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Abstract: Peripheral nerve regeneration is a complicated process highlighted by Wallerian
degeneration, axonal sprouting, and remyelination. Schwann cells play an integral role in multiple
facets of nerve regeneration but obtaining Schwann cells for cell-based therapy is limited by the
invasive nature of harvesting and donor site morbidity. Stem cell transplantation for peripheral
nerve regeneration offers an alternative cell-based therapy with several regenerative benefits.
Stem cells have the potential to differentiate into Schwann-like cells that recruit macrophages for
removal of cellular debris. They also can secrete neurotrophic factors to promote axonal growth,
and remyelination. Currently, various types of stem cell sources are being investigated for their
application to peripheral nerve regeneration. This review highlights studies involving the stem cell
types, the mechanisms of their action, methods of delivery to the injury site, and relevant pre-clinical
or clinical data. The purpose of this article is to review the current point of view on the application of
stem cell based strategy for peripheral nerve regeneration.
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1. Introduction

Peripheral nerve injuries (PNI) are mainly related to trauma, tumor, and iatrogenic lesions,
leading to neurologic deficits and functional disability. The incidence of PNI is estimated at about
18 per 100,000 persons every year in developed countries, whereas it is relatively higher in developing
countries [1,2].

Primary repair with suture is the preferred management for nerve discontinuities without a gap.
Despite an excellent tension-free nerve repair, the functional outcome can be limited by inflammation,
scar formation, and misdirection of regenerating sensory and motor axons. Regeneration is still subject
to a rate of approximately 1 mm/day [3]. For nerve discontinuities with a gap, nerve autografts are
useful but limited by availability and donor site morbidity. The various synthetic conduits and acellular
allografts on the market, which we have previously reviewed, are not generally recommended for
gaps >3 cm [4]. Although advanced bioengineering can recreate the nerve extracellular matrix, nerve
conduits lack the critical cellular component, specifically Schwann cells (SC) critical for regeneration.
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SCs, by secreting various neurotrophic and neurotropic factors, develop a microenvironment conducive
to axonal regeneration [5]. SCs interact with the surrounding extracellular matrix to stabilize myelin in
the normal state, and can switch to a pro-myelination phenotype during regeneration [6].

Multiple neurotrophic factors including nerve growth factor (NGF) and glial-cell-derived
neurotrophic factors (GDNFs) are stimulated by nerve injury and accelerate axon growth [7]. However,
mature SCs in peripheral nerve do not maintain a growth-permissive phenotype to support axonal
regeneration. Moreover, the requirement of sufficient SCs within a short time seriously limits its clinical
application [8]. Stem cells are of interest as a source of Schwann-like cells that would take residence in
the nerve and support a stable pro-regeneration environment.

The aim of this article is to discuss the features of different types of stem cells relevant to peripheral
nerve regeneration, their mechanism of benefits, cell delivery, and relevant pre-clinical or clinical
data of each.

2. Stem Cell Sources

Stem cells refer to cells that possess the capability of self-renewal in addition to differentiation
to a more specialized cell type [1]. According to the development stage, stem cells can be divided
into embryonic stem cells and adult stem cells. Stem cells can be characterized by their differentiation
potential. Totipotent stem cells can form an entire embryo including the extraembryonic tissues.
Pluripotent stem cells can trigger the mesoderm, endoderm, and ectoderm. Postnatal or adult stem
cells are capable of multi-lineage differentiation in cells of only one germ layer. Unipotent or progenitor
stem cells can only differentiate into one defined cell type [2]. The differentiation potential of stem cells
can be related to their developmental stage. Differentiation potential decreases from an embryonic
stem cell to a specialized tissue stem cell. Fully differentiated adult somatic cells do not naturally have
any differentiation potential. Induced pluripotent stem cells (iPSC) are a type of pluripotent stem cell
that can be generated directly from adult cells [3]. Thomson et al. showed that somatic cells could be
transcriptionally regulated to express a more embryonic phenotype, thus creating the first induced
pluripotent stem cells (iPSC) [1].

