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Abstract: Low molecular weight heparin, enoxaparin, has been one of most used drugs to fight
the SARS-CoV-2 pandemic. Pharmacological properties of heparin recognize its specific ability, as
with other oligosaccharides and glycosaminoglycan, to bind several types of viruses during their
pass through the extracellular matrix of the respiratory tract, as well as its anticoagulant activity to
prevent venous thromboembolism. Antithrombotic actions of enoxaparin have been testified both
for inpatients with COVID-19 in regular ward and for inpatients in Intensive Care Units (ICUs).
Prophylactic doses seem to be able to prevent venous thromboembolism (VTE) in inpatients in the
regular ward, while intermediate or therapeutic doses have been frequently adopted for inpatients
with COVID-19 in ICU. On the other hand, although we reported several useful actions of heparin
for inpatients with COVID-19, an increased rate of bleeding has been recorded, and it may be related
to several conditions such as underlying diseases with increased risks of bleeding, increased doses or
prolonged administration of heparin, personal trend to bleed, and so on.

Keywords: COVID-19; heparins; low molecular weight heparin; fondaparinux; bleedings; ve-
nous thromboembolism

1. Background

Heparin and heparan sulphate are complex, linear, acidic polysaccharides belonging
to the glycosaminoglycan (GAG) family; their structure makes continuous alternating
glucosamine and uronic acid units; for these reasons, they are considered polyanions [1].
The continued sequence of uronic acids and amino sugars has ester sulphates and that
the amino groups were (partly) acetylated [1]. Its structure is like heparin sulphate [2].
Physiologically, heparin and heparan sulphate are the main constituents of the extracellular
matrix, and heparin is exactly released in granules of mast cells [1–3]. The anti-protease
mechanism’s function [4] gives evidence of its importance, helping to regulate several
tissues’ function during normal state and during disease states. Heparin has an anti-
protease action that can reduce the activity of numerous proteases of the clotting system;
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its anticoagulant power, in fact, is well known and testified in several reports in vitro and
in vivo [5].

The anticoagulant activity of heparin is due to its property to bind an anti-protease of
the serpin family named antithrombin III (ATIII) [4]; this binding greatly accelerates the
ability of ATIII to inactivate several clotting proteases, such as thrombin (factor IIa) and
prothrombinases (factor Xa) [6,7].

From a pharmacological point of view, we distinguish two different types of heparins:
unfractionated heparins (UFH) and low molecular weight heparins (LMWH) [8]. UFH is a
heterogenous preparation of anionic, sulphated glycosaminoglycan polymers with high
weights, ranging from 3 kDa to 30 kDa, while LMWH have a reduced weight that ranges
from 4.5 kDa to 10 kDa [8]. A different weight is derived from different enzymatic depoly-
merization of the whole heparin and a different weight also has a different pharmacokinetic
effect, because it may induce a more selective inhibition of factor Xa for LMWH, versus a
more selective action to inhibit factor IIa by UFH [9]. Yet, the anti-inflammatory effect of
LMWH is also different because flow weight fragments are less able to bind proteases and
cells in the extracellular matrix [10].

On the other hand, heparan sulphate, the main component at cell surfaces and in the
extracellular matrix of most animal tissues, can interact with a large variety of protein and
cells, so takes a relevant role in disease processes. Most functions of heparan sulphate
depend on ionic interactions, with a variety of proteins, including growth factors, cytokines,
and their receptors [10]. Furthermore, heparan sulphate is also able to interact with
SARS-CoV-2 before its binding to angiotensin converting enzyme receptor type 2 (ACE-2)
(Figure 1). Several studies have confirmed that these mechanisms are effective for SARS-
CoV-2, and that SARS-CoV-2 spike protein interacts with both cellular heparan sulphate
and angiotensin-converting enzyme 2 (ACE2) through its receptor [11].
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2. Heparin and SARS CoV2

