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BACKGROUND Qualitative differences in 12-lead electrocardio-
grams (ECG) at onset have been reported in patients with takotsubo
syndrome (TTS) and acute anterior myocardial infarction (Ant-AMI).
We aimed to distinguish these diseases by machine learning (ML)
approach of microvolt-level quantitative measurements.

METHODS We enrolled 56 consecutive patients with sinus rhythm
TTS (median age, 77 years; 16 men), and 1-to-1 random matching
was performed based on age and sex of the patients. The ECG in
the emergency room was evaluated using an automated system
(ECAPs12c; Nihon-Koden). Statistical and ML predictive models
for TTS were constructed using clinical features and ECG parameters.

RESULTS Statistically significant differences were observed in 25
parameters; the V1 ST level at the J point (V1 STJ) showed the lowest
P value (P , .001). V1 STJ �118 mV showed the highest accuracy
for TTS (0.773). The highest area under the receiver operating char-
acteristic curve (AUROC) was shown in the aVR ST level at 1/16th of
the preceding R-R interval after the J point (aVR STmid: 0.727).
Address reprint requests and correspondence:DrMasato Shimizu, Yoko-
hama Minami Kyosai Hospital, 1-21-1 Mutsuura-higashi, Kanazawa-ku,
Yokohama 236-0037, Japan. E-mail address: mst-smz@my.email.ne.jp.

2666-6936/© 2022 Heart Rhythm Society. This is an open access article under the
(http://creativecommons.org/licenses/by/4.0/).
Conversely, the light gradient boosting machine (model_LGBM)
and extra tree classifier (model_ET) indicated higher accuracy (mod-
el_LGBM: 0.842, model_ET: 0.831) and AUROC (model_LGBM:
0.868, model_ET 0.896) than other statistical models. V1 STJ had
high feature importance and Shapley additive explanation values
in the 2 ML models.

CONCLUSION ML applied to automated microvolt-level ECG mea-
surements showed the possibility of distinguishing between TTS
and Ant-AMI, which may be a clinically useful ECG-based discrimi-
nator.
KEYWORDS Takotsubo syndrome; Acute anterior myocardial infarc-
tion; Machine learning; Electrocardiogram; SHAP method

(Cardiovascular Digital Health Journal 2022;3:179–188) © 2022
Heart Rhythm Society. This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction
Takotsubo syndrome (TTS) and acute anterior myocardial
infarction (Ant-AMI) at its onset show seemingly similar
clinical features, and distinguishing between the 2 diseases
without emergent cardiac catheterization is difficult.1

Although TTS, a diagnosis of exclusion, can be managed
noninvasively with appropriate medical therapy, Ant-AMI
is often managed invasively, with ST-elevation myocardial
infarction (STEMI) cases requiring emergent revasculariza-
tion. In cases of non-ST-elevation AMI (NSTEMI) without
key clinical symptoms and signs of ST-elevation AMI
(STEMI), noninvasive methods are desirable, especially in
ambulances, clinics, and hospitals that cannot perform emer-
gent cardiac catheterization. STEMI cases should be trans-
ferred to hospitals with cardiac catheterization laboratories
immediately, but even in such hospitals, emergent catheteri-
zation is sometimes difficult to perform owing to various rea-
sons: advanced age, dementia, frailty, poor physical status,
and/or social problems. Twelve-lead electrocardiogram
(ECG) is a fundamental examination that can be performed
on arrival and has a time advantage compared to other exam-
inations such as high-sensitivity troponin. Initial ECG on
arrival can be useful to triage patients, but ECG between
the 2 diseases at onset shows very similar patterns. The dif-
ference in ECG has been studied by several investigators.2,3

Difference in ST-T change has also been well studied, and
several leads (eg, V1, aVR, inferior leads) were reported to
have important roles in distinguishing between the dis-
eases.2,3 Although these reports demonstrated good accuracy
(0.95, Kosuge and Kimura,2 and 0.66-0.86, Jim and col-
leagues),3 external validity was not confirmed.

Machine learning (ML) applied to ECG has been devel-
oped in several cardiac diseases, and some investigators
have reported methods for diagnosing myocardial infarction
using a convolutional neural network on vector data of
ECG.4,5 However, the accuracy (0.81, Makimoto and
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KEY FINDINGS

� Takotsubo syndrome (TTS) and acute anterior myocar-
dial infarction (Ant-AMI) show similar clinical features,
especially in electrocardiogram (ECG) at onset.

� Automated ECG measurement provides microvolt-level
ST change; at J point (STJ), at 1/16th of the preceding
R-R interval after the J point (STmid), and at 2/16th
(STend) in each lead. STJ�118 mV showed the highest
accuracy, and aVR STmid indicated the highest area un-
der receiver operating characteristics curve (AUROC) for
TTS.