This review evaluates different types of stem cells based on development stage including iPSC
and tissue source.

2.1. Embryonic Stem Cells (ESCs)

ESCs are pluripotent stem cells derived from the blastocyst stage of embryonic development [4].
ESCs can differentiate into somatic cells from all three embryonic germ layers. Several strategies with
ESCs have been employed in the area of peripheral nerve injuries.

To replace the necessary Schwann cells needed for nerve regeneration, Ziegler et al. developed
a protocol to generate Schwann cells from human ESCs with 60% efficiency [5]. The differentiated
Schwann cells were shown to associate with axons. In a rat sciatic nerve injury model Cui et al.
achieved significantly improved regeneration by the microinjection of neutrally-induced ESCs [6].
Immunostaining demonstrated that the ESCs survived and had differentiated into Schwann-like
cells [6]. An alternative strategy is to inject the ESCs into the target muscle at the time of nerve
injury/repair to prevent muscle denervation changes and slightly speed recovery [7].

ESCs are also of interest for the generation of additional stem cell lines. Adult stem cell lines
typically require an invasive procedure for harvesting and can be limited by the quantity obtained.
Mesenchymal stem cells (MSCs) can be generated from ESCs and have been used in pre-clinical animal
models [8,9].

ESCs have great potential, but are not without their disadvantages. ESCs have the potential for
teratoma formation [4]. In addition, there are limited sources of human embryos from which ESCs are
obtained. There also exists the ethical dilemma of using a human embryo which contains the potential
to form a complete individual for research or clinical applications.
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2.2. Neural Stem Cells (NSCs)

NSCs are stem cells capable of differentiating into neurons or glial cells. They are present during
neurogenesis for the proper organization of the brain and spinal cord. NSCs have been isolated from
murine models and proliferated in vitro [10,11]. In the adult human brain, NSCs take residence in
the subventricular zone and hippocampus [12,13]. Adult NSCs are thought to have a limited role in
central nervous system injury [14]. In 1992, two groups reported the successful isolation of NSCs from
the brain tissue of adult mice [10,11]. A variety of studies have demonstrated that NSC implantation
is beneficial in both acute and chronic PNI [15,16]. However, NSCs have several disadvantages and
limitations. Commercial murine C17.2 NSCs showed a high rate of neuroblastoma formation in
an animal model [17]. Despite NSCs being discovered in multiple areas in the brain, they are difficult
to harvest from the brain [18]. In addition, directed differentiation of specialized neural cell lines is
difficult and the current methods are only effective in limited cases [19].

2.2.1. Mesenchymal Stem Cells (MSCs)

Though initially identified as a multipotent fibroblastic cell population within bone marrow
different from a hematopoietic lineage [20], MSCs can be obtained from a wide range of non-marrow
sources. MSCs have been isolated from adipose tissue, peripheral blood, amniotic fluid, umbilical
cord, tendon and ligaments, hair follicle, synovial membranes, olfactory mucosa, dental pulp, and fetal
tissue [21]. MSCs are of considerable interest in tissue regeneration given their differentiation
potential, easy isolation, and immunomodulation [22]. MSCs are inherently capable of differentiating
into all mesoderm lineages: fat, bone, muscle, and cartilage [22]. Under the proper environment,
MSCs differentiation can be guided into non-mesenchymal lineages, such as neurons, astrocytes,
and Schwann-like cells [23] to support nerve regeneration. The sub-types of MSCs based on tissue
source and related application in PNI are discussed.