Coronaviruses (CoVs) are single-stranded RNA viruses which originate from a well-
known family of viruses named Coronaviridae [12]. Usually, Coronavirus affects animals
such as cows, pigs and birds. When the virus infects humans, respiratory infections are
possible, and they vary from less severe respiratory or gastrointestinal disease to severe
acute respiratory syndrome (SARS) [13,14]. One of the known epidemics of SARS, due to
a Coronavirus, and named SARS-CoVs, has been certified in 2003, and another epidemic
hotbed due to a Coronavirus was identified in 2012 in the Middle East; for this reason, the
induced respiratory infection was named Middle East Respiratory Syndrome (MERS) [14].
In the last 2 years, a pandemic due to another Coronavirus, i.e., SARS-CoV-2, began in
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China and then diffused all around the world. The virus as known is able to induce a
multifocal pneumonia with possible lung failure [15]. The disease was named COVID-19
by World Health Organization (WHO).

Since the first epidemiological report from different cohorts of patients affected by
COVID-19 in China, this infection has been associated to hypercoagulable state and
thrombotic complications [16,17]. For this reason, all scientific societies suggested phar-
macological thromboprophylaxis with low molecular weight heparin for all inpatients
with COVID-19.

Yet, before exerting its specific actions, SARS-CoV-2 binds several types of gly-
cosaminoglycans and oligosaccharides, such as fucosylated acid, sialic acid and heparan
sulphate [18].

Heparan sulphate is abundant in the respiratory tract, and it plays a role as binding
factor for coronaviruses with tropism to bronchitis and other respiratory infections [19].
For this reason, these actions may explain in part the extended tropism of this virus for
cells of respiratory tract, and the similarity between heparan sulphate and heparin gives
further protective actions to heparin itself.

3. Prophylactic Doses of Low Molecular Weight Heparin in Inpatients with COVID-19

As previously reported, COVID-19 predisposes patients to venous thromboembolism
(VTE), due to excessive inflammation, platelet activation, and endothelial dysfunction.
The association between COVID-19 and VTE is well known since first reports from China,
and this association took clinical relevance, because the association between these two
conditions was associated to a worse prognosis in Chinese population [20].

Yet, thrombotic risk seems to be different in patients with different intensity of care [21]:
patients admitted to the ICU, in fact, show an increased trend to develop VTE compared
to those admitted in regular ward [22,23]. Additional risk factors for death or death for
associated VTEin several cohorts are diabetes or other cardiovascular risk factors [24,25].

For this reason, pharmacological prophylaxis to prevent VTE has been suggested since
the beginning of pandemic, to escape thrombotic complications for inpatients [26].

Prophylactic doses of low molecular weight heparin have been reported as safe
regarding the prevention of VTE in inpatients in regular ward [27]. Furthermore, the rate of
bleeding in inpatients treated with prophylactic doses of LMWH was also low, as already
reported [27,28].

Yet, the duration of thromboprophylaxis with standard doses of low molecular weight
heparin after discharge is still matter of discussion; in particular, the administration of
LMWH is considered to be safe, since the first signs and symptoms of the disease and
during the hospitalization, while the long term prophylaxis also after hospital discharge
did not report univocal consensus for the relevant outcomes (i.e., rate of VTE, rate of
bleeding, overall death), as far as for the duration of treatment.

4. Intermediate and Therapeutic Doses of Low Molecular Weight Heparin in
Inpatients with COVID-19

The high risk of developing VTE in patients with SARS-CoV-2 has raised hypothe-
ses about the use of intermediate and therapeutic doses of LMWH, which have not yet
developed events and therefore in primary prevention.

As shown in literature by clinical trials as ATTACC [29], REMAP-CAP [30], enoxaparin
at therapeutic doses as an initial strategy would reduce thromboembolic events in patients
with a not advanced state of disease [31], despite no significant major bleeding recorded.

