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Abstract

Aims

Non-linear models by machine learning may identify different risk factors with different

weighting in comparison to conventional linear models.

Methods and results

The analyses were performed in 15,933 patients included in the Shinken Database (SD)

2004–2014 (n = 22,022) for whom baseline data of blood sampling and ultrasound cardio-

gram and follow-up data at 2 years were available. Using non-linear models with machine

learning software, 118 risk factors and their weighting of risk for all-cause mortality, heart

failure (HF), acute coronary syndrome (ACS), ischemic stroke (IS), and intracranial hemor-

rhage (ICH) were identified, where the top two risk factors were albumin/hemoglobin, left

ventricular ejection fraction/history of HF, history of ACS/anti-platelet use, history of IS/

deceleration time, and history of ICH/warfarin use. The areas under the curve of the devel-

oped models for each event were 0.900, 0.912, 0.879, 0.758, and 0.753, respectively.

Conclusion

Here, we described our experience with the development of models for predicting cardiovas-

cular prognosis by machine learning. Machine learning could identify risk predicting models

with good predictive capability and good discrimination of the risk impact.

Introduction

Risk prediction models for cardiovascular disease (CVD) are generally based on an assumption

that each risk factor is linearly associated with CVD outcomes.[1, 2] Such models may
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oversimplify complex relationships, which potentially include both non-linear associations

and non-linear interactions. Therefore, better approaches to develop risk models which reflect

the real relationship between risk factors and outcomes are necessary.

Machine learning (ML) offers an alternative approach for development of prediction mod-

els. ML is a scientific research standing at the intersection of statistics and computer science,

which depends on efficient computing algorithms. The importance of ML has been recognized

through the challenges of building statistical models from massive data sets which required

computational methods. [3] ML may detect the complex and non-linear interactions between

variables by minimizing the error between predicted and observed outcomes.[4]

To date, although there have been several investigations comparing model development for

prognostic assessment of CVD between ML and commonly used statistical methods, no large-

scale investigations have been reported in a Japanese cohort. This study was performed to

examine whether there are any differences between modelling by ML and by logistic regression

analysis using a single-centre cohort in a cardiovascular hospital in Japan.[5, 6]

Methods

Study population

The Shinken Database includes all patients newly visiting the Cardiovascular Institute in

Tokyo, Japan (‘Shinken’ is a Japanese abbreviation for the name of the hospital), excluding for-

eign travelers and patients with active cancer. This hospital-based database was established to

investigate the prevalence and prognosis of CVD.[5, 6] Our hospital is a cardiology specialized

hospital in an urban area of Japan, Tokyo. The patients seen were not only local residents but

also referred from other clinics for treatment of CVD. The attending physicians were all cardi-

ologists or cardiothoracic surgeons.

The registry began in June 2004, and patients have been continually registered in the data-

base annually. A total of 29,832 patients were registered between June 2004 and March 2016.

Of these, 15,993 patients whose 2-year follow-up data were available were analysed in the pres-

ent study.

Ethics

The ethics committee of the Cardiovascular Institute approved this study, and all patients pro-

vided written informed consent.

Data collection

After obtaining an electrocardiogram and chest X-ray, the cardiovascular status of the patients

was evaluated by echocardiography, exercise test, 24-hour Holter recordings, and blood labo-

ratory data from the initial visit. In addition to gender, age, height, weight, and medications

prescribed at the initial visit, we collected data on CVD, including heart failure (HF; New York

Heart Association class� 2), valvular heart disease (moderate or severe stenosis or regurgita-

tion using echocardiography), coronary artery disease (diagnosed by angiography or scintigra-

phy), hypertrophic and dilated cardiomyopathy (diagnosed by echocardiography or magnetic

resonance imaging), left ventricular non-compaction (diagnosed by echocardiography), and

history of a disabling cerebral infarction or transient ischemic attack (diagnosed by computed

tomography or magnetic resonance imaging). The presence of cardiovascular risk factors,

including hypertension (use of anti-hypertensive agents, systolic blood pressure� 140 mmHg,

or diastolic blood pressure� 90 mmHg on admission), diabetes mellitus (use of oral hypogly-

cemic agents or insulin, or glycosylated hemoglobin� 6.5%), dyslipidemia (use of a statins or
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drugs for lowering triglycerides, low-density lipoprotein cholesterol� 140 mg/dL, high-den-

sity lipoprotein cholesterol < 40 mg/dL, or triglycerides� 150 mg/dL), chronic kidney disease

