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Background:Diffuse large B-cell lymphoma (DLBCL) is a common aggressive B-cell non-
Hodgkin lymphoma (B-NHL). While combined chemotherapy has improved the outcomes
of DLBCL, it remains a highly detrimental disease. Pyroptosis, an inflammatory
programmed cell death, is considered to have both tumor-promoting and tumor-
suppressing effects. The role of pyroptosis in DLBCL has been gradually appreciated,
but its value needs further investigation.

Methods: We analyzed mutations and copy number variation (CNV) alterations of
pyroptosis-related genes (PRGs) from The Cancer Genome Atlas (TCGA) cohort and
evaluated the differences in expression in normal B cells and DLBCL patients in two Gene
Expression Omnibus (GEO) datasets (GSE12195 and GSE56315). Based on the
expression of 52 PRGs, we divided 421 DLBCL patients from the GSE31312 dataset
into distinct clusters using consensus clustering. The Kaplan-Meier method was used to
prognosis among the three clusters, and GSVA was used to explore differences in the
biological functions. ESTIMATE and single-sample gene-set enrichment analysis (ssGSEA)
were used to analyze the tumor immune microenvironment (TME) in different clusters. A
risk score signature was developed using a univariate survival analysis and multivariate
regression analysis, and the reliability and validity of the signature were verified. By
combining the signature with clinical factors, a nomogram was established to predict
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the prognosis of DLBCL patients. The alluvial diagram and correlation matrix were used to
explore the relationship between pyroptosis risk score, clinical features and TME.

Results: A large proportion of PRGs are dysregulated in DLBCL and associated with the
prognosis. We found three distinct pyroptosis-related clusters (cluster A, B, and C) that
differed significantly with regard to the prognosis, biological process, clinical
characteristics, chemotherapeutic drug sensitivity, and TME. Furthermore, we
developed a risk score signature that effectively differentiates high and low-risk
patients. The nomogram combining this signature with several clinical indicators
showed an excellent ability to predict the prognosis of DCBCL patients.

Conclusions: This work demonstrates that pyroptosis plays an important role in the
diversity and complexity of the TME in DLBCL. The risk signature of pyroptosis is a
promising predictive tool. A correct and comprehensive assessment of the mode of action
of pyroptosis in individuals will help guide more effective treatment.

Keywords: pyroptosis, diffuse large B-cell lymphoma, tumor immune microenvironment, inflammation, prognosis

INTRODUCTION

B-cell non-Hodgkin lymphoma (B-NHL), which accounts for
approximately 85–90% of non-Hodgkin lymphoma, is a group of
diseases with significant heterogeneity. Diffuse large B-cell
lymphoma (DLBCL), representing about 30% of non-Hodgkin
lymphomas cases, is an important subset of aggressive B-NHL. At
present, as a first-line treatment, rituximab plus
cyclophosphamide, doxorubicin, vincristine, prednisone
(RCHOP) has improved the prognosis of DLBCL patients, and
about 65% of such patients achieve relief at the initial treatment.
However, the final the prognosis of the disease is still not
optimistic (Coiffier et al., 2010; Shankland et al., 2012;
Dunleavy and Gross, 2018; Sehn and Salles, 2021).

Pyroptosis is a kind of programmed cell death in the form of
inflammation, and Gasdermin D (GSDMD) is considered the
main executor (Shi et al., 2017). Early studies have clarified the
important role of pyroptosis and related proteins in the process of
fighting infection. Moderate pyroptosis contributes to the
stability of the intracellular environment, effectively prevents
excessive cell proliferation, and protects the host (Aglietti and
Dueber, 2017). However, more andmore studies have proven that
pyroptosis plays an important role in tumors, and this role is
bidirectional. Pyroptosis can regulate malignant phenotypes,
such as cell morphology, proliferation, infiltration, migration,
and chemotherapy tolerance, through a variety of cell signal
pathways, to affect the progress of tumors and has been
shown to be related to the patient prognosis (Xia et al., 2019).
The expression of NLRP1 in colorectal cancer was decreased
compared with normal tissues, and a higher tumor incidence was
observed in NLRP1−/− mice (Williams et al., 2015). The
expression of NLRP3 decreased or was even lost in
hepatocellular carcinoma (HCC), which is related to poorer
pathological differentiation and advanced stage, suggesting that
the gene may be a tumor suppressor gene in HCC (Wei et al.,
2014). However, in pancreatic ductal adenocarcinoma,
interleukin (IL)-10-dependent NLRP3 signaling was shown to

be involved in inducing immunosuppressive microenvironment
formation by promoting tumor-associated macrophage
expansion (Daley et al., 2017).

A large number of inflammatorymediators are released during
pyroptosis, and the twomost important are IL-1β and IL-18 (Fink
and Cookson, 2006). Most studies suggest that IL-1β plays an
important role in promoting tumor cell proliferation, invasion,
and metastasis. For example, after blocking IL-1β, CD8+

lymphocytes in breast cancer tissue were activated, leading to
tumor growth restriction (Kaplanov et al., 2019). Through the
NF-κB/miR-506/JAG1 signaling pathway and NF-κB/miR-376c/
TGFA signaling pathway, IL-1β is involved in promoting the
proliferation of osteosarcoma (Hu et al., 2017; Liu et al., 2017). In
addition, IL-1β may play a role in the process of epithelial-
mesenchymal transition (EMT) (Zhang et al., 2018). IL-18
may play an anti-tumor immune role by increasing the
activity of CD8+T cells and natural killer cells and promoting
IFN-γ anti-tumor activity (Srivastava et al., 2010). Furthermore,
IL-18 is also involved in the disease progression and
immunosuppression of multiple myeloma (MM), and a high
level of IL-18 is associated with a poor prognosis in such patients
(Nakamura et al., 2018).