Bone Marrow-Derived Stem Cells (BMSCs)

BMSCs can differentiate into neurons, astrocytes, and SC-like cells under suitable conditions [23].
The fate of the BMSCs may be dictated by post transplantation physiological microenvironment.
Almost 5% of BMSCs were induced to differentiate into Schwann cells within the lesioned nerve
tissue 33 days after transplantation [24]. Nijhuis et al. showed that BMSCs implanted within a muscle
in vein autograft led to an early increase in nerve growth factor and S100 positive Schwann-like
cells compared to muscle in vein autograft alone in a rat sciatic nerve injury model [25]. Wang et al.
demonstrated superior recovery with BMSCs suspended in matrix compared to autologous nerve
graft in a 10-mm rabbit sciatic nerve injury model [26]. Rabbits with BMSCs suspended in matrix
had significantly greater motor nerve conduction velocities and amplitudes [26]. Interestingly, the
regenerative benefits of BMSCs plated onto poly-caprolactone filaments were superior to exogenous
Schwann cells plated onto filaments in a rat model [27]. Raheja et al. showed that BMSCs improve in
a dose-dependent manner the extent of myelination, thickness of myelin, and axonal thickness in a rat
model [28]. There is no clinical data regarding the beneficial effects of BMSC transplantation for nerve
regeneration, however, it has already been clinically used to treat myocardial infarction [29,30] and
spinal cord injury [31].

Although BMSCs present more easily harvested than ESCs and NSCs, the capacity of proliferation
and differentiation of BMSCs is inferior to the latter. In addition, BMSCs are limited by the need
for an invasive procedure for autologous harvesting. The procurement procedures are invasive and
painful that usually need anesthesia, whereas the obtained stem cell fraction is obviously lower than
from other sources.

Adipose-Derived Stem Cells (ADSCs)

ADSCs can be derived from adipose tissue obtained from common procedures such as liposuction.
These cells are particularly advantageous since they are available via minimally invasive harvesting
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with a high cellular yield of (0.25−0.375) × 106 cells per milliliter of liquid fat after 4 to 6 days in culture
with medium containing 10% fetal bovine serum [32]. They show higher proportion and superior
proliferation and differentiation potential compared with BMSCs [33]. ADSCs can be differentiated into
an SC-like phenotype (differentiated adipose-derived stem cell, dASC) which shares morphological
and functional properties with SC, thus representing a valid SC alternative [34–37]. Several studies
have indicated there were no significant difference for sciatic nerve regeneration by using 2- or 14-day
dASCs [38,39]. Liu et al. cut rat sciatic nerves into 1-cm fragments, and then soaked them in a filtered
differentiation-inducing culture medium for two days. Differentiated rat ADSCs were similar to
genuine Schwann cells after being incubated with the above induction medium for five days. The vast
majority of studies show an augmented effect of ADSCs seeded in silicone conduits on peripheral
nerve regeneration [40,41]. Particularly, ADSC transplantation decreases muscular atrophy, facilitates
sorting of axons and myelination, and reduces inflammation [42,43]. Some investigators consider
ADSCs to have a similar therapeutic effect compared with autologous SCs and BMSCs [44]. Rather
than differentiate to SC phenotype, it is hypothesized that ADSCs mainly facilitate endogenous SC
recruitment by releasing growth factors such as NGF, vascular endothelial growth factor (VEGF),
and brain-derived neurotrophic factor (BDNF) [39,45,46] for nerve protection and regeneration, as the
therapeutic effect is maintained for several weeks even after many ADSCs are gone [47]. ADSCs
may aid angiogenesis both by direct differentiation into vascular endothelium, and their associated
paracrine effects [48,49]. Like BMSCs, the neurotrophic potential of ADSCs is influenced by the harvest
site [50], fat layer [51], and donor age [46]. Another restriction is the differentiation potential towards
adipocytes, which is unfavorable for nerve regeneration [52]. Accessible harvest and better stem cell
characteristics make ADSCs one of the optimal choices for pre-clinical studies.

2.2.2. Fetal-Derived Stem Cells

Fetal tissues are the most primitive source of MSCs and have received less genetic damage
caused by age, environment, and disease [53]. Stem cells can be derived from multiple sources,
such as amniotic fluid, amniotic membrane, umbilical cord, and Wharton’s jelly. Since such tissues
are generally abandoned after birth, fetal-derived stem cells are in sufficient excess and can be easily
obtained without the need for invasive procedures. The cells obtained can proliferate in culture and
differentiate into a neural phenotype [54].

