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Abstract: A novel gelator (1) based on a bis-pyridine derivative was designed and synthesized, which
could form stable gels in methanol, ethanol, acetonitrile, ethyl acetate, DMF/H2O (4/1, v/v) and
DMSO/H2O (4/1, v/v). The self-assembly process of gelator 1 was studied by field emission scanning
electron microscopy (FESEM), UV–vis absorption spectroscopy, fluorescence emission spectroscopy,
Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction and a water contact angle
experiment. Gelator 1 exhibited obvious AIE behavior. On the base of its AIE, the gel of 1 could
detect Hg2+, which resulted in fluorescence quenching and a gel–sol transition. 1H NMR titration
experiments with Hg2+ revealed that the metal coordination interaction induced the fluorescence
quenching and the breakdown of the noncovalent interaction in the gel system. This research provides
a new molecular mode for designing a functional self-assembly gel system.

Keywords: bis-pyridine; self-assembly; supramolecular gel; detection of Hg2+

1. Introduction

In the past thirty years, supramolecular chemistry has become even more sophisticated
and quickly developed due to its applications in a variety of disciplines and fields [1–11]. As
a typical supramolecular material, low-molecular-weight gels (LMWGs) are a kind of soft
material between a solid and liquid which have been developed rapidly and widely used
in electrolyte materials [12], sensors [13,14], drug delivery systems [15], liquid crystal [16],
supramolecular chirality [17–19], light-harvesting systems [20,21], surfactants [22] and other
fields [23–28]. Organic molecules can be self-assembled into organogel or hydrogel under
the driving force of noncovalent interactions, such as a hydrogen bond, metal coordination,
π–π stacking, hydrophobic effect, electrostatic force and van der Waals force [29–33]. Due
to the weakness and reversibility of the aforementioned noncovalent interactions, LMWGs
usually can respond to environment stimuli including light, pH, temperature, mechanical
stress and chemical stimuli and lead to a change in color, emission or physical state [34–38].
If supramolecular gels are used as a sensor, they can exhibit unique superiority due to the
three-dimensional network and nature of noncovalent interaction. For example, Wei et al.
constructed a new stimuli-responsive supramolecular polymer system with the capability
of ultrasensitive detection and separation of Pb2+, Cr3+ and Fe3+ via the competitive
coordination effect [39]. We also designed several self-assembly gel systems with the ability
to detect multianalytes [40–42].

Mercury is one of the heavy metals and is extremely toxic to the human body and
environment [43–45]. The accumulation of mercury ions in the water environment pollutes
aquatic animals and plants and threatens their survival and health [46]. Mercury enriched
in fish and shrimp may enter the human body through the food chain and cause diseases
including brain damage and chronic disease [47,48]. Many methods and materials have
been used for the detection of mercury ions [49–54]. Therefore, there is a great demand to
develop a simple, rapid and highly selective sensor for mercury ions.
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In this work, a novel bis-pyridine gelator (1) could form gels in some pure solvents
and mixed solvents (Scheme 1). Gelator 1 was originally designed for the construction of a
metal-coordinated, tunable supramolecular chiral self-assembly system via the introduction
of two pyridines and (R)-octan-2-amine. Unfortunately, supramolecular chirality did not
present in the self-assembly systems, and the metal coordination effect did not induce
and adjust supramolecular chirality in the gels of 1. AIE behavior widely exists in many
fields including MOFs, polymers, etc. [55–59]. It was meaningful that gels of 1 exhibited an
obvious AIE property in the sol–gel transition and a good response ability towards mercury
ions. The self-assembly processes of 1 in different solvents and the detection of mercury
ions by the gel of 1 were investigated in detail. This work could bring a new perspective to
the designing of functional supramolecular gels as fluorescent sensors.

Gels 2022, 8, x FOR PEER REVIEW 2 of 13 
 

 

rials have been used for the detection of mercury ions [49–54]. Therefore, there is a great 

demand to develop a simple, rapid and highly selective sensor for mercury ions.  

In this work, a novel bis-pyridine gelator (1) could form gels in some pure solvents 

and mixed solvents (Scheme 1). Gelator 1 was originally designed for the construction of 

a metal-coordinated, tunable supramolecular chiral self-assembly system via the intro-

duction of two pyridines and (R)-octan-2-amine. Unfortunately, supramolecular chirality 

did not present in the self-assembly systems, and the metal coordination effect did not 

induce and adjust supramolecular chirality in the gels of 1. AIE behavior widely exists in 

many fields including MOFs, polymers, etc. [55–59]. It was meaningful that gels of 1 ex-

hibited an obvious AIE property in the sol–gel transition and a good response ability 

towards mercury ions. The self-assembly processes of 1 in different solvents and the de-

tection of mercury ions by the gel of 1 were investigated in detail. This work could bring 

a new perspective to the designing of functional supramolecular gels as fluorescent sen-

sors.  