(estimated glomerular filtration rate< 60 mL/minute/m2), chronic obstructive pulmonary dis-

ease, and use of anti-coagulant and anti-platelet medications were determined. Body mass

index (BMI) was calculated as weight in kilograms divided by height in meters squared. The

glomerular filtration rate (GFR) was estimated using the new Japanese coefficient for the mod-

ified isotope dilution mass spectrometry (IDMS)-traceable 4-variable Modification of Diet in

Renal Disease (MDRD) study equation (GFR = 194 × serum creatinine (SCr) − 1.094 × Age

− 0.287 × 0.739 [if female]).[7]

Parameters assessed for the prediction models

Of the parameters obtained for the database, 118 parameters were used for development of the

prediction models (Table 1). Patient parameters (including age, sex, smoking habit, and drinking

habit), diagnosis of comorbidities, and information regarding medications were obtained. Blood

pressure, laboratory data, and parameters of ultrasound cardiogram were measured in almost all

of the patients; however, in some patients, measurements were not performed incidentally (i.e.,

at the patient’s requires or at the discretion of the attending physician), and some of the parame-

ters were lacking for technical reasons. As described below, in the ML method, missing values

were complemented by a automatically selected prespecified algorithm, while data with missing

values were excluded from logistic regression analysis with commonly used statistical software.

Patient outcome

The patient outcomes in the present study included the following six events: all-cause mortal-

ity, cardiovascular events, HF events, acute coronary syndrome (ACS) events, ischemic stroke

Table 1. Parameters assessed in the prediction models.

Category Number of

parameters

Parameters

Patient

information

9 age, sex, body height, body weight, body mass index, systolic blood pressure, diastolic blood pressure, smoking habit,

drinking habit

Comorbidity 43 hypertension, dyslipidemia, diabetes mellitus, uric acid, chronic kidney disease, anemia, heart failure, stable angina pectoris,

vasospastic angina pectoris, acute coronary syndrome, old myocardial infarction, silent myocardial ischemia, ischemic

cardiomyopathy, atherosclerosis obliterans, history of percutaneous coronary intervention, history of coronary artery bypass

graft, mitral stenosis, mitral regurgitation, aortic stenosis, aortic regurgitation, tricuspid regurgitation, history of heart valve

replacement, dilated cardiomyopathy, hypertrophic cardiomyopathy, dilated-phase hypertrophic cardiomyopathy,

hypertensive heart disease, congenital heart disease, aortic dissection, aortic aneurism, sick sinus syndrome, atrioventricular

block (II or more degrees), atrial fibrillation, atrial tachycardia/atrial flutter, ventricular fibrillation/sustained ventricular

tachycardia, non-sustained ventricular tachycardia, history of catheter ablation, permanent pacemaker/implanted

cardioverter defibrillator/cardiac resynchronization therapy implantation, history of symptomatic ischemic stroke or

transient ischemic attack, history of intracranial hemorrhage, hyperthyroidism, chronic obstructive pulmonary disease,

chronic hemodialysis

UCG parameters 14 interventricular septum thickness, posterior wall thickness, left ventricular end-diastolic diameter, left ventricular diameter at

end systole, left ventricular ejection fraction, left atrial dimension, mitral regurgitation, aortic regurgitation, tricuspid

regurgitation, right ventricular systolic pressure, E, A, E/A, deceleration time

Laboratory data 26 total protein, albumin, blood urea nitrogen, creatinine, estimated glomerular filtration rate, uric acid, sodium, potassium,

chlorine, triglyceride, total cholesterol, aspartate aminotransferase, alanine transaminase, lactate dehydrogenase, creatine

kinase, blood sugar, brain natriuretic peptide, white blood cell count, red blood cell count, hemoglobin, hematocrit, red cell

distribution width, platelet count, mean platelet volume, plateletcrit, platelet distribution width

Medications 26 hypertensive drugs, beta blockers, calcium blockers, angiotensin converting enzyme inhibitors, angiotensin-II receptor

blockers, alfa blockers, sodium glucose transporter-2 inhibitors, insulin, statin, eicosapentenoic acid drugs, diuretics, class I

anti-arrhythmic drugs, carvedilol, bisoprolol, atenolol, class III anti-arrhythmic drugs, class IV anti-arrhythmic drugs,

digitalis, antiplatelet, warfarin, direct oral anticoagulants, anti-thyroid drugs, thyroid drugs, non-steroidal anti-inflammatory

drugs, benzodiazepines, non-benzodiazepine

UCG: ultrasound cardiogram

https://doi.org/10.1371/journal.pone.0221911.t001
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(IS) events, and intracranial hemorrhage events. Cardiovascular events were defined as a com-

posite of four events (HF events, ACS events, IS events, and intracranial hemorrhage events).