In the HEP-COVID trial [32], in patients with not critic disease, D-dimer levels greater
than 4 times the normal or a sepsis-induced coagulopathy (SIC) score ≥4, LMWH has
significantly reduced the risk of the primary endpoint, the composite of three events:
VTE, arterial thrombosis events (ATE) and all-cause mortality (ACM), with a negligible
hemorrhagic risk. Therefore, the clinical conditions of patients in a mild or initial state of
disease are straightforward, to allow the use of the therapeutic dose of enoxaparin, reducing
the composite of death and VTE, compared to the standard thromboprophylaxis doses.
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The case for ICU patients is different, in which the treatment with therapeutic doses
with LMWH appeared not superior to the usual-care doses, for primary prevention of
the onset of VTE [33]. In addition, at the base of the not optimal effectiveness of low
molecular weight heparin in this type of patients, there would be a reduced subcutaneous
absorption due to increased vascular permeability, the resulting edema and increased
vascular distribution with reduced oncotic pressure [34].

To date, no doubts should be raised about the use of anticoagulant therapy in
patients with COVID-19, having guaranteed a good safety profile in prophylactic and
therapeutic doses.

According to the literature [35], reduced efficacy of heparin in therapeutic doses in the
advanced state of illness, induces to evaluate the component time as the best element in
the therapeutic strategy, starting treatment as soon as possible, exposing the patient to the
numerous pleiotropic effects of the molecule, in an early stage of the disease.

5. Fondaparinux and COVID-19

The depolymerization of heparin results not only in the development of LMWHs
but also in the synthesis of fondaparinux, that is composed only of the pentasaccharidic
sequence of heparin that is able to bind antithrombin III with a specific propensity to
selective inhibition of Xa more than IIa [36]; from a pharmacodynamics point of view, it
does not interact with plasma proteins other than antithrombin, leading to a predictable
pharmacokinetics [37].

The clinical utility of fondaparinux in VTE preventions has been reported in several
clinical contexts as major orthopaedic surgery and acute medical illness [38,39].

So, as COVID-19 is an acute infection that required hospitalization in (majority) most of
the cases of prolonged hospitalization, an adequate thromboprophylaxis with fondaparinux
has been suggested and performed in several studies [40,41]. A reduced rate of VTE events
was found in the Italian cohort in which Fondaparinux 2.5 mg daily was compared to
Enoxaparin 4000 I.U. or 6000 I.U. daily [42,43], while an increased anti-inflammatory action
of enoxaparin was found in another study from the same group [44]. In another study,
by another Italian group, a small increase in bleedings was recorded in inpatients with
prophylactic doses of fondaparinux [41].

Because these cohorts of patients were no larger, the benefit of the clinical utility of
Fondaparinux 2.5 mg as thromboprophylaxis for inpatients with COVID-19 was postponed
in all reported studies to other scientific research on a large population.

6. Bleedings in Inpatients with COVID-19 Treated with Low Molecular
Weight Heparin

The risk of bleeding should always be considered when an antithrombotic drug is
administered to a patient, both if prophylactic or therapeutic doses are considered [45].
Several bleeding risk scores are suggested in the literature to quick estimate this risk [46].
Yet, during COVID-19 pandemic, alerts given on the great prothrombotic effect of infection
per se and on the relevant risk to develop VTE for inpatients in ICU or in regular ward
induced to consider intermediate or therapeutic doses of LMWH to prevent VTE, although
randomized trials were not available during the first waves of the pandemic.

Although the risk of VTE has been confirmed also by several scientific societies, the
use of therapeutic doses to prevent VTE has been frequently discouraged by experts [47].

In a multicenter study from the USA, in fact, for the first time, it has been reported
that the rate of bleeding for inpatients with COVID-19 was really similar to the rate of
VTE, so therapeutic doses were not suggested by Authors and a clinical input to a right
surveillance of bleedings was suggested in their conclusion [48]. Regarding the evaluation
of bleeding risk factors in this study, the use of LMWH and increased levels of d-dimer at
admission in hospital were found as atypical but predictive risk factors for bleeding.

In another large series from the RIETE registry, the incidence of bleeding increased
nearly 5.0%, and a great part of patients received thromboprophylaxis with intermediate
or therapeutic doses of LMWH [49].
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These data testify that clinically, the risk of bleeding should be always considered,
although prothrombotic diseases such as COVID-19 show an increased risk of fatal pul-
monary embolism.