O

N
H

N
H

OO

NN
N
H

O

N
H

O
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Scheme 1. The structure of gelator 1.

2. Results and Discussion

A new gelator based on a bis-pyridine derivative was designed and synthesized, and
the detailed characterization data are shown in the supporting information (SI). The gelation
performance of 1 was explored in a series of solvents ranging from nonpolar to polar via
the method of inverted tubes, and the results are shown in Table 1 [60]. Gelator 1 could
form white gel in methanol, ethanol, acetonitrile, 1, 4-dioxane, ethyl acetate, DMSO/H2O
(4:1, v/v) and DMF/H2O (4:1, v/v) with the critical gel concentration (CGC) of 25, 25, 25,
8.33, 25, 6.67 and 20 mg mL−1, respectively. Precipitate 1 was observed in toluene and 1,
4-dioxane. In n-hexane, petroleum ether and acetone, compound 1 was not completely
dissolved at the concentration of 25 mg mL−1. On the contrary, solution 1 was obtained
in THF. The gels of 1 in these solvents could be stable for several months. In addition,
these gels possessed obvious AIE behavior, and the nonfluorescent solution was changed
to fluorescent gel in the sol–gel transition process. The gels of 1 emitted blue light under
365 nm light (Figure 1).

Table 1. Gelation performance of gelator 1.

Solvents 1 Solvents 1

n-hexane I 1, 4-dioxane P
toluene P ethyl acetate G(25)

methanol G(25) petroleum ether I

ethanol G(25) DMSO/H2O =
4:1(v/v) G(6.67)

acetonitrile G(25) DMF/H2O = 4:1(v/v) G(20)
acetone I THF S

P = precipitate; S = soluble; I = insoluble; G = gel. The values in parentheses are the critical gel concentration
(CGC, mg mL−1).

To observe the self-assembly morphologies in progress, FESEM was performed on
the xerogels of 1 in DMSO/H2O (4/1, v/v), DMF/H2O (4/1, v/v), methanol, ethanol,
acetonitrile and ethyl acetate to reveal their self-assembly structures (Figure 2). The diluted
gel of 1 was spread evenly on mica, and dried by freeze-drying technology. As shown
in Figure 2a, gelator 1 self-assembled into irregular microbelts with the length of several
micrometers and the width of 0–2 µm, and then stacked into three-dimensional structures
in DMF. Similar structures were observed in other xerogels of 1. There was a regular
arrangement in the xerogels of 1 in acetonitrile and ethyl acetate with different interspaces in
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their three-dimensional structures (Figure 2b,c). The structure of the gel of 1 in DMSO/H2O
(4/1, v/v) demonstrated chaotic microbelts with a width of about 0.2–0.5 micrometers and
a length of several micrometers (Figure 2d). It could be observed that dense microbelts
intertwined with the three-dimensional network in the gel of 1 in ethanol in Figure 2e.
The most porous three-dimensional network constructed by irregular nanorods was found
in the gel of 1 in methanol (Figure 2f). The above results showed that the solvent had a
certain effect on the self-assembly of gelator 1 through the interaction between the gelator
molecule and solvent molecule.
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Figure 1. Images of gels of 1 in different solvents: (a,a′) DMF/H2O (4/1, v/v); (b,b′) DMSO/H2O
(4/1, v/v); (c,c′) methanol; (d,d′) ethanol; (e,e′) ethyl acetate; (f,f′) acetonitrile (gel concentration is
its corresponding CGC).
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Figure 2. SEM images of xerogels of 1 in (a) DMF/H2O (4/1, v/v), (b) acetonitrile, (c) ethyl acetate,
(d) DMSO/H2O (4/1, v/v), (e) ethanol, (f) methanol.