Each event comprising a cardiovascular event was determined when it required hospitaliza-

tion. We used the follow-up data with a maximum observation period of 2 years.

Data analysis by machine learning

We developed linear and non-linear models using an automated ML platform, DataRobot.[8]

More than 3,000 procedure sets of data processing, feature engineering, and ML algorithm,

including Support Vector Machine, Elastic Net Classifier, Regularized Logistic Regression,

Stochastic Gradient Descent Classifier, Neural Network Classifier, etc., are developed from its

repository. The software automatically chooses and executes suitable procedure sets when

investigating the patterns in data. All of the developed models were verified by cross-validation

and sorted by the selected evaluation metric, e.g., the area under the curve (AUC).

1) Data preprocessing. From a large number of data preprocessing approaches, the follow-

ing approaches were automatically selected in the final models: imputing missing values, one-

hot encoding for categorical values, standardization for numerical values, and creating new

parameters by unsupervised learning of original parameters. Missing numerical values were

imputed based on the medians of values in its parameters, and missing categorical values were

treated as their own categorical level and given their own parameters. Categorical values were

converted to many binary parameters by one-hot encoding if needed. For some models,

numerical values were standardized in each parameter by subtracting the mean and dividing

by the standard deviation. Moreover, some new parameters were created internally by summa-

rizing original parameters with an unsupervised learning method.

2) Model validation. All developed models were validated by cross-validation and holdout,

using the AUC of the receiver-operating characteristic (ROC) curve as the evaluation metric.

Before developing models, 20% of the dataset was randomly selected as the holdout, which was

never used in training or validation. The remaining data were randomly divided into five

mutually exclusive folds of data, four of which were used together for training, with the final

fold used for validation.[9] Models were trained five times per algorithm, with each fold used

once for validation. Cross-validation scores were calculated by taking the mean of AUC of the

five possible validation folds.[10] Random selection was performed in cross-validation and

holdout by stratified sampling, which holds the ratio of positive and negative cases. Finally,

models were validated on the holdout to demonstrate the generalization performance to new

data. As the holdout was taken as a single sample, no confidence intervals were calculated.

3) Permutation Importance. The relative importance of a parameter in the models was

assessed using the permutation importance (PI), as described by Breiman.[11] This method is

widely used in ML as it can be applied to both linear and non-linear models. To calculate the

PI of a parameter in a model, its values in the validation data were randomly shuffled (reor-

dered), keeping other parameters the same as before. If it has considerable importance on the

outcome, the resulting performance score in the evaluation metric should decline significantly.

We calculated the PI of all parameters and divided by the maximum ratio of the resulting per-

formance scores on the original scores to normalize and compare among different models.

The calculation was conducted several times to ensure stability in random shuffling.

4) Partial dependence. To understand how the changes in values of a parameter affect the

outcome, we constructed partial dependence plots as described by Friedman.[12] To construct

the partial dependence plot of a parameter in a model, we calculated predictions from the

model after having replaced all the values for the parameter with a constant value and
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computing the mean of those predictions. We repeated calculations for many values to observe

how the model reacts to changes in the parameter of interest.

Logistic regression analysis by commonly used software

1) Model development. For comparison with prediction modelling by ML, logistic regression

analysis was performed with commonly used statistical software (SPSS ver. 19; IBM Corp.,

Armonk, NY, USA). We used 118 similar parameters, and consecutive variables were assumed

to have a linear association with the patient outcomes. The multivariate model was developed

with the forward stepwise method. The interactions between parameters were not considered.

Data with missing values were excluded from the analysis.

2) Impact of risk factors. Impact of risk factors (IRF) was calculated for each parameter

determined in the multivariate models by logistic regression analysis using the following equa-

tion: IRF = (Wald statistic for each parameter)/(maximum Wald statistic among parameters in

the multivariate model). IRF in the logistic regression model corresponded to the permutation

importance in the ML model.