The role of pyroptosis in lymphoma has been receiving
increasing attention. The combination of BAFF and BAFF
receptor triggered the initiation and activation signal of NLRP3
inflammatory body and induced pyroptosis of the B lymphoma cell
line (Lim et al., 2020). NLRP3 inflammasome can induce the anti-
dexamethasone effect of lymphoma cells through IL-18, thereby
inhibiting apoptosis and promoting tumor proliferation (Zhao
et al., 2017). Cancer cells can shape the tumor
microenvironment (TME) suitable for their growth by inducing
reprogramming of surrounding cells (Hinshaw and Shevde, 2019).
The TME and restricted immune surveillance play important roles
in the occurrence and development of lymphoma (Autio et al.,
2021). The impact of pyroptosis involvement on the TME,
however, has not yet been sufficiently studied in DLBCL.
Furthermore, current research is largely limited to a single or
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few pyroptosis-related molecules. Those studies have the same
limitation, wherein the antitumor effect or the occurrence and
development of the tumor is the result of the interaction of many
factors in a highly coordinated way; therefore, individual studies
may not reflect the complete role of pyroptosis.

Given the above, we conducted a comprehensive study of
pyroptosis in DLBCL by integrating gene expression information
and clinical information from multiple datasets. Our analyses
explore the impact of pyroptosis on the DLBCL TME and tumor
biological behavior and may provide additional evidence for
advancing the understanding of DLBCL disease and the
direction of treatment.

MATERIALS AND METHODS

Data Download and Processing
The public gene expression databases were downloaded from the
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/
geo/) database and The Cancer Genome Atlas (TCGA) database
(Project name: Lymphoid Neoplasm Diffuse Large B-cell
Lymphoma, https://portal.gdc.cancer.gov/projects/TCGA-
DLBC). We included GSE31312, GSE10846, GSE12195,
GSE56315, and TCGA-DLBC in subsequent analyses. Those
four GEO datasets were derived from the same platform
(GPL570 Affymetrix Human Genome U133 Plus 2.0). We
downloaded raw CEL files and adopted a robust multiarray
average (RMA) method to normalize the data. GSE12195 and
GSE56315 were used to determine the expression patterns of the
pyroptosis-related genes (PRGs) between normal B cells and
DLBCL. The results were demonstrated using a box diagram.

The GSE31312 dataset contains abundant clinical information,
including the age, gender, survival information, Gene Expression
Profiling (GEP), treatment regimen (RCHOP) and response, and
the International Prognostic Index (IPI) as the main analysis
objects. The GSE10846 dataset, which was also treated using the
RCHOP regimen, was used as a validation set. We further
processed GSE31312 and GSE10846 as follows: 1) patient
sample data with an overall survival time of <30 days were
excluded; and 2) for the GSE31312 dataset, samples missing the
clinical information mentioned above were excluded.

We obtained information on the somatic mutation and copy
number variation (CNV) of DLBCL from the TCGA-DLBC dataset.
R package “maftools”was used to analyze the mutation frequency of
PRGs and visualize the results using an oncoplot waterfall plot
(Mayakonda et al., 2018).We calculated the CNV frequency of PRGs
and displayed the results with a lollipop chart. The “RCircos”
package of the R software package was used to visualize the
location of those genes on chromosomes (Zhang et al., 2013).

Investigating Different Clusters of DLBCL
Based on PRGs
We obtained 52 PRGs from “REACTOME PYROPTOSIS”,
“GOBP PYROPTOSIS”, and previous studies (Man and
Kanneganti, 2015; Wang and Yin, 2017; Karki and
Kanneganti, 2019; Xia et al., 2019; Ye et al., 2021).

“REACTOME PYROPTOSIS” and “GOBP PYROPTOSIS”
were derived from MSigDB (Molecular Signatures Database
v7.4). The R software package “ConsensusClusterPlus” was
used to screen the distinct clusters based on the expression of
the 52 PRGs (Wilkerson and Hayes, 2010). Resampling was
performed 100 times to ensure classification reliability. We
then investigated the relationship between clusters and clinical
features.

Identification of Different Biological
Processes Between Distinct Clusters
To determine whether or not there were differences in biological
processes among different clusters, we downloaded
“c2.cp.kegg.v7.4.symbols.gmt” and “h.all.v7.4.symbols.gmt”
from MSigDB. The pathways with adjusted p values < 0.05
were considered to have significant differences. The above
analysis process was performed using the R software package
“GSVA” (Hänzelmann et al., 2013). Finally, the significant
pathways were presented as a heatmap.

The Evaluation of the TME
We used the R software package “ESTIMATE” (Yoshihara et al.,
2013) to assess the “immunescore” and “stromalscore” in DLBCL.
Sngle-sample gene-set enrichment analysis (ssGSEA) was used to
quantify estimation of infiltration abundance of different
immune cells (Supplementary file). To avoid unnecessary
interference, we excluded B cells and related immune cells.
Through the ssGSEA algorithm, we obtained the score of each
immune cell in each patient and standardized the findings by the
Min-Max method. We collected other TME-related signatures
through previous studies, including the 1) CD8 T-effector
signature (Rosenberg et al., 2016); 2) pan-fibroblast TGFβ
response signature (pan-F-TBRS) (Mariathasan et al., 2018); 3)
antigen-presenting machinery (APM) signature (Şenbabaoğlu
et al., 2016); 4) angiogenesis signature (Şenbabaoğlu et al.,
2016); 5) three epithelial mesenchymal transition) (EMT)
signatures (EMT1, EMT2, and EMT3) (Damrauer et al., 2014;
Hedegaard et al., 2016; Hugo et al., 2016), and 6) two stromal gene
signatures (stromal 1 and stromal 2). We then adopted the same
process with those signatures (Lenz et al., 2008).