� Diagnostic performance of machine learning (light
gradient boosting machine, extra tree classifier) on ta-
ble data of ECG parameters demonstrated higher accu-
racy and AUROC for TTS than those of statistical
models, and V1 STJ played an essential role in building
both models.
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colleagues4) or area under the receiver operating character-
istic curve (AUROC; 0.85–0.88, Cho and colleagues5) was
not higher than that of conventional ST-level examination.
Moreover, there are no studies on the diagnosis of TTS using
ML applied to ECG.

We aimed to build a predictive model for TTS by ML, not
with ECG vector data but with table data of conventional 12-
lead ECG parameters, and to elucidate the parameters of ECG
with high feature importance in the ML models.
Figure 1 Explanation of measurement on 1 beat of the electrocardiogram (ECG).
the measurement, and right figure a real ECGwave and real results. The ST level wa
the end of the QRS complex as measured in mV with respect to the baseline; (2) th
of the preceding R-R interval after the J point; and (3) the end of the ST level (STend
the J point. The T-wave amplitude was defined as the absolute distance from the a
Methods
Study patients and ECG
We enrolled 56 consecutive patients at Yokohama Minami
Kyosai Hospital with sinus rhythm with apical ballooning–
type TTS from 2013 to 2021. In all cases, cardiac catheteri-
zation was performed, and no coronary stenosis and left
ventricular apical ballooning was confirmed in TTS cases.
Stenosis/occlusion of the left anterior descending coronary
artery was confirmed in the Ant-AMI cases. The diagnosis
of TTS was based on Mayo’s criteria,1 and other diseases
that mimicked AMI (acute myocarditis/pericarditis and vaso-
spastic angina) were excluded by absence of inflammation or
acetylcholine provocation test (several days after admission).
The diagnosis of AMI (STEMI and NSTEMI) was based on
the fourth universal definition of AMI.6 Among our AMI
database, patients with same age and sex in each TTS case
were extracted, and 1-to-1 random matching was performed.
Finally, 112 patients (median age, 77 years [interquartile
range, 67–84 years]; 32 men) were enrolled.

ECG on arrival (in the emergency room) in both groups
was measured at the mV level using an automated system
(ECAPs12c; Nihon-Koden, Tokyo, Japan).7 ECG variables,
ST levels, T-wave amplitude, and other fundamental param-
eters were preselected, as explained in Figure 1, and those pa-
rameters were measured from 10-second waveforms. The ST
levels of each lead were measured automatically at 3 points:
(1) ST level at the J point (STJ), which was recorded at the
end of the QRS complex, measured with respect to the base-
line; (2) the middle of the ST level (STmid), which is the ST
level at the point 1/16th of the preceding R-R interval after the
All the parameters were measured automatically. Left figure shows schema of
s measured at 3 points: (1) ST level at the J point (STJ), which was recorded at
e middle of the ST level (STmid), which is the ST level at the point of 1/16th

), which is the ST level at the point of 2/16th of the preceding R-R interval after
pex of the T wave to the baseline. TTS 5 takotsubo syndrome.



Table 1 Comparison of qualitative ST elevation/depression and T-wave inversion in takotsubo syndrome and acute anterior myocardial
infarction

All cases (n 5 112) Prediction data (n 5 90)

TTS (n 5 56) AMI (n 5 56) P value P value (post hoc) TTS (n 5 45) AMI (n 5 45)

Anterior STEMI 28 31 .566 23 26
V1 ST elevation at J point 3 18 ,.001 ,.001 (ST elevation) 2 14

ST depression at J point 0 0 0 0
T-wave inversion 7 9 .793 5 7

V2 ST elevation at J point 27 33 .462 22 28
ST depression at J point 1 2 0 1
T-wave inversion 8 5 .557 6 4

V3 ST elevation at J point 28 28 .302 24 11
ST depression at J point 28 25 0 1
T-wave inversion 11 10 1.000 8 7

V4 ST elevation at J point 23 17 .029 .032 (ST depression) 18 14
ST depression at J point 2 11 1 7
T-wave inversion 15 16 1.000 11 13

ST elevation/depression was defined as at least 0.1 mV ST deviation at J point, and T-wave inversion as at least -0.1 mV amplitude judged on automated
measurement. Diagnosis of ST-elevated acute anterior myocardial infarction was based on fourth universal definition of acute myocardial infarction—briefly,
ST elevation at the J-point in 2 contiguous leads with the cut point �1 mm in V1–V4 leads, or other than leads V2–V3 where the following cut-points apply:
�2 mm in men �40 years; �2.5 mm in men ,40 years, or �1.5 mm in women regardless of age. Fisher exact test was performed, and as post hoc analysis,
data underwent Holm’s multiple comparison. A P , .05 was considered as significant.
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J point; and (3) the end of the ST level (STend), at the point
2/16th of the preceding R-R interval after the J point. Quali-
tative ST elevation/depression was defined as at least 0.1
mV deviation at J point, judged on the automated measure-
ment. The T-wave amplitude was defined as the absolute dis-
tance from the apex of the T wave to the baseline. The
rate-corrected QT interval (QTc) was calculated using the
modified Framingham (ECAPs12C) formula (QTc 5 QT
1 [1000 – R-R]/7).