Other statistical methods

Categorical and continuous data are presented as numbers (%) and means ± standard devia-

tion, respectively. Statistical analyses other than ML were performed using SPSS ver. 19 (IBM

Corp.). In all analyses, two-sided P< 0.05 was taken to indicate statistical significance.

Results

Patient characteristics

The patient characteristics of the study population (n = 15,933) are shown in Table 2. The

mean age was 61 ± 14 years, and the population included 10,352 males (65%). The rates of

hypertension, dyslipidemia, and diabetes were 51%, 39%, and 20%, respectively, whereas those

of HF, ischemic heart disease, valvular heart disease, cardiomyopathy, and atrial fibrillation

were 18%, 26%, 14%, 9%, and 18%, respectively.

Incidence rates of patient outcomes

The incidence rates of patient outcomes (percentage for number of study population) are

shown in Table 3. All-cause mortality occurred in 217 patients (1% within 2 years),

Table 2. Patient characteristics.

Total, n = 15,933

Age, years 61 ± 14

Male 10,352 (65)

Hypertension 8,110 (51)

Dyslipidemia 6,250 (39)

Diabetes 3,154 (20)

Heart failure 2,831 (18)

Ischemic heart disease 4,133 (26)

Valvular heart disease 2,197 (14)

Cardiomyopathy 1,352 (9)

Atrial fibrillation 2,805 (18)

Data are presented as n (%) of patients or mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0221911.t002
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cardiovascular events in 786 (5%), HF events in 417 (3%), ACS events in 247 (2%), IS events in

95 (0.6%), and intracranial hemorrhage events in 59 (0.4%).

Comparison of prediction models

1) All-cause mortality. Among the ML models, a model with Nystroem Kernel SVM Classifier

had the largest AUC for all-cause mortality (0.900). In this model, the top five parameters

determined by PI were albumin (100, reference), hemoglobin (78), aortic aneurism (44), BMI

(43), and maintenance hemodialysis (43). Albumin, hemoglobin, and BMI showed linear rela-

tionships with all-cause mortality (Table 4A, Figs 1A and 2A).

In the logistic regression model, AUC for all-cause mortality was 0.881. In this model, the

top five parameters determined by IRF were albumin (100, reference), age (36), total protein

(29), dyslipidemia (28), and carvedilol use (25) (Fig 1A).

2) Cardiovascular events. Among the ML models, a model with Random Forest Classifier

(Tree-based Algorithm) had the largest AUC for cardiovascular events (0.848). In this model,

the top five parameters determined by PI were HF (100, reference), history of ACS (76), left

ventricular ejection fraction (72), estimated glomerular filtration rate (57), and mitral regurgi-

tation (degree determined by ultrasound cardiogram) (42). Mitral regurgitation showed a lin-

ear relationship with cardiovascular events, whereas left ventricular ejection fraction and

estimated glomerular filtration rate showed non-linear relationships (Table 4B, Figs 1B and

2B).

In the logistic regression model, the AUC for cardiovascular events was 0.831. In this

model, the top five parameters determined by IRF were history of ACS (100, reference), HF

(57), left ventricular ejection fraction (30), tricuspid regurgitation (degree determined by ultra-

sound cardiogram) (17), and statin use (17) (Fig 1B).

3) Heart failure events. Among the ML models, a model with Random Forest Classifier

(Tree-based Algorithm) had the largest AUC for HF event (0.912). In this model, the top five

parameters determined by PI were left ventricular ejection fraction (100, reference), HF (93),

age (57), left ventricular dimension at end-diastole (57), and left atrial dimension (49). Left

ventricular ejection fraction, age, left ventricular dimension at end-diastole, and left atrial

dimension showed non-linear relationships (with a threshold) with HF events (Table 4C, Figs

1C and 2C).

In the logistic regression model, the AUC for HF events was 0.907. In this model, the top

five parameters determined by IRF were left ventricular dimension at end-systole (100, refer-

ence), diuretic use (77), HF (71), direct oral anti-coagulant use (61), and left atrial dimension

(58) (Fig 1C).

4) Acute coronary syndrome events. Among the ML models, a model with Elastic-Net

Classifier had the largest AUC for ACS events (0.879). In this model, the top five parameters

Table 3. Incidence rates of patient outcomes.