Establishment of the Prognostic Gene
Signature
As the training dataset, the GSE31312 dataset was used to screen
for PRGs associated with the prognosis of DLBCL patients. The
expression of the PRGs was first determined using a univariate
Cox analysis (Cox, 1972). Genes with p values < 0.01 were
retained. We used a Lasso-penalized Cox regression analysis
and Stepwise regression analysis to further screen for PRGs
with the best predictive performance and build the risk score
signature. The multivariate regression model was then internally
validated using the bootstrapping method. After obtaining the
regression coefficients for each enrolled gene, we calculated the
risk score for each patient based on the expression of each gene
using the following formula:
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The risk score � (Exp gene1 × coefficient gene1) + (Exp gene2 ×
coefficient gene2) +···+ (Exp gene7 × coefficient gene7)

Patients were then divided into high and low-risk groups
according to the median risk score. Differences in the overall
survival (OS) of patients in different risk groups were assessed
using Kaplan-Meier curves (Ranstam and Cook, 2017) and AUC
of the ROC curve (Kamarudin et al., 2017). The regression
coefficients obtained from the training dataset were then
applied to the GSE10846 testing dataset with complete clinical
information to calculate the patient’s risk score for external
validation.

Construction and Validation of the
Predictive Nomogram
To determine whether or not the gene signature has independent
prognostic value and to obtain clinically independent prognostic
factors associated with the DLBCL prognosis, we performed
univariate and multivariate Cox regression analyses on
prognostic gene signature and clinicopathological parameters,
including the age, gender, GEP, treatment regimen (RCHOP) and
response, and IPI, in the training dataset. Factors with p < 0.05 in
the univariate analysis were selected for a further multivariate
Cox regression analysis. The above-incorporated independent
parameters were used to construct a prognostic nomogram by
stepwise Cox regression to predict the OS in patients with DLBCL
at 2, 4, 6, and 8 years. The AUC-ROC curve, Harrell’s
concordance index (Harrell et al., 1982) and a calibration plot
comparing the predicted and observed OS were used to evaluate
the performance of the nomogram.

Relationship Between the Pyroptosis Risk
Score, Clinical Features and TME
An alluvial diagram was developed showing the changes in
pyroptosis-related clusters, pyroptosis risk score, IPI score, and
treatment response using the R software package “ggalluvial”
(Brunson and Read, 2020) and “ggplot2” (Villanueva and Chen,
2019). We performed the R function “cor” to calculate the
correlation coefficients between the TME (including infiltrating
immune cells and other TME signatures), mRNA expression of
IL-1β and IL-18 and pyroptosis risk score, and the correlation
matrix was drawn using the “corrplot” package (Wei et al., 2017).

RESULTS

Schematic Diagram of the Overall Flow of
the Study
We downloaded the target databases from TCGA and GEO
databases and performed preliminary processing of the data,
after which we explored the landscape of the genetic and
expression variation of PRGs in DLBCL (Figure 1A). We then
performed consensus clustering according to the expression of 52
PRGs and compared the differences in the survival, biological
processes and TME among different clusters (Figure 1B).
Subsequently, we constructed a prognostic signature based on

the gene expression and survival information of the 421 patients
in the training set. The time-ROC curve was used to evaluate the
stability, and external verification was performed to prove the
reliability of the signature. We then integrated the clinical
features, constructed a predictive nomogram and evaluated the
model with calibration curves (Figures 1C,D).

Landscape of Genetic and Expression
Variation of PRGs in DLBCL
First, we summarized the incidence of CNV and somatic
mutations of the 52 PRGs in DLBCL based on the TCGA-
DLBC dataset. Twelve of 37 patient samples had somatic
mutations, the most common form being missense mutations.
At the gene level, a total of 12 genes were mutated, with TP53
showing the highest frequency (up to 14%), followed by NLRP9;
the remaining 10 genes, including ZBP1 and TNF, showed
roughly 3% frequency (Figure 2A). To our surprise, GSDMD
did not show anymutations in DLBCL samples. By estimating the
frequency of CNV, we found that PRGs showed prevalent CNV
alterations. However, PLCG1, NAIP, GZMB, ELANE, ELANE,
and APIP were neither amplified nor deleted (Figure 2C).

The locations of the CNV alteration of PRGs on chromosomes
are shown in Figure 2B. To determine whether or not CNV
alteration of PRGs affects the mRNA expression and to ensure the
stability of the results, we verified these findings in the GSE12195
and GSE56315 datasets at the same time. We first excluded genes
with inconsistent expression trends in the two GEO datasets and
then presented the remaining genes in the form of boxplots
(Figures 2D,E). Most genes were upregulated in DLBCL, and
we also found that among the upregulated PRGs, PYCARD, IRF1,
GZMA, GSDMD, GSDMC, GPX4, CHMP2A, CASP5, CASP1,
IL-18, and BAK1 showed an amplified CNV status, suggesting a
significant relationship between the PRG expression and CNV.
After the discovery that the expression of a large proportion of
PRGs was imbalanced in normal B cells and DLBCL samples, we
analyzed the association of these genes with the prognosis by a
univariate Cox regression analysis. As shown in Supplementary
Figure S1A, there was a significant correlation between the PRGs
and prognosis. These findings suggested that genetic and
expression variation of PRGs is common in DLBCL, so
pyroptosis may play an important role in the occurrence and
development of DLBCL.