The molecular self-assembly pattern in the gel system can be explored by comparing
the UV–vis absorption spectra of the solution and gel state. UV–vis absorption spectra of
gelator 1 in a solution and gel state with different solvents were obtained and shown in
Figure 3. The maximum absorption band at 292 nm of gelator 1 in ethyl acetate was slightly
red-shifted to 295 nm in its gel state (Figure 3a). Similar phenomena also appeared in other
UV–vis absorption spectra of gelator 1 in other solvents. In acetonitrile, the maximum
absorption band of 284 nm of solution 1 was moved to 301 nm with the red-shift of 17 nm
for the gel state (Figure 3b). The UV–vis absorption band of solution 1 in ethanol was
at 288 nm, which had just a red-shift of 3 nm for its gel state (Figure 3c). Solution 1 in
DMSO/H2O (4/1, v/v) had an absorption band at 288 nm, which was changed into a broad
band at 347 nm for its gel state, indicating the J-aggregation self-assembly mode existed in
the gel system [61] (Figure 3d). The maximum absorption band of solution 1 in DMF was
290 nm and red-shifted to 302 nm for its gel state (Figure 3e). It was different for solution 1
in methanol, which had an absorption band at 285 nm that was changed into two bands at
306 nm and 349 nm. The slow decay in absorbance in Figure 3c,e was possible due to the
scattering effect of the gels.
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Figure 3. UV–vis absorption spectra of gelator 1 in solution and gel state with different solvents:
(a) ethyl acetate; (b) acetonitrile; (c) ethanol; (d) DMSO/H2O (4/1, v/v); (e) DMF/H2O (4/1, v/v);
(f) methanol. The concentrations of solution and gel were 10−5 M and the corresponding CGC.

To explore the effect of solvents on gelator 1, fluorescence emission spectra of 1 in
solution and gel states with six different solvents were investigated (Figure 4). In Figure 4a,
solution 1 in ethyl acetate had a maximum emission peak at 402 nm with a very weak
intensity, and was blue-shifted to 397 nm in the gel state, indicating the TICT behavior of
gelator 1 in ethyl acetate [62]. Solution 1 in acetonitrile almost did not emit light, and an
emission peak was at 393 nm for its gel state (Figure 4b). Similar emission behavior was
observed for the gel of 1 in ethanol (Figure 4c). An emission at 342 nm of solution 1 in
DMSO/H2O (4/1, v/v) was red-shifted to 393 nm with a shoulder peak of 376 nm in the
gel state, which showed that π–π stacking was presented in the gel system. Two emission
peaks appeared at 339 and 415 nm for solution 1 in DMF/H2O (4/1, v/v), which combined
into a single broad peak at 378 nm in the gel state (Figure 4e). Two emission peaks at 358
and 393 nm of solution 1 in methanol were also changed into one peak at 373 nm in the gel
state (Figure 4f). These experimental results exhibited that the solvent not only affected the
self-assembly process, but also influenced the emissions.

An X-ray powder diffraction experiment can provide some information about the
self-assembly patterns in gel [63]. Xerogels of 1 were explored by the XRD experiment
(Figure S1). As shown in Figure S1a,a′, the XRD pattern of the xerogel of 1 in acetonitrile
showed a series of diffraction peaks with the d-space values of 2.69, 1.35, 0.84, 0.76, 0.67,
0.59, 0.56, 0.50, 0.45, 0.43, 0.40, 0.36, 0.34 and 0.31 nm. The d-space values of 2.69, 1.35 and
0.67 nm were at the ratio of 1: 1/2: 1/4 and indicated that gelator 1 was self-assembled into
a layered structure with a layer distance of 2.69 nm, which was close to the molecular length
of gelator 1 and showed the monomolecular self-assembly. The similar diffraction peaks
and d-space values were also presented in other XRD patterns of the xerogels of 1, indicating
that the self-assembly of gelator 1 in gel systems was highly ordered (Figure S1b–f,b′–f′).
The XRD pattern of the powder of 1 showed only one diffraction peak at 2θ = 20◦, which
indicated that molecule 1 in powder was not in orderly arrangement such as that of the gel
state (Figure S1g,g′).

It is well known that there are one or more driving forces, such as a hydrogen bond and
van der Waals force, in the self-assembly gel [64]. In order to analyze hydrogen bonding
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in the gels of 1 in different solvents, Fourier transform infrared spectra of xerogels of 1
were obtained. As shown in Figure 5, N–H stretching vibration peaks of xerogels of 1
in methanol, ethanol, ethyl acetate, DMSO/H2O (4/1, v/v), DMF/H2O (4/1, v/v) and
acetonitrile were at 3294, 3294, 3291, 3286, 3259 and 3291 cm−1, respectively. Furthermore,
the stretching vibration peaks of C=O (amide I and II) of xerogels of 1 in the aforementioned
solvents and powder 1 were at 1676, 1671, 1676, 1671, 1671 and 1671 cm−1 and 1546, 1547,
1550, 1546, 1546 and 1546 cm−1, respectively. The results demonstrated that there were
intermolecular hydrogen bonds in the gel system. The FTIR spectrum of powder 1 showed
that N–H and C=O (amide I and II) stretching vibration peaks were at 3299, 1663 and
1534 cm−1, which demonstrated that a hydrogen bond also existed in the powder state.
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Figure 4. Fluorescence emission spectra of 1 in solution and gel state with different solvents. The 

concentration of solution was 10−5 M and CGC. (a) Ethyl acetate; (b) acetonitrile; (c) ethanol; (d) 