7. Inside Anti-Inflammatory and Antithrombotic Actions of Heparins

Since WHO suggested the use of heparins during the pandemic of SARS-CoV-2, a
large series of studies regarding protective action of low molecular weight heparin in
inpatients has been reported. Standard doses, intermediated doses and therapeutic doses
of low molecular weight heparin have been tested in several cohorts around the world,
with positive outcomes regarding VTE.

Yet, heparins may also exert their pharmacological activity in other ways. Besides its
action toward serinproteases of clotting system as factor IIa and/or Xa by its pentasaccha-
ride motif, heparin may exert its anti-inflammatory action toward other proteases nexin I,
as far as human neutrophil elastases and others by its arginine residues, and mainly OSO3-
groups [50]. For these reasons, heparin showed its therapeutic effect in acute or subacute
inflammatory diseases as pancreatitis, as respiratory inflammations (e.g., COVID-19 and
lung emphysema), as far as inflammatory bowel disease [51–54].

8. Low Molecular Weight Heparin in Patients with COVID-19 Treated at Home

In about 15% of COVID-19 patients, the clinical course of the disease may be com-
plicated by the onset of severe interstitial pneumonia, with possible lung failure that
may require hospitalization; however, many infected patients remain asymptomatic or
paucisymptomatic, and are managed in outpatient settings [55,56].

Following the clinical indication of WHO [57], Italian Minister of Health by the Italian
Society of General Medicine confirmed the suggestion to the use of prophylactic doses of
LMWH, because of the possible hypomobility, also for not-hospitalized patients because
of quarantine and because of treatment of hypoxia at home. Of course, an evaluation of
bleeding risk should be performed in any case, being a prophylactic treatment suggested
until the nasopharyngeal swab was negative and/or until the hypomobility was absent
(e.g., 15 or 30 days).

Furthermore, a following study on patients treated at home for COVID-19 revealed
that LMWH was preferred by several experts for patients with associated cardiovascular
comorbidities, with low rates of pulmonary complications, or need of hospitalization for
lung failure [58].

Moreover, a further study from another Italian group, that treated patients with
COVID-19 at home with high flow nasal cannulae, revealed that thromboprophylaxis with
standard doses of LMWH are suggested, in any case, to escape vascular complication as
pulmonary embolism at home.

9. Conclusions

The two-way link between the inflammation and clotting system is well established
and based on several mechanisms, as reduction of the activity of natural anticoagulants
as far as inhibition of fibrinolysis, and the pro-inflammatory and pro-coagulant action
of cytokines by increasing expression of tissue factor on monocytes and endothelium
is established, thus giving a hyperactivation of the clotting cascade [59,60]. The role of
heparin to improve the outcome of patients with COVID-19 has been underlined since
the first wave of the outbreak, and reinforced in these months, because the associated
reduced mortality independently from the modification of inflammatory biomarkers [61].
Improvements reported with the use of heparins have been also underlined in Guidelines
of several scientific societies [62]; for this reason, other anticoagulants do not appear as
suggested anticoagulants to prevent VTE in inpatients with COVID-19, although some
cohorts reported good results [63,64].

Together to its well know anti-thrombotic role, that is needed to reduce the rate of
thrombotic complications, heparin showed further useful actions in vitro and in vivo.
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Anti-inflammatory effects have been reported in several series and in experimental
model with the reduction of cytokines [65], and a specific anti-viral action in extracellular
matrix of tissues has also been described.

So, the use of heparin is suggested, since the first clinical signs of confirmed infection
by SARS-CoV-2, although the majority of positive effects have been demonstrated for
inpatients vs. patients treated at home; furthermore, heparin use is suggested also after
discharge from hospital as for other acute medical illnesses. Yet, overdose of heparin
with intermediated or therapeutic doses in patients with COVID-19 are also associated to
similar rates of thrombotic and hemorrhagic complications that may be associated with
worse outcomes.
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