PRG-Related Clusters Identified in DLBCL
We clustered GSE31312 based on the expression of 52 PRGs
quantities by the R package “ConsensusClusterPlus” and
ultimately identified 3 completely different clusters,
including 98 samples in cluster A, 229 samples in cluster B,
and 94 samples in cluster C (Supplementary Figures S1B,C).
We subsequently performed a survival analysis of the three
clusters and found that they had distinct prognoses, with
cluster A having the best prognosis and cluster B having a
more favorable long-term prognosis than cluster C
(Figure 3A). The ssGSEA method was used to establish a
pyroptosis signature score for the three clusters, with results
showing that cluster B had the highest score, while there was
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no significant difference between the scores of A and C
(Figure 3B).

Given that the three clusters had different prognoses under the
same treatment regimen, we speculated that the clusters were
biologically functionally different, and the “GSVA” enrichment
analysis validated our hypothesis. Compared with cluster B,
cluster A showed enrichment of “KEGG HEDGEHOG
SIGNALING”, “HALLMARK KRAS SIGNALING Down” and
“KEGG CALCIUM SIGNALING”, among others. For cluster B, a
large number of pathways associated with nutrient metabolism
were enriched, including “HALLMARK ADIPOGENESIS”,
“HALLMARK FATTY ACID METABOLISM”, “KEGG
PENTOSE PHOSPHATE”, “HALLMARK MTORC1
SIGNALING”, “HALLMARK/KEGG UNFOLDED PROTEIN
RESPONSE”, and “KEGG/HALLMARK OXIDATIVE
PHOSPHORYLATION”. In addition, cluster B also showed
significant enrichment of the DNA damage response (DDR)
pathway and its related pathways, such as “KEGG
MISMATCH REPAIR”, “HALLMARK DNA REPAIR”,
“KEGG NUCLEOTIDE EXCISION REPAIR”, and
“HALLMARK G2M_CHECKPOINT”. The enrichment of

cancer-related pathways, such as “HALLMARK TGF BETA
SIGNALING” and “HALLMARK MYC TARGETS”
(Figure 3C), in cluster B was similarly observed in the cohort
of B versus C. In contrast, cluster C showed enrichment of the
“KEGG ECM RECEPTOR INTERACTION” pathway and
downregulation of the “KEGG B CELL RECEPTOR
SIGNALING” pathway (Figure 3D). This suggests that not
only the biological processes but also the immune
microenvironment may differ among the clusters.

Differences in Clinical Features and TME
Among Three PRG-Related Clusters
Next, we analyzed the clinical features of the clusters.
Unexpectedly, cluster C, which had the worst survival, showed
a higher proportion of the GCB type, whereas cluster B, which
was intermediate between A and C, possessed the highest
proportion of the non-GCB type (Figure 4A). Regarding the
IPI score, cluster A, which had the best survival, showed the
highest proportion in the low-risk group (IPI score: 0–1).
Compared with cluster B, cluster C accounts for more in low

FIGURE 1 | Schematic diagram of the overall flow of the study. (A) The landscape of the genetic and expression variation of PRGs. (B) Identification of pyroptosis-
related clusters and a comparison of the differences in the survival, biological pathways, and TME among clusters. (C,D) Identification of pyroptosis-related signatures
and construction of a predictive nomogram.
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FIGURE 2 | Overview of genetic and expression variation of PRGs in DLBCL. (A) The mutation frequency of PRGs in DLBCL patients from the TCGA-DLBC
dataset. Each column represents a patient, and each row represents a PRG. Numbers on the right represent frequencies. Different colors in the bottom annotation
represent different mutation types. (B) The CNV frequency of PRGs in DLBCL patients from the TCGA-DLBC dataset. The red dot represents amplification, and the blue
dot represents deletion. The corresponding height of the column represents the frequency. (C) The location of PRGswith CNV information on chromosomes. (D,E)
Differentially expressed PRGs in normal B cells and DLBCL from the GSE12195 and GSE56315 datasets. DLBCL sample, blue box; normal B cell sample, red box. ns,
not statistically significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 (all significance designations that appear in this paper are minor criteria).
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IPI scores (Figure 4B). Given that the dataset GSE31312 as the
RCHOP treatment cohort, we then explored the response of three
clusters to the treatment regimen. These findings seemed to
explain the difference in the survival among the three clusters,
such cluster A showing the highest complete remission (CR) rate,

cluster B the next highest, and cluster C the worst response to
RCHOP treatment (Figure 4C).

We then verified several previously reported genes associated
with resistance to the RCHOP regimen and found no significant
difference in the expression of “ADAM12” or “ABCB1” among
the three clusters, but “ABCG2” was significantly overexpressed
in cluster C (Figure 4D) (Ohsawa et al., 2005; Kim et al., 2009;
Yin et al., 2017).

GSVA enrichment analysis suggested that there were
differences in the immune microenvironment status among
the three clusters. Through an ssGSEA analysis, we found that
cluster B had strong adaptive immune activation, including CD8+

and CD4+ T cells, and it had the highest Treg cell infiltration
among the three clusters. Regarding innate immune cells, such as
NK T cells, NK cells, and MDSC cells, there were no significant
differences among the three clusters (Figure 5A).

We then used the “ESTIMATE” package to score the
immunity and stromal of the three clusters. As shown in
Figure 5B, cluster B had the highest immune score, which is
consistent with the results of the ssGSEA, proving that the TME
of cluster B had greater immune cell infiltration than that of the
other clusters. Incidentally, we also evaluated the differences
antigen-presenting machinery (APM) among the three
clusters, which has been shown to be significantly associated
with the T cell infiltration score (TIS) (Şenbabaoğlu et al., 2016);
the results remained consistent with the former, with cluster B
being significantly higher than clusters A and C, while no
significant differences were observed between the remaining
two clusters (Figure 5C). However, patients in cluster B did
not derive a consequential survival benefit. Tumors with the
immune-excluded phenotype show infiltration of a large number
of immune cells, but due to stromal entrapment, these immune
cells are only distributed close to tumor cells and are unable to
penetrate the stroma to exert their effect. We therefore also
determined the matrix score of the three clusters. A significant
difference was noted, which was consistent with the prognosis
trend. Cluster A’s stromal scores were smaller than those of
clusters B and C, whereas no significant differences were observed
between clusters B and C (Figure 5D).