The ethics committee of Yokohama Minami Kyosai Hos-
pital approved the study protocol and written informed con-
sent was obtained from all participants prior to the study.
Statistical analysis for characteristics of patients
Numeric variables are displayed as the median value (inter-
quartile range: 25%–75% value), and the Mann–Whitney
test was used to compare the TTS and Ant-AMI groups.
Fisher exact test was used to evaluate differences in categor-
ical variables, and Holm’s multiple comparison was used as a
post hoc test.

Statistical significance was set at P , .05. All statistical
analyses were performed using EZR (Saitama Medical Cen-
ter, Jichi Medical University, Saitama, Japan),8 a graphical
user interface for R (The R Foundation for Statistical
Computing, Vienna, Austria).9
Predictive model construction by statistical
method
Fifty-six pairs of cases were randomly split into 80% and
20% (45 pairs vs 11 pairs), in which 45 pairs (90 cases)
were set as the prediction data and 11 pairs (22 cases) as
the test data. Statistical predictive models were constructed
based on these 90 cases, as described below. Univariate logis-
tic regression analysis for TTS was performed using the pre-
diction data, and significant predictors were extracted. A
multivariate logistic regression analysis was not performed
because of the multicollinearity of many pairs of parameters.
A receiver operating characteristic (ROC) curve analysis was
performed, and the cutoff value was calculated based on the
Youden index. The statistical predictive model consisted of
an assessment of whether a parameter in each case was
higher/lower than the cutoff value (named the cutoff value
model). A confusion matrix was created, and the diagnostic
performance (accuracy/sensitivity : recall/positive predictive
value : precision) was evaluated. From the analysis of the pre-
dictive model, the propensity score (PS) of each predictor
was calculated, and the PS formula for each predictor was
constructed (the ROC curve model):

PS formula5 1 = ð11 expð2ax1 bÞÞ

where a 5 coefficient of predictor and b 5 intercept, calcu-
lated by logistic regression analysis. The model was applied
to the test data and the AUROC was measured using ROC
curve analysis.
Predictive model construction and validation by ML
Among the ML methods for ECG data, we did not use con-
ventional deep learning procedures using 1-dimensional
data (vector data)10 because it was difficult to explain the
feature importance in the model. To secure explainability,
we adopted a novel method that used an ensemble learning
procedure with conventional ECG parameters (eg, ST level,
T-wave amplitude) as table data.

Eleven ML models were built using PyCaret, an open-
source wrapper over several ML libraries in Python in a
low-code environment.11 After screening of the 11 models,



Table 2 Comparison of takotsubo syndrome, acute anterior myocardial infarction, and univariate logistic regression analysis for takotsubo
syndrome, on prediction data (n 5 90)

