curve is its unrealistic assumption
that the threshold probabilities are uniformly distributed
in the range of interest. That assumption is largely unreal-
istic as the threshold probabilities depend on the given
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disease and other patient characteristics. For malignant
diseases, these probabilities are right-skewed and for non-
life-threatening diseases, they are left-skewed.
It is important to note that the individual values of

pt cannot be estimated without additional data; how-
ever, the distribution of the values of pt can be esti-
mated using existing data by solving the recursive
equation for cumulative distribution of pt. The recur-
sive equation does not have a closed form solution
because the cumulative distribution function is
present in both the numerator and denominator in
different forms. Therefore, an iterative solution was
adopted to solve the equation to estimate the cumula-
tive distribution of pt. The rate of convergence was
quick for several forms of hypothesized distributions
of pt (i.e., beta, uniform and truncated exponential)
and almost always converged within 100 iterations,
which took less than 3 min on a computer with a
single processor and a speed of 3.4 GHz. We then
used the estimated distribution to propose the
weighted area under the net benefit curve as a novel
summary measure for model comparison in the range
of threshold probabilities of interest.
We performed several simulations to assess the per-

formance of the proposed WA-NBC statistic and com-
pared it to A-NBC and the standard approach, C-NBC.
The type 1 errors were well controlled for all the
methods. The statistical power for WA-NBC was higher
than the power achieved when using the C-NBC
method. We also showed that the total net benefit for
the cohort obtained by using the estimated distribution
was closer to the true total net benefit compared to
using the uniform distribution to calculate the area
under the net benefit curve. Thus, using the estimated
threshold probability distribution accurately quantifies
the model performance.
To demonstrate the utility of the weighted area

under the curve, we simulated a scenario in which 2
competing models, M1 and M2, cross in the region
of interest. In this scenario, it was difficult to make
a decision using the C-NBC method. Using the A-
NBC method led to the false conclusion that M1
was equivalent to M2, and using the proposed WA-
NBC method provided the correct conclusion that
M1 was superior to M2. The proposed weighted area
under the net benefit curve is a superior measure
for comparing risk prediction models when there is
a crossover of net benefit curves in the region of
interest. Importantly, we recommend using this
measure even when the curves do not cross because
this measure weights the net benefit curve with re-
spect to the distribution of pt, leading to a more
practical estimation of the net benefit for future
study participants.
Traditional measures of prediction such as AUC
and NRI have limited value for risk prediction in
clinical scenarios as they do not account for the cost
of the treatment and the associated side effects. The
proposed methodology based on the net benefit
curves can be easily extended to include the cost
and side effects by using a novel risk prediction
model with additional predictors. The net harm
corresponding to the additional predictors or exist-
ing predictors can be incorporated into the net
benefit curve estimation using the following defin-
ition of net benefit [27]:

Net Benefit ¼ TruePositives
n

−
FalsePositives

n
pt

1−pt

� �
−NetHarm

The net harm can also include cost effectiveness of the
risk prediction models and other measures of utility. Ac-
counting for the net harm will provide a more practical
measure to identify the model that is most relevant to a
particular clinical scenario.
The proposed methodology is generally used to com-

pare 2 predefined risk prediction models. However, we
can improve the efficiency of decision curve analysis
using relative utility curves [28]. Relative utility curves
are based on the contribution of the risk prediction
model to clinical utility compared to a hypothesized
perfect prediction. The test trade off, which is analo-
gous to the net harm (discussed above) for net benefit
curves, can then be used to evaluate the practical util-
ity of the models when using relative utility curves.
The main contribution of the proposed methodology is
to recursively estimate the distribution of pt, and sub-
sequently use a weighted summary measure. This
framework can be used to improve the performance of
relative utility curves in the same manner as net bene-
fit curves.

Conclusions
We have proposed a novel way to estimate the distribu-
tion of threshold probabilities without any additional
data. Using the estimated distribution of threshold
probabilities, we proposed the weighted area under the
net benefit curve as a novel summary statistic for model
comparison. We performed several simulation studies
to demonstrate the improvement in model comparison
using the weighted area under the net benefit curve stat-
istic compared to the standard net benefit curves in
various scenarios.
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