One of the characteristics of the immune-excluded phenotype
TME is active angiogenesis (Hegde et al., 2016), so we evaluated
the angiogenesis pathways using the ssGSEA algorithm and
compared the findings among the three clusters. We found
that cluster B had a significantly higher angiogenesis score
than cluster A but no significant difference from cluster C was
noted (Figure 5E). We also found that clusters B and C had
higher levels of hypoxia than cluster A (Figure 5F). IL-1β and IL-
18 are the two most important inflammatory mediators of
pyroptosis, and we found that IL-1β was highly expressed in
cluster C, while IL-18 was highly expressed in cluster B
(Figure 5G). Therefore, we speculate that the immune cell
activities in cluster B were suppressed by inhibitory cellular,
molecular, and other components of the TME and thus were
unable to exert their pro-survival effects.

Based on the above findings, we found that the three
pyroptosis-related clusters have significantly different TME
situations. Cluster B, with pyroptosis-related inflammation

FIGURE 3 | Pyroptosis-associated clusters and differences in biological
features. (A) Kaplan-Meier survival plots for the three pyroptosis-related
clusters. Blue represents cluster A, red cluster B, and green cluster C. (B)
Pyroptosis signature score differences among the three clusters. Blue
represents cluster A, red cluster B, and green cluster C. (C,D) The results of a
GSVA enrichment analysis are shown as a heatmap. The bars at the top
represent different clusters. The square color blocks of different colors on the
right correspond to the leftmost color block, which represents different
paths. In the heatmap, yellow represents pathway activation, and dark blue
represents pathway inhibition.
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dominated by IL-18, closely resembles the immune-excluded
phenotype, while cluster C is more consistent with an
immune-desert phenotype, with pyroptosis-related
inflammation dominated by IL-1β. Cluster A seems
characterized by a low pyroptosis-related inflammatory
phenotype.

Identification of Survival-Related PRGs
After filtering and sorting the data, a total of 421 patients in the
GSE31312 dataset met the criteria for inclusion in the survival
analysis. A univariate Cox regression analysis showed that a total
of 18 genes were significantly associated with the prognosis of
DLBCL patients (p < 0.05). The results of the univariate analysis
of these genes are shown in Table 1. A prognostic signature
comprising seven genes—PRKACA, PLCG1, NLRP9, CASP6,
CASP4, BAK1, and AIM2—was developed by a Lasso-
penalized Cox analysis and stepwise Cox analysis. Based on
the hazard ratio (HR), the downregulated PLCG1, CASP6,

CASP4, and AIM2 were considered tumor suppressors,
whereas the upregulated PRKACA, NLRP9, and BAK1 were
regarded as oncogenes (Figure 6A).

Establishment of the Seven-Gene
Prognostic Signature and Validation of the
Prognostic Performance.
We used the following formula to calculate the risk score:

[(Exp PRKACA × (0.70221) + (Exp PLCG1 × (−0.81499) +
Exp NLRP9 × (1.21405) + Exp CASP6× (−0.88874) + Exp
CASP4 × (−0.61049) + Exp BAK1 × (0.67189) + Exp AIM2 ×
(−0.21797)]

The median risk score was then used as the critical value for
risk grouping. Patients from the training dataset were
stratified into two groups. The Kaplan-Meier survival
curves showed a significantly better OS in the low-risk
group than in the high-risk group (p < 0.0001) (Figures

FIGURE 4 | Clinical characteristics of pyroptosis-related clusters. (A–C) Differences in the proportion of GEP phenotypes, IPI score, and RCHOP regimen
responses among the three clusters. Different colors represent different subtypes, and the column height corresponds to the proportion. (A)GEP type. (B) IPI score. (C)
RCHOP regimen response. (D) Comparison of the drug-resistance gene expression among clusters A, B, and C.
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6B–D). The time-dependent ROC curve was used to
determine the prognostic value of the signature. The AUCs
for 2-, 4-, 6-, and 8-years OS predictions were 0.71, 0.71, 0.75,
and 0.78, respectively, which were all higher than 0.7, proving

that the risk score signature had favorable prognostic ability
in the training dataset (Figure 6E).

Internal validation of the signature using the bootstrapping
method showed that it was reasonably stable (Supplementary
Figures S2A–D). The predictive performance of the seven-gene
signature was externally validated in the GSE10846 dataset.
Kaplan Meier curves showed that the OS remained
significantly different between risk groups in the validation
dataset (Figure 6F). The prognosis of the high-risk group was
significantly worse than that of the low-risk group (p < 0.05).
External validation showed that the seven-gene signature
performed well in predicting the OS in patients with DLBCL.

Building and Validating a Predictive
Nomogram
We combined the risk status with the age, gender, GEP, treatment
regimen (RCHOP) and response, and IPI score as candidate
predictors and created a prognostic nomogram predicting the OS
of DLBCL patients based on the LASSO regression analysis and
stepwise Cox regression analysis. The risk status, age, GEP,
response, and IPI score were considered to be the final
parameters in the nomogram (Figures 7A,B). The AUCs of
the OS for 2, 4, 6, and 8 years were 0.84, 0.86, 0.86, and 0.81,
respectively, (Figure 7C). The C-index of the nomogram was
0.833 (95% confidence interval [CI]: 0.816–0.85), and the
calibration curves revealed that the predicted the OS accorded
with the observed OS (Figure 7D). Taken together, these results
show that the nomogram has an excellent ability to predict the
survival time in DLBCL patients.