Total, n = 15,933 Incidence rate within 2 years

All-cause mortality 217 (1)

Cardiovascular events 786 (5)

Heart failure events 417 (3)

Acute coronary syndrome 247 (2)

Ischemic stroke events 95 (0.6)

Intracranial hemorrhage 59 (0.4)

Data are presented as n (%).

https://doi.org/10.1371/journal.pone.0221911.t003

Comparison of risk models for mortality and morbidity by machine learning and logistic regression

PLOS ONE | https://doi.org/10.1371/journal.pone.0221911 September 9, 2019 6 / 14

https://doi.org/10.1371/journal.pone.0221911.t003
https://doi.org/10.1371/journal.pone.0221911


Table 4. Top five parameters for patient outcome.

Machine learning Logistic regression model

A. All-cause death

Model AUC Model AUC

Support vector machine 0.900 —— 0.881

Parameters IRF (%) Parameters PI (%)

1 Albumin 100 Albumin 100

2 Hemoglobin 78 Age 36

3 Aortic aneurism 44 Total protein 29

4 Body mass index 43 Dyslipidemia 28

5 Hemodialysis 43 Carvedilol use 25

B. Cardiovascular events

Model AUC Model AUC

Random forest 0.848 —— 0.831

Parameters IRF (%) Parameters PI (%)

1 Heart failure 100 History of acute coronary syndrome 100

2 History of acute coronary syndrome 76 Heart failure 57

3 Left ventricular ejection fraction 72 Left ventricular ejection fraction 30

4 Estimated glomerular filtration rate 57 Tricuspid regurgitation (degree) 17

5 Mitral regurgitation (degree) 42 Statin use 17

C. Heart failure events

Model AUC Model AUC

Random forest 0.912 —— 0.907

Parameters IRF (%) Parameters PI (%)

1 Left ventricular ejection fraction 100 Left ventricular dimension at end-systole 100

2 Heart failure 93 Diuretics use 77

3 Age 57 Heart failure 71

4 Left ventricular dimension at end-diastole 57 Direct oral anticoagulant 61

5 Left atrial dimension 49 Left atrial dimension 58

D. Acute coronary syndrome events

Model AUC Model AUC

Elastic-Net 0.879 —— 0.884

Parameters IRF (%) Parameters PI (%)

1 History of acute coronary syndrome 100 History of acute coronary syndrome 100

2 Antiplatelet use 26 Antiplatelet use 23

3 Diuretics use 18 Stable angina 20

4 Heart failure 17 Old myocardial infarction 9

5 Angiotensin receptor-II blocker 10 Creatinine 8

E. Ischemic stroke events

Model AUC Model AUC

Support vector machine 0.758 —— 0.757

Parameters IRF (%) Parameters PI (%)

1 History of ischemic stroke or TIA 100 History of ischemic stroke or TIA 100

2 Deceleration time 98 Systolic blood pressure 52

3 History of intracranial hemorrhage 76 Blood glucose 51

4 Diastolic blood pressure 48 Aortic aneurism 30

5 Left ventricular ejection fraction 34 Tricuspid regurgitation 28

F. Intracranial hemorrhage events

Model AUC Model AUC

(Continued)
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determined by PI were history of ACS (100, reference), anti-platelet use (26), diuretic use (18),

HF (17), and angiotensin-receptor-II blocker use (10) (Table 4D, Figs 1D and 2D).

In the logistic regression model, the AUC for ACS events was 0.884. In this model, the top

five parameters determined by IRF were history of ACS (100, reference), anti-platelet use (23),

stable angina (20), old myocardial infarction (9), and creatinine (8) (Fig 1D).

5) Ischemic stroke events. Among the ML models, a model with Nystroem Kernel SVM

Classifier (Regularized Linear Model) had the largest AUC for IS events (0.758). In this model,

the top five parameters determined by PI were history of IS or transient ischemic attack (100,

reference), deceleration time (98), history of intracranial hemorrhage (76), diastolic blood

pressure (48), and left ventricular ejection fraction (34). Deceleration time, diastolic blood

pressure, and left ventricular ejection fraction showed linear relationships with IS events

(Table 4E, Figs 1E and 2E).

In the logistic regression model, the AUC for IS events was 0.757. In this model, the top five

parameters determined by IRF were history of IS or transient ischemic attack (100, reference),

systolic blood pressure (52), blood glucose (51), aortic aneurism (30), and tricuspid regurgita-

tion (28) (Fig 1E).