Amniotic Tissue-Derived Stem Cells (ATDSCs)

ATDSCs are derived from amniotic fluid or the amniotic membrane. ATDSCs possess the
characteristics of both mesenchymal and NSCs [55] and can differentiate into neural tissue [56].
They also exhibit strong angiogenic potential, as their implantation augmented blood perfusion
and enhanced intraneural vascularity in addition to promote peripheral nerve regeneration [57,58].
Survival of ATDSCs following transplantation is a challenge to their clinical application. Genetic
modification and inhibition of inflammatory mediators can restrain the apoptotic cascade [59]. Several
reports have explored the effect of gene mutation in ATDSCs on PNI. Human ATDSCs with GDNF
modification significantly enhance viability, regeneration, and motor function in animal models [60].
Stromal cell-derived factor-1α (SDF-1α) expression in muscle and nerve after PNI can recruit ATDSCs
for their deposition, thus in time, ATDSC injection at high levels of SDF-1α effectively increases the
number of ATDSCs at the repair site, promoting nerve regeneration [61].

Umbilical Cord-Derived MSCs (UC-MSCs)

UC-MSCs are a promising candidate for cell therapies because of their differentiation and
proliferation potential. They are easily accessible from the postnatal tissue that is discarded after
birth, thus facing fewer ethical problems. Though UC-MSCs have the proliferative ability, there are
few reports about the tumorigenesis of UC-MSCs or UC-MSC-derived cells in transplantation
experiments [62]. Matsuse et al. reported a system to induce UC-MSCs to differentiate into cells with
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SC properties using β-mercaptoethanol followed by retinoic acid and a set of specific cytokines [63].
Further investigation revealed that Schwann-like cells differentiated from UC-MSCs generated
neurotrophic factors like NGF and BDNF [64]. In addition, the differentiated human Schwann-like cells
transplanted into rat transected sciatic nerve under immunosuppression maintained the differentiated
phenotype, elicited axonal regeneration from the proximal segment, and constructed peripheral nerve
system (PNS) tissue. This was even functionally equivalent to authentic SCs based on walking track
analysis [65]. This indicates that UC-MSCs could be used to alternatively generate Schwann-like cells
for PNI regenerative therapy.

Wharton’s Jelly MSCs (WJMSCs)

Wharton’s jelly is a special primitive connective tissue protecting vessels in the umbilical cord [66].
Cells in its stromal compartment show specific mesenchymal features, thus named Wharton’s jelly
MSCs (WJMSCs) [67]. WJMSCs have shown the capacity to differentiate to Schwann-like cells.
Furthermore, they can generate neurotrophic factors including NGF, BDNF, and neurotrophin-3
(NT-3), and trigger axon growth in vitro [68]. Thus, Wharton’s jelly can become an ideal source of
MSCs, characterized as unique and easily accessible.

Fetal tissue provides a prospective alternative for stem cells acquisition. The main obstacles of
their application, alloreactivity and immunoreactivity, may not be encountered in stem cells from other
sources. Cell bank for the storage of fetal products provides a resolution for this conundrum.

2.2.3. Skin-Derived Precursor Stem Cells (SKP-SCs)

SKP-SCs located in the dermis are an available source for somatic multipotent cells. In addition
to durable proliferative ability, SKP-SCs can differentiate to a diverse array of cell types, including
melanocytes, craniofacial cartilage, bone, connective tissue, vascular smooth muscle, endocrine cells,
neurons, and glial cells [69]. SKP-SCs cultured in neuregulin-1β express the same markers with
SCs [70]. Moreover, both undifferentiated and differentiated SKP-SCs have exhibited acceleration
on nerve regeneration. SKP-SCs treatment significantly increases mean axon counts and reduces the
percentage of myelin debris [71]. Several studies demonstrated the superior outcomes of SKP-SCs on
de-myelination and crush injury [70,72], and acute and chronic transection injury [71].