Association of the Pyroptosis Risk Score
With Clinical Features and TME
The pyroptosis risk score gradually increased among the three
clusters of A, B, and C, which was consistent with the difference in

FIGURE 5 | Differences in the TME among the three pyroptosis-related
clusters. (A) Differences among the three clusters in the abundance of
infiltrating immune cells. The blue box, the cluster A; The yellow box, the
cluster B; The red box, the cluster C. (B) Differences in ImmuneScore
among the pyroptosis-related clusters. (C) Differences in the APM signature
score among the pyroptosis-related clusters. (D) Differences in the stromal
score among the pyroptosis-related clusters. (E) Differences in the
angiogenesis signature score among the pyroptosis-related clusters. (F)
Differences in the hypoxia signature score among the pyroptosis-related
clusters. (G) Comparison of the IL-1β and IL-18 expression among the
pyroptosis-related clusters. (B–G) The blue box represents cluster A, the red
box represents cluster B, and the green box represents cluster C.

TABLE 1 | Results of a univariate Cox analysis for differential PRGs.

Gene Hazard ratio 95% CI p-value

TNF 0.53 0.36–0.8 0.002
PYCARD 0.62 0.43–0.91 0.013
PRKACA 1.96 1.28–2.99 0.002
PLCG1 0.57 0.39–0.84 0.004
NOD2 0.61 0.4–0.93 0.023
NLRP9 3.36 1.88–6 0
NLRP6 1.59 1.01–2.5 0.047
NLRP1 1.76 1.21–2.56 0.003
NLRC4 1.58 1.11–2.24 0.01
NAIP 0.78 0.62–0.97 0.029
IL18 0.74 0.58–0.94 0.013
GPX4 0.62 0.44–0.86 0.005
CASP8 1.38 1.05–1.81 0.02
CASP6 0.53 0.32–0.87 0.012
CASP4 0.54 0.42–0.71 0
BAX 0.76 0.6–0.95 0.018
BAK1 2.03 1.34–3.09 0.001
AIM2 0.88 0.78–0.99 0.035

CI, confidence interval.
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the prognosis between the clusters (Figure 8A). The low-risk
group had a higher pyroptosis signature score than the high-risk
group (Figure 8B). We further analyzed the relationship between

the pyroptosis risk group and IPI score, response to treatment
and PRG-related clusters and visualized them using an alluvial
diagram (Figure 8C). It was evident that the low-risk group had

FIGURE 6 | Establishment and validation of the seven-gene prognostic signature. (A) Forrest plot of the multivariate Cox regression analysis of seven genes. (B) A
Kaplan–Meier survival analysis in the training dataset. (C,D) The distribution of risk scores and living status of DLBCL patients in the training dataset. (E) An ROC curve
analysis of the signature. (F) A Kaplan–Meier survival analysis in the validation dataset.
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lower IPI scores and better treatment responses than the high-risk
group. The above analyses suggested that the low-risk group was
significantly associated with more favorable clinical features for
the survival than the high-risk group.

To evaluate the correlation between the TME and pyroptosis in
DLBCL, we included the pyroptosis risk score, pyroptosis signature
score and TME components, including immune cells, APM, CD8+

T cell effort, and stroma-related pathways, in the correlationmatrix
for the comprehensive analysis. Infiltrating immune cells, such as
activated CD8+ T cells and NK cells, showed a negative correlation
with the pyroptosis risk score, while stromal pathways, such as
pan-F-TBRS, EMT1-3 and stromal 2, were not correlated
(Figure 8D). Notably, the prognostically favorable stromal 1
signature was also negatively correlated with the pyroptosis risk
score. The pyroptosis signature score showed an extremely strong

correlation with the TME, associated with either adaptive or innate
immunity, and stromal components.

DISCUSSION

Pyroptosis is closely related to human diseases, and an increasing
number of studies have proven that pyroptosis acts as a “double-
edged sword” in human tumors (Xia et al., 2019). As a type of cell
death, pyroptosis can inhibit tumor development by inducing tumor
death. Knockdown of LncRNA-XIST inhibited non-small-cell lung
cancer (NSCLC) progression by triggering pyroptosis via the miR-
335/SOD2/ROS signaling pathway (Liu et al., 2019). Overexpressed
LncRNA ADAMTS9-AS2 inhibits gastric cancer (GC) progression
by regulating miR-223-3p/NLRP3 axis-mediated pyroptosis (Ren
et al., 2020). However, these tumor suppressive effects may be
attenuated by epigenetic modifications, such as tumor-
suppression genes ZDHHC1 and DRD2 (Le et al., 2020; Tan
et al., 2021). Multiple signaling pathways and inflammatory
mediators are released during pyroptosis and are closely
associated with tumorigenesis as well as resistance to
chemotherapeutic drugs (Grivennikov et al., 2010). GSDMD, as
the major executor of pyroptosis, was concomitantly significantly
elevated compared to normal B cells, suggesting that pyroptotic
activity is greater in DLBCL. We also observed a significantly higher
expression of IL-1β and IL-18 in DLBCL, suggesting that DLBCL is
in a strong inflammatory response which may be mediated by
pyroptosis. To our surprise, we found that the expression of none
of the genes in the GSDM family was associated with the DLBCL
prognosis, which may reflect the complex role of inflammation in
tumorigenesis (Zhang et al., 2021).