6) Intracranial hemorrhage events. Among the ML models, a model with Elastic-Net Clas-

sifier had the largest AUC for intracranial hemorrhage events (0.753). In this model, the top

five parameters determined by PI were history of intracranial hemorrhage (100, reference),

warfarin use (65), interventricular septal thickness (37), dilated phase hypertrophy cardiomy-

opathy (29), and sick sinus syndrome (29). Interventricular septal thickness showed a linear

relationship with intracranial hemorrhage events (Table 4F, Figs 1F and 2F).

In the logistic regression model, the AUC for intracranial hemorrhage events was 0.726. In

this model, the top five parameters determined by IRF were history of intracranial hemorrhage

(100, reference), tricuspid regurgitation (degree determined by echocardiogram) (79), inter-

ventricular septal thickness (50), estimated glomerular filtration rate (33), and history of coro-

nary artery bypass graft (31) (Fig 1F).

Discussion

Major findings

In this analysis, we developed prediction models for six prognostic outcomes related to CVD

by ML (ML model) using ensemble modelling software (DataRobot) and logistic regression

analysis (LR model) with commonly used statistical software (SPSS). The AUCs for each prog-

nostic outcome were mostly similar between ML and LR models. Interestingly, the parameter

Table 4. (Continued)

Machine learning Logistic regression model

Elastic-Net 0.753 —— 0.726

Parameters IRF (%) Parameters PI (%)

1 History of intracranial hemorrhage 100 History of intracranial hemorrhage 100

2 Warfarin use 65 Tricuspid regurgitation (degree) 79

3 Interventricular septal thickness 37 Interventricular septal thickness 50

4 Dilated-phase hypertrophic cardiomyopathy 29 Estimated glomerular filtration rate 33

5 Sick sinus syndrome 29 History of coronary artery bypass graft 31

Abbreviations: AUC; area under the curve, IRF; impact of risk factors, PI; permutation importance, TIA; transient ischemic attack.

https://doi.org/10.1371/journal.pone.0221911.t004
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Fig 1. Impacts of risk factors selected in the prediction models with machine learning (ML) and logistic regression (LR) for six patient outcomes. (A) All-cause

mortality: The areas under the curve (AUC) for all-cause mortality by prediction models with ML and LR were 0.900 and 0.881, respectively, and the risk factor with

the strongest impact was albumin (impact 100, reference) for both models, followed by hemoglobin (78) and age (36) in ML and LR models, respectively. (B)

Cardiovascular events: AUC 0.848 and 0.831, respectively, the risk factor with the strongest impact was heart failure and acute coronary syndrome (ACS) (both, 100,

reference), followed by ACS (76) and heart failure (57), respectively. (C) Heart failure events: AUC 0.912 and 0.907, respectively, the risk factor with the strongest

impact was left ventricular ejection fraction and left ventricular dimension at end-systole (both, 100, reference), respectively, followed by heart failure (93) and

diuretics (77), respectively. (D) ACS: AUC 0.879 and 0.884, respectively, the risk factor with the strongest impact was ACS (100, reference) for both models, followed

by anti-platelet for both models (26 and 23 in ML and LR, respectively). (E) Ischemic stroke events: AUC 0.758 and 0.757, respectively, the risk factor with the

Comparison of risk models for mortality and morbidity by machine learning and logistic regression
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with the greatest impact in each model (top parameter) was mostly similar between ML and

LR, but other risk factors were not necessarily consistent between them.

Modelling in ML

We used DataRobot in the present analysis, which automatically selected the model with the

largest AUC among numerous ML models.

For ACS and intracranial hemorrhage events, the Elastic-Net classifier model was selected.

This model was projected for data with strong multicollinearity. In predicting models for ACS

and intracranial hemorrhage, the history of each event was determined as the top parameter,

strongest impact was a history of ischemic stroke or transient ischemic attack (100, reference) for both models, followed by deceleration time (98) and systolic blood

pressure (52), respectively. (F) Intracranial hemorrhage: AUC 0.753 and 0.726, respectively, the risk factor with the strongest impact was a history of intracranial

hemorrhage (100, reference) for both models, followed by warfarin (65) and tricuspid regurgitation (79) in models with ML and LR, respectively.

https://doi.org/10.1371/journal.pone.0221911.g001

Fig 2. Relationships between parameters and incidence probability for six patient outcomes. The associations between the top five parameters by machine learning

models and incidence probability of six patient outcomes are shown. The incidence probability was determined as partial dependence in each model. (A) All-cause

mortality, (B) Cardiovascular events, (C) Heart failure events, (D) Acute coronary syndrome events, (E) Ischemic stroke events, and (F) Intracranial hemorrhage events.