2.2.4. Hair Follicle Stem Cells (HFSCs)

Hair follicle stem cells are embryologically from the neural crest, and are an abundant and
accessible source for pluripotent stem cells [73]. HFSCs are readily expanded in culture but cannot be
kept for long periods, which is similar to SKP-SCs. ESC transcription factors Nanog, Oct4, and nestin
are positively expressed in HFSCs. Furthermore, HFSCs also can differentiate to a variety of cell
types, such as adipocytes, smooth muscle cells, melanocytes, neurons, and glial cells [74]. One of
the advantages of HFSCs is that they can differentiate into pure human SC population rapidly in
a straightforward way, without the requirement of genetic manipulation. Undifferentiated HFSCs
used in a murine model with sciatic and tibial nerve crush and transection injuries demonstrated
significantly improved function [75]. Improved outcomes in 4-cm rat sciatic nerve defects were seen
by the addition of neurons and Schwann cells derived from HFSCs to an acellular xenograft [76].

2.2.5. Dental Pulp Stem Cells (DPSCs)

New odontoblast formation and dentin production in response to severe tooth damage suggested
the existence of MSCs in dental pulp tissue. DPSCs were first isolated in 2000 and found to differentiate
into odontoblast-like cells [77]. They also exhibit the feature of MSCs that can be induced into
multi-lineage including neural cells under appropriate culture condition. Specifically, DPSCs can
express neural markers, generate neurotrophic factors, promote axon guidance, and differentiate
into functionally active neurons [78]. Although available data is limited, DPSCs have been shown
to chemoattract trigeminal ganglion axons [79], differentiate into SCs or nourish SC to support
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dorsal root ganglion neurite outgrowth, and guide myelin repair [80,81]. DPSCs secrete various
trophic factors that enhance peripheral nerve regeneration [82]. Moreover, DPSCs are reported to
have a stronger proliferation and greater clonogenic potential, and a larger stem/progenitor cell
population in comparison to BMSCs [83], suggesting their clinical applicability. Moreover, they were
reported to improve function through combination with a pulsed electromagnetic field in the form
of SC-like cells [84]. In a manner similar to fetal tissue, autologous cells can be easily harvested but
require storage [82]. Cell banking should thus be considered due to the properties of easy isolation
and cryopreservation.

2.2.6. Muscle-Derived Stem/Progenitor Cells (MDSPCs)

MDSPCs can be derived from skeletal muscle and have sustained self-renewal, long-term
proliferation, and multipotent differentiation [85,86]. Although MDSPCs have shown potential for
regeneration of skeletal and cardiac muscles, bone, and articular cartilage, there is limited research
about their role in human nerve repair. Some researchers reported that MDSPC transplantation
could be applied for neuropathy as they can differentiate into SCs, perineurial/endoneurial cells,
vascular endothelial cells, and pericytes needed for neurovascular regeneration [87,88]. Peripheral
nerve damage frequently accompanies musculoskeletal trauma. MDPCs from traumatized muscle
tissue secrete the neurotrophic factors that are associated with muscle tissue reinnervation [89].Though
MDSPCs present an opportunity in peripheral nerve regeneration together with muscle atrophy
prevention, limited evidence and the appropriate harvest site are still challenges in the current stage.

2.3. Induced Pluripotential Stem Cells (iPSCs)

Considering the limitation of various types of stem cells, researchers tried to artificially induce the
stem cells. Takahashi demonstrated a protocol of defined transcription factors to induce pluripotency
in mouse and human fibroblasts [3]. The ability of reprograming cells supplies new hope to develop
an individual-specific pluripotent stem cell that can overcome the restriction of ESCs. At present,
understanding of iPSCs has advanced in multiple disease mechanisms and they are used for in vitro
drug screening and therapeutic efficacy evaluation [90]. In addition to differentiation into somatic
cells, the method of inducing iPSCs differentiation along neural lineages has been established [91].
In spite of subdued efficiency and enhanced variability during the differentiation process [92], iPSCs
have presented a regenerative potential in animal models of central and peripheral nerve injury [93].

iPSCs have been used to induce neurospheres in 3-D-culture to maintain the ability to form neural
or glia cells [94]. iPSCs have been applied to coat a tissue-engineered bioabsorbable nerve conduit
and implanted to PNI mice. Axonal regeneration and myelination were enhanced without teratoma
formation following 48-week observation, suggesting their alternative application potential in PNI [95].