Most previous studies focused on a single or few pyroptosis-
related molecules, and recently, attention has been paid to this
issue. For example, Ye et al. explored the roles of multiple PRGs in
ovarian cancer, such that analysis modalities allow probing the
role of this phenotype in disease from a holistic perspective (Ye
et al., 2021). In the present study, we identified 3 distinct
pyroptosis-associated clusters based on 52 PRGs. We detected
significant prognostic differences in patients belonging to
different clusters, with patients classified as cluster A having
the best prognosis, whereas those in cluster C had the worst
prognosis. This suggested heterogeneity in biological pathways
among the three different clusters. An analysis of the clinical
characteristics of the three clusters showed that cluster A was
biased toward more favorable clinical characteristics, such as the
GCB phenotype and a low-risk IPI score, than the other clusters.
Unexpectedly, cluster C showed a higher proportion of GEP-type
patients as well as low-risk IPI score than cluster B, suggesting
that these two clinical features cannot fully explain the
heterogeneity of pyroptosis-associated clusters.

RCHOP is currently the standard care for pre-treatment
DLBCL, and responsiveness to drugs is directly related to the
patient prognosis (Tilly et al., 2015). Our analysis of the drug
response was consistent with the different prognostic features
among the three clusters, as cluster A had the best prognosis
and the highest CR rate, while cluster C had a poor prognosis and
the lowest CR rate; furthermore, themRNA level of ABCG2, which

FIGURE 7 | Nomogram construction and prognostic value of the
signature. (A) Forest plot of clinical factors and risk score. (B) The nomogram
for predicting the survival rate after 2, 4, 6, and 8 years in DLBCL patients. (C)
The time-dependent ROC analysis of nomogram predicting the survival
rate after 2, 4, 6, and 8 years in DLBCL patients. (D) Calibration plots of the
nomogram.
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is related to doxorubicin resistance, was particularly high in cluster
C (Kim et al., 2009). GSVA enrichment analysis showed that
cluster B contained a significant activation of DDR processes as
well as enrichment of numerous cancer promotion and
metabolism-related pathways. DNA repair pathways are critical
for the tumor cell survival during exposure to chemotherapy.
Overexpression of NER pathway genes by high-risk DLBCL is
associated with resistance to the CHOP regimen, with higher DNA
repair scores implying a poor prognosis (Bret et al., 2013; Bret et al.,
2015). We similarly observed significant oxidative
phosphorylation, high activity of the TCA cycle and fatty acid
metabolism enrichment in cluster B, findings similar to those
observed for OXPHOS-DLBCL by Caro et al. and features that
favor the growth and survival of DLBCL and engender resistance to
conventional agents that target the BCR signaling axis (Caro et al.,
2012). The above results indicated that cluster B was enriched with

a large number of poor prognostic pathways, which contributed to
the decreased OS of patients in cluster B.

The role of pyroptosis in the TME has been gradually
appreciated, and the inflammatory microenvironment it brings
about was found to be associated with the proliferation, survival,
immunosuppression, and angiogenesis of a variety of tumors (Karki
and Kanneganti, 2019). The pre-existing host immune infiltration
has a suggestive significance concerning the prognosis of DLBCL
patients treated with the RCHOP regimen, which suggests that the
difference in the prognosis among our three clusters may have been
related to differences in the immune microenvironment (Ansell
et al., 2001). Through an immune infiltration analysis, we
conformed that the three clusters had obvious heterogeneity in
the TME. The characteristics of the three clusters are summarized as
follows: Cluster A showed a relatively low abundance of immune
cell infiltration but low levels of stromal element infiltration and

FIGURE 8 | Clinical and TME characteristics of pyroptosis risk score and pyroptosis risk subgroup. (A) Comparison of the pyroptosis risk score among the three
pyroptosis-related clusters. The blue box represents cluster A, the red box cluster B and the green box cluster C. (B) Comparison of the pyroptosis signature score
between the two pyroptosis risk groups. Blue box, high-risk group; red box, low-risk group. (C) Alluvial diagram showing the changes in the IPI score, pyroptosis risk
group, RCHOP regimen treatment response and pyroptosis-related clusters. (D) Correlation among the TME, expression of IL-1β and IL-18, pyroptosis signature
score and pyroptosis score. Red represents a positive correlation, and blue represents a negative correlation. The color depth represents the strength of the correlation.
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inflammation compared with clusters B and C; Cluster B had
significant adaptive immune activation, a high degree of stromal
activation and inflammation dominated by IL-18; Cluster C had a
lower level of adaptive immune activation than cluster B but had the
highest degree of stromal infiltration among the three clusters as
well as inflammation dominated by IL-1β. Baldini et al. found that
the P2X7 receptor-NLRP3 inflammasome complex is a promising
factor for predicting the development of NHL in Sjogren’s
syndrome (SS). The IL-18 levels were higher in SS glands with
MALT-NHL, underscoring the importance of IL-18 in the
pathogenesis of malignant lymphoproliferative diseases (Baldini
et al., 2017). The IL-18 mRNA level was significantly elevated in
primary DLBCL, and increasing serum IL-18 levels were also found
to be associated with a poor prognosis in DLBCL patients who were
treated with the RCHOP regimen (Goto et al., 2011). Further
studies revealed that IL-18 can promote proliferation and inhibit
apoptosis in lymphoma cells by altering the balance of c-myc/TP53
and Bcl-2/Bax (Zhao et al., 2017). The study by Lu et al. similarly
supported the notion that IL-1β and IL-18 levels are elevated in
lymphoma and that blocking them can retard disease progression
(Lu et al., 2021). The infiltration of immune cells with high
abundance in cluster B was accompanied by significantly
elevated stromal infiltration, suggesting that cluster B closely
resembles the immune-excluded phenotype (Chen and Mellman,
2017). Despite the presence of a pre-existing immune response, it is
unable to exert anti-tumor effects because immune cells are retained
in the stromal.We observed a remarkable positive correlation of the
pan-F-TBRS signature with both IL-1β and IL18 expression,
demonstrating that pyroptosis-induced inflammation is
associated with increased infiltration of fibroblasts (Mariathasan
et al., 2018). A dense stroma impedes the movement of T cells into
the tumor, leading to the appearance of a rejection phenotype in
cluster B (Salmon et al., 2012). Cluster B was also notable for the
presence of angiogenesis and the infiltration of tumor-associated
macrophages (TAMs), both of which play a role in limiting T cell
clustering in the vicinity of the tumor (Joyce and Fearon, 2015).
Furthermore, the massive infiltration of regulatory T cells, as well as
the enrichment of the TGF-β signaling pathway, suggested that the
function of the infiltrated T cells in cluster B might be suppressed
(Zou, 2006; Massagué, 2008). Given that cluster C had prominent
stromal infiltration but no prominent immune cell infiltration, we
considered it more consistent with an immune-desert phenotype
(Chen and Mellman, 2017). We observed significantly elevated
NLRP3 levels in cluster C, which suppressed the anti-proliferative
effects of dexamethasone. Inflammasome NLRP3 activation
promotes lymphoma cell proliferation and inhibits apoptosis by
upregulating c-myc and BCL2 and downregulating TP53, and Bax,
which in turn reduces the antitumor effect of dexamethasone (Zhao
et al., 2017). IL-1β, as an additional pyroptosis important
inflammatory factor, was found to be significantly elevated in
cluster C. The IL-1β pathways promote tumor growth and
metastasis in breast cancer models, and tumor progression is
associated with increased levels of IL-1β at primary and
metastatic sites, an effect associated with activation of the
inflammasome NLRP3 (Guo et al., 2016). Blocking IL-1β
reverses the immunosuppression in mouse breast cancer and
promotes tumor cell regression (Kaplanov et al., 2019). High