https://doi.org/10.1371/journal.pone.0221911.g002
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and the weighting of risk in the model was concentrated on the top parameter. In contrast, the

weighing of the risk in other parameters in the model was very low. This distribution of impact

may have been because that parameters indicating the progression of pathological condition

(i.e., calcification or plaque of coronary artery for ACS, cerebral artery aneurism or micro-

bleeds for intracranial hemorrhage) were not included in the present analysis, and therefore

the history of each event played a role as a surrogate marker for which the weighing of risk was

concentrated. As a consequent, the pattern of relationship among parameters became like to

be a sparse representation, seen in the field of visual image reconstruction,[13, 14] for which

Elastic-Net classifier model would fit well.[15]

The SVM model was selected for all-cause mortality and IS events. This model was pro-

jected to obtain a solution in a complex classification problem.[16] Especially, SVM is suitable

for situations where appropriate and representative examples of all the different categories

(classes) are available,[17] and as an advantage, SVM do not require linear relationships or

independence between the parameters and thus are more suitable for clinical data classifica-

tion.[18] As shown in Fig 2A and 2E (permutation importance for mortality and IS, respec-

tively), multiple factors had strong impact on outcomes, which may be a reason that SVM

suited better than Elastic Net classifier. On the other hand, the changes of the risks according

to the change of each parameter were gradual (not having a threshold), which may be a reason

that SVM suited better than random forest, which would suit better for parameters having a

definite threshold.

For cardiovascular events and HF events, the random forest model was selected. This

model was projected to obtain a solution with many parameters of similar effects and was

widely used among non-linear model.[11] Similar to SVM, random forest do not require linear

relationships or independence between the parameters and thus are suitable for clinical data

classification. However, compared to SVM, random forest is more suitable for categorical data

or consecutive values with a definite threshold, because its basic methodology is making cate-

gories with multiple layers. As shown in Fig 2B and 2C (permutation importance for cardio-

vascular events and heart failure events, respectively), multiple factors had strong impact on

outcomes, and of note, the consecutive parameters had a definite threshold, which may be a

reason that random forest suited better than SVM for these outcomes.

There are several possible explanations why the predictive capabilities represented by the

AUCs were similar between ML and LR models for prognostic outcomes. First, the sample size

was adequate for both ML and LR models, although ML can be applied for larger populations

with greater numbers of predictors. Second, the numbers of risk parameters may be adequate

for both of ML and LR models, and many of the consecutive parameters were mostly linearly

correlated, which may make it difficult to distinguish the differences between ML and LR

models. Third, given the relatively low event rate, the low signal-to-noise ratio may be another

reason for the difficulty in distinguishing between the ML and LR models.[19]

Theoretically, it is expected that the superiority of ML in developing predicting models for

prognostic outcomes will be more obvious in larger populations, especially with greater num-

bers of parameters and complex confounding factors or interactions. From another viewpoint,

the problem of missing values may also be important. In the present study, albumin was com-

monly determined as the top predictor in both of ML and LR models. Although several recent

studies have identified hypoalbuminemia as an independent predictor of mortality in CVD

[20] (i.e., HF,[21–23] myocardial infarction,[24–26] or hemodialysis[27–29]), albumin was

not included in most of the risk scores for mortality in CVD.[30–35] The insufficient recogni-

tion of albumin as a risk factor for mortality may be due to the strong interaction with other

risk factors (i.e., hemoglobin and body weight) or missing values in previous observational

studies due to the low attention to its risk. The ML method involves consideration of
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interactions and the method of complementing missing values. Therefore, analysis by ML may

lead to the discovery of new things by studying the past, where we can recognize the true risk

in a data-driven manner.

Limitation

This study had several limitations. First, because our patients were from a single-centre cohort

from a cardiovascular institute, the results should be interpreted carefully, and cannot be easily

extrapolated to other populations. Second, as mentioned above, although the sample size

seemed to be adequate for both ML and LR models, larger cohorts would be necessary to dis-

tinguish between the predictive capabilities of ML and LR models.

Conclusion

We reported our experience in the development of predictive models for cardiovascular prog-

nosis by ML. ML could identify risk predictive models with good predictive capability and

good discrimination of the risk impact.
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