Comparison of TTS and Ant-AMI Univariate logistic regression for TTS

TTS (n 5 45) Ant-AMI (n 5 45) OR 95% CI P value

Age (years) 78 [69, 86] NA
Male 14 (31%) NA
HTN 14 (31%) 19 (42%) 0.618 0.26-1.47 .275
HL 9 (20%) 29 (64%) 0.138 0.05-0.36 ,.001*
DM 2 (4%) 14 (31%) 0.103 0.02-0.49 .004*
CKD 14 (31%) 8 (18%) 2.090 0.78-5.63 .145
BNP (pg/mL) 274 [67, 482] 184 [59, 477] 0.999 0.94-1.07 .982
WBC (/mm3) 8200 [6700, 11325] 9200 [7100, 11400] 1.020 0.92-1.13 .723
CRP (mg/dL) 1.38 [0.23, 6.58] 0.23 [0.10, 0.76] 1.100 1.00-1.21 .053
HR (bpm) 95 [79, 131] 84 [71, 94] 1.030 1.01-1.05 .002*
P axis (degree) 57 [38, 73] 55 [40, 62] 1.000 0.99-1.02 .472
PR (ms) 168 [154, 187] 172 [156, 188] 0.996 0.98-1.01 .587
QRS axis (degree) 35 [-19, 74] 22 [-2, 49] 1.000 1.00-1.01 .345
QRS width (ms) 90 [84, 100] 92 [82, 102] 0.976 0.76-1.25 .849
QTc (ms) 429 [410, 449] 430 [405, 442] 1.030 0.92-1.15 .611
T axis (degree) 67 [37, 94] 69 [20, 106] 1.000 1.00-1.01 .296
I STJ 20 [-40, 15] -15 [-45, 15] 1.160 1.05-1.28 .003*
I STmid 10 [-5, 55] -10 [-40, 30] 1.100 1.02-1.19 .015*
I STend 30 [-5, 60] -5 [-35, 50] 1.040 0.99-1.10 .164
I T 68 [-36, 156] 58 [-53, 146] 1.080 0.82-1.42 .571
II STJ 20 [-10, 75] -20 [-55, 30] 1.120 1.04-1.20 .002*
II STmid 25 [0, 85] 0 [-55, 35] 1.120 1.05-1.20 .001*
II STend 50 [5, 105] 10 [-40, 65] 1.080 1.02-1.14 .005*
II T 145 [90, 265] 160 [63, 278] 1.000 0.79-1.27 .971
III STJ 5 [-35, 35] 5 [-60, 60] 1.030 0.97-1.08 .366
III STmid 5 [-25, 50] 0 [-65, 60] 1.040 0.99-1.09 .155
III STend 15 [-25, 55] 25 [-60, 70] 1.030 0.99-1.07 .154
III T 100 [-45, 195] 108 [-93, 203] 1.040 0.95-1.29 .678
aVR STJ -20 [-60, 3] 10 [-15, 40] 0.830 0.74-0.93 ,.001*
aVR STmid -30 [-70, -5] 5 [-25, 35] 0.831 0.75-0.92 ,.001*
aVR STend -40 [-75, -15] 0 [-50, 30] 0.902 0.94-0.97 .006*
aVR T -120 [-185, -65] -115 [-195, -50] 0.966 0.70-1.33 .831
aVL STJ 13 [-15, 46] -15 [-40, 35] 1.060 0.98-1.15 .144
aVL STmid 5 [-15, 30] -5 [-40, 25] 1.010 0.95-1.08 .796
aVL STend 0 [-15, 35] -5 [-50, 45] 0.993 0.95-1.04 .784
aVL T 35 [-78, 78] -33 [-119, 123] 1.040 0.80-1.36 .754
aVF STJ 10 [-20, 55] -10 [-60, 45] 1.080 1.01-1.15 .027*
aVF STmid 10 [-10, 60] 0 [-70, 50] 1.090 1.02-1.16 .011*
aVF STend 20 [-5, 75] 5 [-60, 70] 1.060 1.01-1.12 .026*
aVF T 135 [75, 225] 125 [-8, 220] 0.976 0.94-1.01 .155
V1 STJ 15 [-20, 35] 70 [20, 130] 0.846 0.78-0.92 ,.001*
V1 STmid 30 [-10, 60] 100 [40, 185] 0.860 0.80-0.93 ,.001*
V1 STend 40 [-15, 65] 120 [30, 220] 0.917 0.87-0.97 .001*
V1 T 50 [-70, 185] 143 [55, 289] 0.786 0.62-0.99 .044*
V2 STJ 93 [31, 138] 135 [45, 290] 0.959 0.93-0.99 .018*
V2 STmid 135 [75, 205] 215 [100, 420] 0.960 0.93-0.99 .005*
V2 STend 185 [80, 280] 295 [130, 550] 0.981 0.96-1.00 .031*
V2 T 300 [150, 490] 435 [235, 815] 0.932 0.94-1.03 .167
V3 STJ 110 [45, 170] 65 [-30, 290] 1.000 0.98-1.03 .777
V3 STmid 170 [70, 240] 190 [30, 390] 0.995 0.98-1.02 .63
V3 STend 215 [105, 320] 290 [25, 500] 0.991 0.98-1.01 .251
V3 T 330 [80, 540] 435 [95, 725] 0.960 0.88-1.05 .363
V4 STJ 70 [22, 150] 0 [-55, 140] 1.020 0.99-1.04 .205
V4 STmid 105 [40, 185] 55 [-15, 230] 1.010 0.99-1.03 .623
V4 STend 160 [45, 255] 140 [-10, 295] 1.000 0.98-1.02 .987
V4 T 263 [-89, 493] 205 [-130, 505] 0.985 0.90-1.08 .739
V5 STJ 50 [15, 100] -20 [-60, 45] 1.050 1.01-1.09 .015*
V5 STmid 70 [15, 125] -5 [-55, 85] 1.030 1.00-1.06 .073
V5 STend 75 [0, 155] -10 [-55, 130] 1.010 0.99-1.03 .337
V5 T 135 [-105, 275] 95 [-155, 260] 1.010 0.89-1.13 .922
V6 STJ 25 [-5, 55] -35 [-65, 10] 1.150 1.06-1.25 ,.001*
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Table 2 (Continued )

Comparison of TTS and Ant-AMI Univariate logistic regression for TTS

TTS (n 5 45) Ant-AMI (n 5 45) OR 95% CI P value

V6 STmid 25 [-5, 70] -25 [-60, 5] 1.110 1.04-1.18 .002*
V6 STend 40 [-10, 100] -25 [-65, 40] 1.060 1.01-1.11 .010*
V6 T 93 [41, 195] 65 [-135, 233] 1.060 0.88-1.26 .556