Though iPSCs are favorable over ESC given the avoidance of ethical issues and need for
immunosuppression, there exists still for iPSCs in clinical applications such as epigenetic memory
from the original somatic cells, chromosomal aberrations, and tumorigenicity [96].

The comparison of stem cells from different resources is listed in Table 1. For the clinical
application of stem cell-based transplantation, the ideal source should be individualized, immune
tolerant, easy to harvest, non-tumorigenic, able to be integrated in the host nerve tissue, and efficient
in replacement.
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Table 1. Comparison of stem cells from different sources in peripheral nerve regeneration. ESCs: embryonic stem cells; NSCs: neural stem cells; BMSCs: bone
marrow-derived stem cells; ADSCs: adipose-derived stem cells; SKP-SCs: skin-derived precursor stem cells; HFSCs: hair follicle stem cells; DPSCs: dental pulp stem
cells; MDSPCs: muscle-derived stem/progenitor cells; iPSCs: induced pluripotential stem cells; SCs: Schwann cells.

Stem Cell Classification Advantage Disadvantage Preclinical or Clinical Use Mechanism

ESCs Pluripotent stem cells

Homogenous, no detrimental impact
of age and disease, unlimited cell

number, better differentiation
potential, and longer lasting

proliferation capacity

Teratoma formation, ethical dilemma Preclinical [8,9] Myelination
and/or neurotrophic factors

NSCs Multipotent stem cells Difficult to be harvested Preclinical [15,16] Replace Schwann cells

BMSCs Multipotent cells Easily accessible without
ethical concerns

Lower capacity of proliferation and
differentiation, invasive procedure for

autologous harvesting
Preclinical [25,26] Myelination, neurotrophic factors

ADSCs Multipotent stem cells Easy to harvest, higher proportion
and superior proliferation

Differentiation potential
towards adipocytes Preclinical [40–43] Myelination, neurotrophic factors,

reduce inflammation

Fetal-derived stem cell Multipotent stem cells Less immunoreactivity Cell bank for storage Preclinical [57,58,65,68] Augmented blood perfusion and
enhanced intraneural vascularity

SKP-SCs Multipotent cells Easy to harvest Long time to differentiate Preclinical [71] Replace Schwann cell myelination

HFSCs Multipotent stem cells
Abundant and accessible

source, differentiate into pure
human SC population

Difficult to isolate Preclinical [75] Replace Schwann cell myelination,
neurotrophic factors

DPSCs Multipotent stem cells
Stronger harvesting and proliferation

potential, as well as greater
clonogenic potential

Require storage Preclinical [80,81] Replace Schwann cell myelination,
neurotrophic factors

MDSPCs Progenitor cells Abundant and accessible source Limited research Preclinical [89] Neurotrophic factors

iPSCs Pluripotent stem cells Inducible from easily
obtainable somatic cells

Subdued efficiency and enhanced
variability during the differentiation
process, epigenetic memory from the
original somatic cells, chromosomal
aberrations, stronger tumorigenicity

Preclinical [93] Replace Schwann cell myelination,
neurotrophic factors
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3. Mechanism of Action

The impact of stem cells transplantation in PNI mainly depends on their capacity in differentiation
phenotype, ability in enhancing neurotrophic action, and promotion of myelin formation (Figure 1).
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3.1. Differentiation Type of Stem Cells