levels of immune cell infiltration were not seen for cluster A,
and we were unable to classify this as an immunoinflammatory
phenotype; however, we also did not detect pyroptotic
inflammation. This may have been due to the fact that neither
IL-18 nor IL-1β was appreciably elevated in cluster A, a finding
associated with an optimal response to therapy, ultimately leading
to a better prognostic outcome.

Heterogeneity in pyroptosis-associated clusters is an among-
group difference, but inter-individual differences are also
important to consider. Therefore, we designed a pyroptosis
risk scoring system for individual patient evaluation. We
found that the scores were higher in cluster C than in cluster
A, where inflammation was not intense. This indicates that the
scoring system can assess not only the inter-individual
heterogeneity of pyroptosis but also the pattern of pyroptosis
among individuals, confirming its reliability. In parallel, we also
conducted an analysis of the correlation of this scoring system
with clinical features and demonstrated showed high scores were
associated with worse clinical characteristics.

In summary, our analysis suggests that pyroptosis may have
different patterns of action in DLBCL, and high pyroptosis levels
did not confer a more favorable survival prognosis, mainly due to
the inflammation induced by pyroptosis. This observation fits the
current definition of the role of pyroptosis in tumors as a “double-
edged sword”. Inflammation can promote tumorigenesis and
antitumor immunity at all stages of tumor development. The
ultimate effect of inflammation may be related to whether tumor
promotion or inhibition dominates and also depend on
differences in the host inflammatory status and immunity
(Zhang et al., 2021). Considering the inter-individual
heterogeneity of pyroptosis, we developed a pyroptosis-gene
risk score signature that was able to effectively identify
patients at high and low risk. Based on this risk signature and
the clinical characteristics of DLBCL, a nomogram was
constructed and used to excellently predict the prognosis of
DLBCL patients. Our findings have important suggestive
implications for clinical management. For patients with a low
level of pyroptosis-related inflammation, the RCHOP regimen
may be beneficial, whereas a low response rate and resistance to
RCHOP treatment may be points of concern in patients with a
high IL-1β expression. Patients with elevated IL-18 levels have a
characteristic immune-excluded phenotype, suggesting that
overcoming T cell suppression and rejection may enable such
patients to benefit from immunotherapy (Joyce and Fearon,
2015).

Wemust acknowledge that this study is not prospective, which
is an inescapable limitation. Further experiments are needed to
verify the mechanism underlying the actions of pyroptosis-
related molecules. This is a great challenge for us, but the
ability of current single-cell sequencing technologies to clarify
the TME is encouraging. The establishment of prospective
cohorts and reliance on single-cell sequencing techniques to
mine pyroptosis-associated immune microenvironment
features are key directions that will be pursued in our follow-
up studies.
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CONCLUSION

Our study revealed the complicated role of pyroptosis in DLBCL, and
differences in pyroptosis patterns may responsible for the tumor and
tumor microenvironment heterogeneity. The contribution of
pyroptosis to immune microenvironment shaping is nonnegligible,
and properly recognizing and inducing pyroptosis to generate a
tumor suppressormicroenvironment is a worthy direction to explore.
Furthermore, a comprehensive assessment of individual pyroptosis
patterns and signatures based on pyroptosis may assist in establishing
personalized treatment of DLBCL patients.
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Supplementary Figure 1 | (A) The forest plot of univariate Cox regression of PRGs.
The darker the dot color, the more significant the solution result is. (B,C)
Identification of pyroptosis-associated clusters. The 421 DLBCL patients from
the GSE31312 dataset were divided into 3 clusters based on the consensus
clustering matrix (k � 3).

Supplementary Figure 2 | (A–D) Results of internal verification of the seven-gene
signature, using the bootstrapping method. (E,F) A Lasso analysis of the prognostic
PRGs in DLBCL.
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