Numeric variables are displayed as median [interquartile range: 25%, 75%], and categorical variables are displayed as n (%). STJ, STmid, STend, and T wave
are expressed as mV, and are explained in Figure 1. CK and CKMB were maximum value during acute phase, and they were not analyzed by logistic regression.
Statistical comparison methods, abbreviations are explained in Table 1 footnote. In logistic regression, BNP were analyzed per 100 pg/mL, and the result of
OR and 95% CI were displayed as per 100 values. WBC per 100 counts/mm3, ST levels per 10 mV, and T-wave amplitude per 100 mV. P, .05 was considered sig-
nificant; significant values are denoted by an asterisk (*).

Ant-AMI5 acute anterior myocardial infarction; BNP5 brain natriuretic peptide; bpm5 beats per minute; CI5 confidence interval; CKD5 chronic kidney
disease; CRP5 C-reactive protein; DM5 diabetes mellitus; HL5 hyperlipidemia; HR5 heart rate; HTN5 hypertension; N/A5 not applicable; OR5 odds ratio;
TTS 5 takotsubo syndrome; WBC 5 white blood cell.

Shimizu et al Machine Learning for Takotsubo Syndrome and Acute MI 183
we adopted 2 excellent ensemble learning methods: an extra
tree classifier (model_ET) and a light gradient boosting ma-
chine (model_LGBM),12,13 which uses many random deci-
sion trees and built a majority vote-like system. A brief
explanation of the ensemble learning is provided in
Supplemental File 1. All 112 cases were randomly split 10
times into 80% of the data for ML training (90 cases) and
20% of the data for validation (22 cases), and 10-fold random
cross-validation was performed. Both models were tuned to
obtain the highest accuracy with optimization of the hyper-
parameters. The best number of features was searched by
recursive feature elimination by cross-validation on PyCaret.
The cross-validated model was finalized on PyCaret (the re-
sults of hyperparameter tuning are displayed in Supplemental
File 6).

The feature importance of the models was ranked to esti-
mate the contribution of the predictors to the ML models. In
addition to feature importance, the SHAP (SHapley Additive
exPlanations) method was introduced on data for ML model
training.14,15 The theory of SHAP is based on “the game
optimal Shapley values,”14 and the summary plot of SHAP
combines feature importance with feature effects. The red
and blue points indicate TTS and Ant-AMI, respectively.
On the x-axis, the Shapley value of each feature is displayed
(defined as the SHAP value), in which a large (right side)
value corresponds to a positive contribution to the model.
A brief explanation of the SHAP method is provided in
Supplemental File 2.
Results
The characteristics of all 112 patients and the comparison of
prediction data (n5 90) and test data (n5 22) are displayed
in Supplemental File 2. There were no significant differences
between both the groups.

Table 1 shows the qualitative ST elevation/depression in
V1–V4 leads and the number of cases diagnosed as anterior
STEMI. Although there were significant differences in V1

ST elevation (P , .001) and V4 ST depression (P 5 .029)
at point J, the number of cases diagnosed with anterior
STEMI did not differ between the 2 diseases (TTS, 28;
Ant-AMI, 31; P 5 .566).
Table 2 shows a comparison of the TTS and Ant-AMI in
the prediction data (n 5 90). Hyperlipidemia and diabetes
cases with TTS were significantly lower than those with
Ant-AMI. Among ECG parameters, heart rate and several
ST levels (lead I/II/aVR/aVF/V1/V2/V5/V6) demonstrated
significant differences. Univariate logistic regression anal-
ysis identified 25 significant predictors (asterisk [*] in
Table 2). Multivariate logistic regression analysis was not
performed because of the many significant correlations/con-
founding/multicollinearity among the variables.

The diagnostic performances of the statistical predictive
models are presented in Table 3, and the ML models in
Table 4. Among the statistical predictors, V1 STJ �18 mV
showed the highest accuracy of 0.773 (in test data), and
aVR STmid had the highest AUROC (0.727, in test data).
The results of recursive feature elimination by cross-
validation are demonstrated in Supplemental File 4. In mod-
el_LGBM, the best number of features was 16, 24, and 25;
and in model_ET, 25. As a result, we adopted all 25 features
to construct the ML models. Compared with the statistical
predictive models, model_LGBM and model_ET had higher
accuracy (0.842 and 0.831, respectively) and AUROC (0.868
and 0.896, respectively).

Figure 2 shows a comparison of ST levels. The STJ of
TTS in lead I/II/aVF/V5/V6 was higher than that in Ant-
AMI, and the STJ of TTS in lead aVR/V1/V2 was lower
than that in Ant-AMI. The STmid and STend showed similar
results to STJ, but V5 STmid, V5 STend, and I STend were
not significant predictors. The representative ECG wave-
forms are shown in Figure 3. From Table 3, the representative
ECG characteristics of TTS compared with Ant-AMI were as
follows: no ST elevation of V1 STJ (�118 mV) and ST
depression in aVRmid (�-10 mV). The representative and
visible ECG features of TTS were summarized as no ST
elevation in V1 and ST depression in aVR.