The self-renewal capacity of stem cells makes it possible to deliver numerous cleavage cells
to the damage site [23]. The stem cells continue proliferating after migrating to the injured nerve
tissue, and further differentiate to the necessary cell type under the appropriate microenvironmental
conditions [97]. It is confirmed that NSCs can be induced to a peripheral neuron, SC, or smooth
muscle phenotype upon co-culture with cells from the nervous system. Furthermore, about 5% of
BMSCs can spontaneously transdifferentiate into SCs without specific intervention [24]. However,
the differentiation rate of naive precursor cells in the peripheral nerve is relatively low [58].
Predifferentiating stem cells toward a desired phenotype in vitro by chemical induction, biological
treatment, gene transfection, or co-culture with neural cells before injection is an effective method.
The representative protocol of MSC induction is exposure to or transfection by growth factors
β-mercaptoethanol (β-ME) and alltransretinoic acid (RA), the cytokines forskolin (FSK), basic fibroblast
growth factor (bFGF), and platelet-derived growth factor (PDGF) sequentially [98]. In particular,
BMSCs can express NSC markers by transfecting the transmembrane region and intracellular domain
of notch [99] or differentiating into neurosphere cells upon Noggin transfection [100]. Stem cells
were maintained in differentiation medium for 2 weeks in most protocols [101,102]. This is time
consuming. Finally, SC-like cells must be co-cultured with dorsal root ganglion neurons to maintain
stable morphological features upon juxtacrine neuronal cues [103].

With predifferentiation, SC markers are increased and maintained for longer time upon treatment
before delivery [70]. After differentiated stem cell transplantation, accelerated transected axons
regenerate and achieve better remyelinization [104]. The extent of recovery was comparable to
or even greater than that observed after Schwann cell transplantation [105]. Other experiments
showed primary Schwann cells were significantly improved with respect to distal stump sprouting
compared to differentiated bone marrow-derived mesenchymal stem cells (dMSC) and dASC-loaded
conduits [106]. In contrast, some scholars reported that predifferentiation facilitates post-transplant
cell death, which may be caused by enhanced ability of major histocompatibility complex antigens or
reduced proliferation ability compared with naïve stem cells [107]. Another potential drawback of
MSCs is the tumorigenic capability, as shown by the high rate of tumorigenesis observed in rat sciatic
nerve injury model transplanted by C17.2 neural stem cells [17].

3.2. Neurotrophic Action Enhancement

Other than differentiation to appropriate cells, stem cells also provide a beneficial
microenvironment for neural cell survival and neurogenesis by secreting bioactive neurotrophic
molecules [46,108]. In addition to support SC differentiation, maturation, and proliferation, stem
cells may exhibit better performance in enhancing neurotrophic action. MSCs synthesize and release
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a variety of growth factors, such as nerve growth factor (NGF), brain-derived neurotrophic factor
(BDNF), GDNF, neurotrophin-3 (NT-3), VEGF, and ciliary-derived neurotrophic factor (CDNF) [109].
SKP-SCs increase BDNF, NGF, and NT-3 compared with single SCs in culture [108]. ADSCs also
upregulate protein expression of BDNF, glial growth factor, neuregulin-1, VEGF, HGF, and insulin-like
growth factor [46]. Furthermore, overexpressed neurotrophic factors facilitate the regeneration of
peripheral nerves even beyond the nerve injured region. ADSCs may alleviate dorsal root ganglion
loss upon inhibiting caspase-3 activity in a neurotrophin-dependent manner [110].

The level of growth factors in the microenvironment also affects the influence of transplanted
stem cells for feedback. NGF neutralizing antibody can abrogate the stimulatory effect of BMSCs
on neurite growth of sensory and sympathetic neurons in vitro [111]. BDNF neutralizing antibody
reduces the influence of ADSCs on nerve sprouts growth in vivo [112].

3.3. Myelin Promotion

Myelination is another major factor that determines the regeneration quality and functional
recovery in PNI. Multiple types of somatic stems cells present the ability to myelinate neuronal cells in
the form of SC-like cells in vitro [113]. SCs play a critical role for myelin sheath structure and function
recover by synthesizing a large amount of myelin proteins, such as myelin basic protein (MBP), P0, and
PMP22 [114]. Similar to SCs, stem cells differentiated into SC-like cells also show the capacity of
supporting myelination in regenerated nerves in vivo [113]. A study SC-like BMSCs injected to the
autologous vein conduits significantly increase the number of myelinated axons and improve the facial
nerve functional recovery through enhancing myelin factors mRNA expression [104]. Transplantation
of gingiva-derived mesenchymal stem cells (GMSCs) and induced neural progenitor cells (iNPCs)
promotes peripheral nerve repair/regeneration, possibly by promoting remyelination of Schwann cells
mediated via the regulation of the antagonistic myelination regulators, c-Jun and Krox-20/EGR2 [115].