DMSO/H2O (4/1, v/v); (e) DMF/H2O (4/1, v/v); (f) methanol. 
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Surface wettability plays an important role in material application, especially as
superhydrophobic and superhydrophilic surfaces have many potential applications [65–67].
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The diluted gel of 1 was spread on the glass sheet with a certain thickness to avoid the basal
influence, and then dried naturally. As shown in Figure 6a–d, xerogels of 1 in DMF/H2O
(4/1, v/v), acetonitrile, DMSO/H2O (4/1, v/v) and ethyl acetate were hydrophobic with
water contact angles of 124◦, 131◦, 141◦ and 135◦, respectively, whereas xerogels of 1 formed
in ethanol and methanol exhibited superhydrophilicity with small contact angles of 80◦

and 51◦ (Figure 6e,f). For the above experimental results, it was concluded that the surface
wettability of xerogels of 1 was mainly determined by their different self-assembly modes
and structures due to their same components.
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Figure 6. Imaging of water contact angle of xerogels of 1 coated with different solvents. (a) DMF/H2O
(4/1, v/v); (b) acetonitrile; (c) DMSO/H2O (4/1, v/v); (d) ethyl acetate; (e) ethanol; (f) methanol.

To further verify the AIE of gelator 1, the fluorescence emissions of gelator 1 in the
solution and gel state with different water proportions were obtained (Figure 7). With
water content up to 70%, the emission of solution 1 in acetonitrile was greatly enhanced by
75 times, and then was decreased after the water content was more than 70% (Figure 7a).
The fluorescence emission change of solution 1 in acetonitrile with different contents of
water was well verified by the corresponding images (Figure S2). It was regrettable that
the emission light from solution 1 with 70% water was not observed under a portable UV
lamp. A similar emission change was observed in the gel system (Figure 7b). When the
water proportion increased from 1/100,000 to 1/1000, the fluorescence intensity of the
gel of 1 also continuously increased. If the water proportion was more than 1/1000, the
fluorescence intensity was gradually decreased. However, the overall fluorescence intensity
was higher than that of the gel formed in pure acetonitrile. Two emission peaks appeared
at 373 nm and 403 nm after the water content increased to 1/10,000.

Figure 7. Fluorescence emission spectra of solution (10−5 M) (a) and gel of 1 (CGC) (b) in acetonitrile
with different water content.
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Based on the coordination interaction of the pyridine group in molecule 1 and its AIE
effect in a gel state, we tried to explore the responsive ability of the gel of 1 to different
metal ions [68–71]. Fourteen common metal ions were selected in this experiment. First,
1.0 eq. of metal ions was added to the gel of 1 in acetonitrile, and then the gel was melted
and reforged in the presence of the ions for inspection of the responsive ability via the
change in the fluorescence and gel state. In Figure 8, the state and color of the gel of 1 did
not exhibit significant change after the addition of Al3+, Mg2+, Mn2+, Cd2+, Co2+, Cu2+,
Ni2+, Pb2+, Eu3+ and Zn2+. The gel state did not change after the addition of Fe2+ and Fe3+,
but the color changed to light yellow. Under 365 nm light irradiation, the emission of the
gel of 1 with Fe3+ decreased. The gel containing Hg2+ exhibited the most obvious change.
The white gel was collapsed into a pale yellow solution along with the disappearance of its
fluorescence. The addition of Tb3+ also induced the collapse of the gel, but the fluorescence
was still kept. To better observe the fluorescence change with 1.0 eq. ions, the fluorescence
emissions of gels of 1 with different ions were obtained (Figure 9). The addition of 1.0 eq.
of Al3+, Cd2+, Co2+, Cu2+, Fe2+, Fe3+, Mg2+, Mn2+, Ni2+, Pb2+ and Zn2+ all induced the
fluctuations in the fluorescence of the gel of 1. For the addition of Eu3+, the fluorescence
intensity was decreased by approximately 80.62%. In contrast, the fluorescence of the gel of
1 was mostly quenched by Hg2+ with the same conditions. It was concluded that the gel
of 1 could selectively detect Hg2+ via the simultaneous variation in the fluorescence and
gel state.
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Figure 8. The images of gels of 1 with different metal ions.