The important features of the 2 ML models are shown in
Supplemental File 5. In model_LGBM, the V1 STJ showed
the highest feature importance. Conversely in model_ET,
not only V1 STJ but diabetes and hyperlipidemia showed
high feature importance. The SHAP values of the models
are shown in Figure 4, which showed similar pattern to
Supplemental File 5. V1 STJ showed the highest feature



Table 3 Diagnostic performance of statistical predictive models

Prediction data (n 5 90) Test data (n 5 22)

ROC curve model Cutoff value model ROC curve model Cutoff value model

Cutoff AUROC Acc Recall (Sens) Prec. (PPV) F1 AUROC 95% CI of AUROC Acc Recall (Sens) Prec. (PPV) F1

HL 0.278 0.200 0.237 0.217 0.318 0.364 0.333 0.348
DM (n, %) 0.367 0.044 0.125 0.066 0.227 0.091 0.125 0.105
HR (bpm) �109 0.665 0.678 0.422 0.864 0.567 0.554 0.30-0.81 0.455 0.091 0.333 0.143
I STJ �15 mV 0.711 0.711 0.733 0.702 0.717 0.649 0.39-0.91 0.591 0.545 0.600 0.571
I STmid �-5 mV 0.681 0.689 0.800 0.655 0.720 0.665 0.42-0.91 0.591 0.545 0.600 0.571
II STJ �-20 mV 0.672 0.644 0.800 0.610 0.692 0.674 0.58-0.77 0.636 0.909 0.588 0.714
II STmid �110 mV 0.701 0.678 0.733 0.660 0.695 0.661 0.42-0.90 0.545 0.636 0.538 0.583
II STend �-5 mV 0.667 0.644 0.867 0.600 0.709 0.624 0.38-0.87 0.636 0.909 0.588 0.714
aVR STJ �-20 mV 0.729 0.693 0.605 0.722 0.658 0.698 0.46-0.94 0.591 0.545 0.600 0.571
aVR STmid �-10 mV 0.732 0.678 0.711 0.667 0.688 0.727 0.51-0.95 0.636 0.636 0.636 0.636
aVR STend �0 mV 0.693 0.667 0.867 0.619 0.722 0.694 0.47-0.92 0.591 0.636 0.583 0.609
aVF STJ �-40 mV 0.615 0.633 0.911 0.586 0.713 0.636 0.40-0.88 0.545 0.909 0.526 0.667
aVF STmid �-35 mV 0.635 0.656 0.956 0.597 0.735 0.579 0.33-0.83 0.545 1.000 0.524 0.688
aVF STend �-30 mV 0.614 0.633 0.911 0.586 0.713 0.463 0.20-0.73 0.500 0.909 0.500 0.645
V1 STJ �118 mV 0.771 0.611 0.267 0.857 0.407 0.690 0.46-0.92 0.773 0.636 0.875 0.737
V1 STmid �1120 mV 0.765 0.700 0.956 0.632 0.761 0.653 0.40-0.90 0.645 1.000 0.524 0.688
V1 STend �185 mV 0.699 0.667 0.778 0.636 0.700 0.628 0.37-0.89 0.682 1.000 0.611 0.759
V1 T �150 mV 0.635 0.663 0.538 0.677 0.600 0.645 0.38-0.92 0.667 0.600 0.667 0.632
V2 STJ �1130 mV 0.629 0.652 0.750 0.623 0.680 0.616 0.37-0.87 0.636 0.818 0.600 0.692
V2 STmid �1205 mV 0.658 0.656 0.756 0.630 0.687 0.665 0.56-0.77 0.682 0.909 0.625 0.741
V2 STend �1280 mV 0.635 0.633 0.756 0.607 0.673 0.661 0.42-0.90 0.682 0.909 0.625 0.741
V5 STJ �15 mV 0.724 0.733 0.822 0.698 0.755 0.645 0.40-0.89 0.591 0.636 0.583 0.609
V6 STJ �-5 mV 0.768 0.733 0.800 0.706 0.750 0.669 0.43-0.91 0.682 0.818 0.643 0.720
V6 STmid �-10 mV 0.749 0.733 0.822 0.698 0.755 0.674 0.43-0.92 0.682 0.909 0.625 0.741
V6 STend �-30 mV 0.714 0.700 0.933 0.636 0.757 0.636 0.39-0.89 0.682 0.909 0.625 0.741

Initially, a receiver operating characteristic (ROC) curve analysis was performed, area under ROC (AUROC) was measured, and cutoff value was calculated by
Youden index. AUROC of hyperlipidemia (HL) and diabetes (DM) were not evaluated because they were bivariate categorical variables. The statistical predictive
model consisted of 2 methods, an assessment of whether a parameter of each case had higher/lower value than the cutoff (named as cutoff value model), and
propensity score (PS) of each predictor was calculated on the prediction data, and the PS formula for each predictor was constructed (named as ROC curve model),
which was applied to the test data and AUROC was measured by ROC curve analysis. Confusion matrix was prepared from the model, and diagnostic performance
(accuracy [Acc] / sensitivity [Sens]; named as recall / positive predictive value [PPV]; named as precision [Prec.] / F1 score [harmonic mean of recall and prec.])
was calculated. Abbreviations are explained in Table 2 footnote.