4. Stem Cell Delivery

Stem cells can be delivered through numerous ways (Table 2). The stem cells can be suspended in
a medium that can be directly microinjected into the nerve ending [116]. The process of microinjection
can be traumatic both to the stem cells and delicate intra-neural architecture, leading to abnormal
cell distribution. Another method is to suspend the stem cells in fibrin matrix and inject the matrix
around the repair sites [26,117]. In repairs with a conduit, stem cells can be injected in the conduit
lumen or on the conduit matrix. Tse et al. describes a method for inkjet printing Schwann cells with
phenotypic analysis over seven days. Glial cell viabilities of >90% were detected immediately after
printing [118]. Three-dimensional printing [119,120] aims at creating tissues with multiple cell types
within a scaffold for mimicking native tissue, which is a progressive step towards peripheral nerve
printing. Further refinement of the delivery system may provide better cell distribution and improve
efficacy. Three-dimensional printing technology for fabricating can provide the desired geometry,
such as multichannel, bifurcating and personalized structures, which allows the customization of
a nerve guidance conduit (NGC) that precisely matches a particular nerve defect of a patient [121,122].

Table 2. Stem cells delivery in peripheral nerve regeneration.

Methods Application Advantage and Disadvantage References

Micro injection Traumatic both to the stem cells and delicate
intra-neural architecture, abnormal cell distribution Pang [116]

Conduit Natural conduits
or artificial Difficult for cell delivery Nijhuis [25] Costa [123] Yang [124]

Carrier-Ruiz [27] Wakao [125]

Conduit + ECM Collagen, fibirin Good cell distribution, lack of 3-D construction Pereira [126] di Summa [127]

Conduit + internal Beneficial for axonal guidance Wakao [125] Hu [128] Gu [129]

3-D print Customization, good cell distribution Weightman [121] Hu [122] Tse [118]
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Natural conduits such as vein and artery grafts are abundant in extracellular matrix
(ECM) proteins such as collagen and laminin, thus contributing to cell adhesion and axonal
guidance [25]. Commercially natural conduits are usually filled with ECM components including
collagen [126] and fibrin [127]. Artificial conduits are mainly synthetized by polyglycolic acid [123],
silk fibroin [124], poly-epsilon-caprolactone [27], polyhydroxybutyrate [130], silicone tube [131],
polytetrafluoroethylene [125], or chitosan [128]. Recently, biological and nanofibrous conduits have
rapidly developed, while the concern for their application in cell therapy include degradation waste
and velocity [132]. Natural materials are prone to degrade in a non-toxic manner, and the velocity might
be too fast. In contrast, part of synthetic polymers can produce acidic materials during degradation
which is detrimental to the microenvironment and cellular activity [133]. The internal structure within
the basal lamina is beneficial for axonal guidance compared with hollow lumen tubes, which are
composed of organized multiple fibers [128,129] or less orderly collagen sponges [125].

5. Perspective

Peripheral nerve regeneration is a dynamic process. Stem cell transplantation still remains in
the pre-clinical stage and has yet to make significant headways into clinical practice. In spite of
genetic manipulation, cell instability, and tumorigenesis, stem cell homing and migration remains
a concern. Simple application of stem cell transplantation has shown some improvements in outcomes,
but is still inferior to nerve repair with conventional techniques. Pre-clinical and eventually clinical
studies comparing different types of stem cell are needed. Other factors such as optimal Schwann
cell differentiation, exact underlying mechanisms of action, and cell delivery have yet to be solidified,
making it difficult to draw clear conclusions. Cell banks may provide benefits for future applications
of stem cell therapy.
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