Figure 9. Fluorescence emission spectra of gels of 1 with different metal ions (1.0 eq.).
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For investigating the detection ability of the gel of 1 in Hg2+, 70 µL of the Hg2+

aqueous solution with different concentrations was added to the gel of 1. When Hg2+ was
added to the gel of 1, the gel state collapsed to a different extent, indicating that Hg2+

destroyed the noncovalent interactions of the gel of 1 in acetonitrile. The decrement in
fluorescence emission intensity of the gel of 1 was gradually enlarged with the increase in
Hg2+ concentration (Figure 10a). However, UV–vis absorption spectra of the gel of 1 with
the addition of the Hg2+ aqueous solution with different concentrations did not significantly
change, showing that the electron transition of π–π* of molecule 1 was not changed by
Hg2+ (Figure S3). To further understand the interaction between gelator 1 and Hg2+, the
morphology change of the gel of 1 with the addition of Hg2+ was observed (Figure S4).
In Figure 10, Hg2+ destroyed the original self-assembly structure in the gel of 1, and the
nanofibers were changed to microspheres. The change in the self-assembly structure was
possible because the coordination interaction between Hg2+ and the pyridine group in
molecule 1 destroyed the intrinsic noncovalent interaction in the gel of 1. The changes
in the gel state and fluorescence emission of the gels of 1 after the addition of the Hg2+

aqueous solution with the different concentrations were made as images in Figure 10b. Gel
states were changed to partial gel, and then, solutions of 1 with the different concentrations
of Hg2+ aqueous solution increased from 10−7 to 10−1 M. Meanwhile, the fluorescence
emission of gel was also gradually decreased in this experiment.

Figure 10. (a) Fluorescence emission spectra of gels of 1 after the addition of Hg2+ aqueous solution
with the different concentrations; (b) the changes in gel state and emission light for gels of 1 after the
addition of Hg2+ aqueous solution with the different concentrations. The addition amount of Hg2+

aqueous solution was 70 µL.

In order to study the coordination interaction between Hg2+ and the pyridine group in
molecule 1 and the change in noncovalent interaction, NMR titration experiments with Hg2+

in DMSO-d6 (11.6 mM) were performed, as shown in Figure 11. Upon the gradual addition
of Hg2+ to solution 1 in DMSO-d6, the chemical shifts of two active protons assigned to
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two amide groups (H1 and H2) were shifted downfield from 10.84 and 9.01 ppm to 10.92
and 9.15 ppm, respectively. The chemical shifts of H3–H7 of pyridine and benzene rings
in molecule 1 were all moved upfield from 8.33, 8.27, 8.24, 7.85 and 7.14 ppm to 8.31, 8.25,
8.22, 7.79 and 7.07 ppm, respectively. These results indicated that hydrogen bonding in the
gel system was destroyed by Hg2+, and the coordination interaction between molecule 1
and Hg2+ existed [72].
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The concentration of gelator 1 was 11.6 mM.

3. Conclusions

We designed a bis-pyridine-based gelator 1 with gelation abilities in six solvents,
including some mixed solvents. Nanofiber and nanorod structures were formed in the gel
systems. Xerogels of 1 from the above solvents exhibited hydrophobicity and hydrophilicity
with the water contact angles of 141◦–51◦. Gelator 1 showed the obvious AIE behavior in
its aggregate state. The gel of 1 in acetonitrile could respond to Hg2+ via the change in the
fluorescence and gel state. Metal coordination interaction was possibly the main reason for
inducing the fluorescence quenching and the damage in noncovalent interactions of the gel
system. This study provides a new method for constructing a functional supramolecular
self-assembly system as a sensor for the detection of Hg2+.

4. Experimental Section
4.1. Reagents and Solvents

4-(4-aminophenoxy)benzenamine and (R)-octan-2-amine were purchased from Jiangsu
Aikang Biomedical Research and Development Co. Ltd. Nanjing, China. 2,6-Pyridinedicarboxylic
acid monomethyl ester was purchased from Zhengzhou Alpha Chemical Co. Ltd. All the
reagents and solvents were analytically pure and without further purification. Water was
deionized and obtained by triple distillation.

4.2. Techniques and Instrumentations

The techniques and instrumentations are shown in the supporting information.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/gels8080464/s1, Techniques; Figure S1, XRD patterns of xerogels
of 1 from different solvents and powder 1; Figure S2, Images of solutions of 1 (10−5 M)in acetonitrile
with different water content under 365 nm light.; Figure S3, UV-vis absorption spectra of gels 1
after the addition of Hg2+ with the different concentrations. The addition amount of Hg2+ aqueous
solution was 70 µL.; Figure S4, FESEM image of acetonitrile gel 1 after the addition of Hg2+. of the
experimental procedures, characterization data and some experimental results were provided in
supporting information.
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