Table 4 Results of validation data of machine learning predictive
models, which were built by PyCaret

Acc AUROC
Recall
(Sens)

Prec.
(PPV) F1

Light gradient boosting
machine

0.856 0.865 0.870 0.867 0.860

Extra trees classifier 0.832 0.881 0.830 0.863 0.836
Ada boost classifier 0.832 0.874 0.875 0.825 0.840
Naive Bayes 0.821 0.874 0.810 0.867 0.822
Gradient boosting
classifier

0.821 0.865 0.870 0.835 0.837

Random forest classifier 0.821 0.850 0.850 0.848 0.831
Linear discriminant
analysis

0.786 0.844 0.805 0.808 0.788

Decision tree classifier 0.778 0.810 0.825 0.778 0.783
K neighbors classifier 0.776 0.794 0.850 0.777 0.797
Logistic regression 0.719 0.799 0.715 0.775 0.717
Quadratic discriminant
analysis

0.708 0.688 0.790 0.729 0.734

The diagnostic performance was explained by accuracy (Acc) / sensitivity
(Sens); named as recall / positive predictive value (PPV); named as precision
(Prec.) / and F1 score (harmonic mean of recall and Prec.). Ten times random
cross-validation was performed, and the average of results was displayed.
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value in model_LGBM; but in model_ET, V1 STJ,
hyperlipidemia, and diabetes played important roles in model
building.
Discussion
We built predictive models for TTS and Ant-AMI using an
automated ECG system with mV-level measurements. The
ST levels in several leads were significant predictors, and
we were able to provide clinically useful cutoff values for
them, as shown in Table 3. Among them, V1 STJ �118
mV showed the highest accuracy, and aVR STmid showed
the highest AUROC in test data. Conversely, ML predictive
models demonstrated higher accuracy and AUROC than sta-
tistical models. In the ML models, V1 STJ played an impor-
tant role in model building.
ST level as a predictor of TTS
In addition to ST levels in V1, ST levels in I/II/aVR/aVF/V2/
V6 were significant predictors of TTS.

The significance of lead V2 can be explained by the impor-
tance of the nearest lead, V1, which is well known. Kosuge



Figure 2 Comparison of ST levels of takotsubo syndrome (TTS) and acute anterior myocardial infarction (Ant-AMI) in prediction data (90 cases). Left figure
shows ST level at the J point (STJ), middle figure shows the middle of the ST level (STmid), and right figure shows the end of the ST level (STend). After Mann–
WhitneyU test, a box-and-whisker plot was drawn in each lead. The box indicates interquartile range and median value, and the whisker corresponds to maximum
and minimum value. The red and blue triangles show significant upper and lower values, respectively.

Figure 3 Representative 12-lead electrocardiograms. Left figure demonstrates a takotsubo syndrome (TTS) case, in which ST repression is observed in aVR
and V1. Right figure displays an ST-elevation acute anterior myocardial infarction (Ant-AMI) case, in which ST elevation is found in aVR and V1–V3. The pa-
tient’s coronary arteriography showed occlusion of the left anterior descending branch (segment 6).

Shimizu et al Machine Learning for Takotsubo Syndrome and Acute MI 185



Figure 4 Interpretation of feature importance by SHapley Additive exPlanation (SHAP)method on 2 representative machine learning models. Left side: Plot of
light gradient boostingmachine; right side: plot of extra trees classifier. Each point on the summary plot corresponds to a SHAP value for a feature and an instance.
Each red and blue point shows a case with takotsubo syndrome and acute anterior myocardial infarction, respectively. On the y-axis, features are sorted based on
their importance; color shows the feature value from low (blue) to high (red). The SHAP value is displayed on the x-axis, wherein left side (minus value) shows
negative impact and right side (plus value) shows positive impact. Abbreviations as in Figure 1 and Table 2. Brief explanation of SHAPmethod is demonstrated in
Supplemental File 2.
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and colleagues2 explained that V1 is located in both the right
ventricular anterior region and the right paraseptal region;
however, abnormalities of wall contraction in TTS rarely
extend to the right ventricle region, compared with AMI.
Therefore, the significance of other leads can be explained
as follows:

Lead aVR
Several investigators found more ST depression in TTS than
in Ant-AMI.2,16,17 Ant-AMI causes greater injury than TTS.
In the present study, the CK-MB level in Ant-AMI was
higher than that in TTS. Lead aVR is known as a “cavity
lead” and allows for visualization of the left ventricle (LV);
therefore, the aVR lead can help determine the total damage
of the LV.18

Lead II/aVF
ST elevation was found in inferior leads in 33%–50% of TTS
cases in large series.19,20 Jim and colleagues3 emphasized the
importance of ST elevation in the inferior leads as a new cri-
terion for TTS diagnosis. They described that the inferior
myocardium is universally affected in typical TTS, theoreti-
cally expressed as inferior ST-segment elevation. Compared
with TTS, Ant-AMI tends to show large LV damage, in
which the vector of injuries of opposing walls cancel each
other out, and simultaneous ischemia in both the lateral and
inferior walls reduces the ST-segment changes in their
respective leads.
Lead V6/I
Inoue and colleagues21 reported more prevalent V6 ST eleva-
tion in TTS than in Ant-AMI. Ogura and colleagues20 re-
ported that the ratio SST elevation of V4–V6 / SST
elevation of V1–V3 was a significant predictor of TTS.
Regarding lead I of TTS, there were no reports. However,
these differences can easily be understood from the perspec-
tive of RV involvement. Chia and colleagues22 reported ST
depression of the lateral lead as a sign of right ventricular
ischemia. Both lead V1 ST elevation and lead I/V6 ST depres-
sion can show RV involvement of Ant-AMI.
Machine learning of ECG to distinguish between TTS
and Ant-AMI
Although the accuracy was not very high for each of the 25
significant predictors, their aggregation created excellent
predictive ML models with the algorithms Model_ET and
Model_LGBM, which are ensemble learning models and
use decision trees.12,13 The method of model_ET to divide
trees is based not on the best fit method but on a random
choice of the Gini coefficient or entropy; consequently,
model_ET can show high performance, especially in the
presence of noisy features.12,23 Therefore, model_ET has
an advantage if the importance of each variable is not
very high. In the present study, the accuracy of 22 signif-
icant predictors was limited, and model_ET was suitable
for building a predictive model.



Shimizu et al Machine Learning for Takotsubo Syndrome and Acute MI 187
Model_LGBM is frequently used and is known to exhibit
higher diagnostic performance, especially on table data,
compared to other ensemble ML methods.12,24 Following
are the advantages of model_LGBM: (1) Model_LGBM
uses the boosting method, which is a series data composition,
instead of bagging (bootstrap aggregating; used in random
forest method). Consequently, the learning speed is faster
than that of the parallel data composition of bagging. (2) De-
cision trees of model_LGBM are a leaf-wise tree growth
method, which is much faster than the level-wise tree growth
method (used, eg, in XG boosting). (3) Fine-tuning of hyper-
parameters can be performed more easily in model_LGBM
than in other ML models, which improves the accuracy of
the model. Therefore, model_LGBM can perform excellently
under the condition of many low-importance parameters,
such as in the present study.

The SHAP method is novel and can show both feature
importance and correlation (positive or negative). In statisti-
cal comparison by multivariate analysis, it is difficult to
compare the importance of all parameters when there are
pairs with significant correlation/confounding/multicolli-
nearity. However, in ML (especially ensemble learning
models using decision trees), most models are adjusted by in-
ternal regularization, and their predictive value is not
affected. The explainability of features is somewhat affected
(weakened) when there is significant correlation, confound-
ing, or multicollinearity; as opposed to statistical models, pa-
rameters are recognized not to exclude because of internal
regularization.25
Study limitations
This study was performed with a small sample size of pa-
tients; therefore, several limitations were inevitable: no
external validation (using separate external test data), no
ECG variations, and no validation in other similar clinical
populations (acute pericarditis, inferior AMI, atypical
TTS, no sinus rhythm, etc). The precision of the study
became relatively low because of the small sample size of
test data. We did not perform deep learning as ML method
because of the size. Because STEMI and NSTEMI cases are
treated differently, it was ideal to separate the 2 groups.
Combining multiple leads seems to produce good results,
but in our preliminary data, it induced overfitting to predic-
tion data and we could not show the usefulness of the com-
bination. Although the V1 STJ was essential in both ML
models, other important features of the models were not
the same; hence, the diagnosis by the 2 models might be
different in several patients. An automated system of ECG
(ECAPs12c) with mV-level measurement demonstrated a
higher diagnostic performance; however, this system is
not commonly used worldwide.
Conclusion
ML on the parameters of the automated ECG system with mV
measurement showed superior diagnostic performance
compared to conventional single ECG parameters to distin-
guish between TTS and Ant-AMI. Although the results of
the present study were limited by the small sample size, it
may be a clinically useful ECG-based discriminator.
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